
41

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

5 A structured VHDL design method

5.1 Introduction

The VHDL language [22] was developed to allow modelling of digital hardware. It can

be seen as a super-set of Ada, with a built-in message passing mechanism called sig-
nals. The language was defined in the mid-1980’s as a respons to the difficulties of

developing, validating and co-simulating increasingly complex digital devices devel-

oped within the VHSIC[23] program. The main focus was to be able to write executable
specifications, and allow specifications (or models) from different providers (compa-

nies) to be simulated together.

When the language was first put to use, it was used for high-level behavioural simula-

tion only. ’Synthesis’ into VLSI devices was made by manually converting the models

into schematics using gates and building blocks from a target library. However, manual

conversion tended to be error-prone, and was likely to invalidate the effort of system

simulation. To address this problem, VHDL synthesis tools that could convert VHDL

code directly to a technology netlist started to emerge on the market in the begining of

1990’s. Since the VHDL code could now be directly synthesised, the development of

the models was primarily made by digital hardware designers rather than software engi-

neers. The hardware engineers were used to schematic entry as design method, and their

usage of VHDL resembled the dataflow design style of schematics. The functionality

was coded using a mix of concurrent statments and short processes, each decribing a

limited piece of functionality such as a register, multiplexer, adder or state machine. In

the early 1990’s, such a design style was acceptable since the complexity of the circuits

was relatively low (< 50 Kgates) and the synthesis tools could not handle more complex

VHDL structures. However, today the device complexity can reach several millions of

gates, and the synthesis tools accept a much larger part of the VHDL standard. It should

therefore be possible to use a more modern and efficient VHDL design method than the

traditional ’dataflow’ version. This chapter will describe such a method and compare it

to the ’dataflow’ version.

5.2 The problems with the ’dataflow’ design method

The most commonly used design ’style’ for synthesisable VHDL models is what can

be called the ’dataflow’ style. A larger number of concurrent VHDL statements and

small processes connected through signals are used to implemenet the desired function-

ality. Reading and understanding dataflow VHDL code is difficult since the concurrent

statements and processes do not execute in the order they are written, but when any of

their input signals change value. It is not uncommon that to extract the functionality of

dataflow code, a block diagram has to be drawn to indentify the dataflow and depend-

ecies between the statements. The readability of dataflow VHDL code can compared to

an ordinary schematic where the wires connecting the various blocks have been

removed, and the block inputs and outputs are just labeled with signal names!

Below is a small (but real) example of dataflow code taken from the memory controller

of a 32-bit processor. The memory controller contains approximately 2,000 of these

small processes and concurrent statements, making it very difficult for an engineer that

did not design to code to understand and maintain it:

42

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

CBandDatat_LatchPROC9F: process(MDLE, CB_In, Reset_Out_N)
 begin
 if Reset_Out_N = ’0’ then
 CBLatch_F_1 <= "0000";
 elsif MDLE = ’1’ then
 CBLatch_F_1 <= CB_In(3 downto 0);
 end if;
 end process;

 CBandDatat_LatchPROC10F: process(MDLE, CB_In, DParIO_In, Reset_Out_N)
 begin
 if Reset_Out_N = ’0’ then
 CBLatch_F_2 <= "0000";
 elsif MDLE = ’1’ then
 CBLatch_F_2(6 downto 4) <= CB_In(6 downto 4);
 CBLatch_F_2(7) <= DParIO_In;
 end if;
 end process;

CBLatch_F <= CBLatch_F_2 & CBLatch_F_1;

 BullEn_PROC: process(Mem_Test, ByteSel)
 begin

BullEn <= not (ByteSel(0) and ByteSel(1) and ByteSel(2) and ByteSel(3)) or Mem_Test;
 end process;

IUChk_Out_Gen: process (IUDataLatch_F, ChkGen_Data, BullEn, CB_bull)
 Variable IUGen_Chk : std_logic_vector(7 downto 0);

 begin
 IUGen_Chk(6 downto 0) := ChkGen (IUDataLatch_F);
 IUGen_Chk(7) := ChkGen_Data(32);

 CB_Out_Int <= mux2 (BullEn, IUGen_Chk, CB_bull);
 end process;

A problem with the dataflow method is also the low abstraction level. The functionality

is coded with simple constructs typically consisting of multiplexers, bit-wise operators

and conditional assignments (if-then-else). The overall algorithm (e.g. non-restoring

division) might be very difficult to recognize and debug.

Yet an other issue is simulation time: the assignment of a signal takes approximately

100 times longer than assigning a variable in a VHDL process. This is because the var-

ious signal attributes must be updated, and the driving event added to the event qeueue.

With many concurrent statments and processes, a larger proportion of the simulator

time will be spent managing signals and scheduling of processes and concurrent state-

ments.

5.3 The goals and means of the ’two-process’ design method

To overcome the limitations of the dataflow design style, a new ’two-process’ coding

method is proposed. The method is applicable to any synchrounous single-clock

design, which represents the majority of all designs. The goal of the two-process

method is to:

• Provide uniform algorithm encoding

• Increase abstraction level

• Improve readability

• Clearly identify sequential logic

• Simplify debugging

• Improve simulation speed

• Provide one model for both synthesis and simulation

43

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

The above goals are reached with suprisingly simple means:

• Using record types in all port and signal declarations

• Only using two processes per entity

• Using high-level sequential statements to code the algorithm

The following section will outline how the two-process method works and how it com-

pares with the traditional dataflow method.

5.4 Using two processes per entity

The biggest difference between a program in VHDL and standard programming lan-

guage such C, is that VHDL allows concurrent statements and processes that are sched-

uled for execution by events rather than in then order they are written. This reflects

indeed the dataflow behaviour of real hardware, but becomes difficult to understand

and analyse when the number of concurrent statments passes some threashold (e.g. 50).

On the other hand, analysing the behaviour of programs witten in sequential program-

ming languages does not become a problem even if the program tends to grow, since

there is only one thread of control and execution is done sequentially from top to bot-

tom.

In order to improve readability and provide a uniform way of encode the algorithm of

a VHDL entity, the two-process method only uses two processes per entity: one process

that contains all combinational (asynchronous) logic, and one process that contains all

sequential logic (registers). Using this structure, the complete algorithm can be coded

in sequential (non-concurrent) statements in the combinational process while the

sequential process only contains registers, i.e. the state.

Figure 20 above shows a block diagram of a two-process entity. Inputs to the entity are

denoted D and connected to the combinational process. The inputs to the sequential

process are denoted rin and driven by the combinational process. In the sequential proc-

ess, the inputs (rin) are copied to the outputs (r) on the clock edge,

The functionality of the combinational process can be described in two equations:

Q = fq(D, r) rin = fr(D, r)

Given that the sequential process only perform a latching of the state vector, the two

functions are enough to express the overall functionality of the entity.

Figure 20: Generic two-process circuit

Combinational

Sequential

D Q

Clk

r

rin
r = rin

Q = fq(D, r)

rin = fr(D,r)

44

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

The corresponding VHDL code for an 8-bit counter could look like the following:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity count8 is
port (
clk : in std_logic;
load : in std_logic;
count : in std_logic;
d : in std_logic_vector(7 downto 0);
q : out std_logic_vector(7 downto 0));

end;

architecture twoproc of test is

signal r, rin : std_logic_vector(7 downto 0);

begin

combinational : process(load, count, d, r)
variable tmp : std_logic_vector(7 downto 0);
begin
if load = ’1’ then tmp := d;
elsif count = ’1’ then tmp := r + 1;
else tmp := r; end if;
rin <= tmp;
q <= r;

end process;

sequential : process(clk)
begin
if rising_edge(clk) then r <= rin; end if;

end process;

end;

5.5 Using record types

The above count8 example is simple, and the limited number of ports and signals makes

the code reasonably readable. However, the port interface list can for complex IP blocks

consist of several hundreds of signals. Using the standard dataflow method, the signals

are not grouped into more complex data types but just listed sequentially. The most

common data types are scalar types and one-dimentional arrays (buses). Having a port

list of several hundreds of signals makes it difficult not only to understand which sig-

nals functionally belong together, but also to add and remove signals. Each modifica-

tion to the interface list has to be made at three separe locations: the entity declaration,

the entity’s componenent declaration, and the component instantiation (adding a port

map).

By using record types to group associated signal, the port list becomes both shorter and

more readable. The signals are grouped according to functionality and direction (in or

out). The record types can be declared in a common global ’interface’ package which

is imported in each module. Alternatively, the record types can be declared together

with the entity’s component declaration in a ’component’ package. This package is then

imported into those modules where the component is used. A modification to the inter-

face list using record types corrsponds to adding or removing an element in one of the

record types. This is done only in one single place, the package where the record type

is declared. Any changes to this package will automatically propagate to the component

declaration and the entity’s component instantiation, avoiding time-consuming and

error-prone manual editing.

Similar problems arise when more registers are added. For each register, two signals

have to be declared (register input and output), the register output signal has to be added

to the sensitivity list of the combinational process, and an assignment statement added

45

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

to the sequential process. By grouping all signals used for registers into one record type,

this becomes unnecessary. The rin and r signals becomes records, and adding register

is done by simply adding a new element in the register record type definition.

Below is the count8 example using records for port and register signals. The load and

count inputs are now latched before being used, and a zero flag has been added:

library ieee;
use ieee.std_logic_1164.all;

package count8_comp is -- component declaration package
type count8_in_type is record
load : std_logic;
count : std_logic;
din : std_logic_vector(7 downto 0);

end;

type count8_out_type is record
dout : std_logic_vector(7 downto 0);
zero : std_logic;

end;

component count8
port (
clk : in std_logic;
d : in count8_in_type;
q : out count8_out_type);

end component;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.count8_comp.all;

entity count8 is
port (
clk : in std_logic;
d : in count8_in_type;
q : out count8_out_type);

end;

architecture twoproc of count8 is
type reg_type is record
load : std_logic;
count : std_logic;
zero : std_logic;
cval : std_logic_vector(7 downto 0);

end;
signal r, rin : reg_type;

begin

comb : process(d, r) -- combinational process
variable v : reg_type;
begin
v := r; -- default assignment
v.load := d.load; v.count := d.count; -- overriding assignments
v.zero := ’0’;

if r.count = ’1’ then v.cval := r.val + 1; end if; -- module algorithm
if r.load = ’1’ then v.cval := d.data; end if;
if v.cval = "00000000" then v.zero := ’1’; end if;

rin <= v; -- drive register inputs
q.dout <= r.cval; q.zero <= r.zero; -- drive module outputs

end process;

regs : process(clk) -- sequential process
begin
if rising_edge(clk) then r <= rin; end if;

end process;
end;

Note the usage of the variable v in the combinational process. The variable is of the reg-

ister record type, and assigned in the begining of the process with the value or r, i.e. the

current register values. At the end of the process, the register inputs rin are assigned

with v. This means that those elements of v which are not assigned during the execution

of the process will maintain their values, i.e. the register value will not change.

46

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

A large benefit with using record types for the register signals rin and r, is that elements

can added or removed without requiring any other modifications to the code. The sen-

sitivity list of the combinational process does not have to be modified, and neither the

assignment of r <= rin in the sequential process. This is because the operation is per-

formed on the record as whole, regardless of how many elements it has.

In larger blocks with many registers, readability can be improved by defining separate

record types for related registers. This is particularly usefull if several register of the

same type are used, in which case an array type of the ’sub-register’ can be defined:

type uart_rx_reg_type is record
par : std_logic;
frame : std_logic;
ready : std_logic;
data : std_logic_vector(7 downto 0);

end;

type uart_tx_reg_type is record
par : std_logic;
ena : std_logic;
empty : std_logic;
baud : std_logic_vector(7 downto 0);

end;

type uart_rx_arr is array 0 to 3 of uart_rx_reg_type;
type uart_tx_arr is array 0 to 3 of uart_tx_reg_type;

type reg_type is record
rxregs : uart_rx_arr;
txregs : uart_tx_arr;

end;

signal r, rin : reg_type;

5.6 Clock and reset

In the examples above, the clock signal has not been included in the record types used

for ports. The clock is typically routed from an input pad and through the complete hier-

archy of modules. In a synchronous single-clock design, the clock may not be skewed

or the function cannot be guaranteed. If the clock was included in a record type, the

assignment to the record field would create a delta delay, skewing that part of the clock

tree. An other (less ’noble’) reason not to add the clock to a record type is that many

CAD tools used for clock-tree generation and timing analysis cannot handle a clock sig-

nal that is part of a bus!

Also the reset signal has been left out from the record types, much for the same reasons

as the clock signal. This reasoning is valid if the reset is asynchronous, it must then be

treated as a clock both during routing and timing analysis. A synchronous reset signal

can be added to the record types since it behaves like any other non-clock input signal.

The two-process methodology can handle both synchronous and asynchronous reset,

but using different coding style. A synchronous reset is treated as any other input signal

and used in the combinational process. By placing the reset assignment last in the proc-

ess, it will have precedense before any other statments:

entity count8 is
port (
clk : in std_logic;
reset : in std_logic;
d : in count8_in_type;
q : out count8_out_type);

end;

47

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

architecture twoproc of count8 is
.
.
begin
.
.
comb : process(reset , d, r) -- combinational process
variable v : reg_type;
begin
v := r; -- default assignment
v.load := d.load; v.count := d.count; -- overriding assignments
v.zero := ’0’;

if r.count = ’1’ then v.cval := r.val + 1; end if; -- module algorithm
if r.load = ’1’ then v.cval := d.data; end if;
if v.cval = "00000000" then v.zero := ’1’; end if;

if reset = ’0’ then -- reset condition
v.cval := (others => ’0’); v.zero := ’0’;

end if;

rin <= v; -- drive register inputs
q.dout <= r.cval; q.zero <= r.zero; -- drive module outputs

end process;

An asynchronous reset must be connected to the sequential process, since it will affect

the state (registers) regardless of the clock:

regs : process(reset , clk) -- sequential process
begin

if reset = ’0’ then
r.cval <= (others => ’0’); r.zero <= ’0’;

elsif rising_edge(clk) then r <= rin; end if;
end process;

The reset signal must be added to the sequential process’ sensitivity list since reset

should occur regardless of the clock. The above coding style is fully synthesisable and

will produce flip-flops with asynchronous reset with most synthesis tools. Asynchro-

nous set is created simply by changing the reset assignment value from ’0’ to ’1’. The

polarity of the set/reset is defined in the asynchronous reset condition (if reset = ’0’/’1’).

5.7 Hierarchical design

Using record types for ports also simplifies hierarchichal design. The port map of

instantiated components is reduced to a few record signals, thereby increasing the read-

ability. Below is an example from the LEON2 processor, instantiating the processor

pipeline, floating-point unit and caches. With the traditional dataflow method, there

would be many hundreds of signals in the port maps. Using record types reduces this to

a few signals per component, and significantly improves readability:

cpu0 : cpu_sparc port map (rst, clk, ici, ico, dci, dco, fpui, fpuo);
fpu0 : fpu_core port map (clk, fpui, fpuo);
cache0 : cache port map (rst, clk, ici, ico, dci, dco, ahbi, ahbo, ahbsi, crami, cramo);
cmem0 : cachemem port map (clk, crami, cramo);

48

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

5.8 Increasing the abstraction level

An important step towards a more efficient design methodology is to increase the

abstraction level in the design process. Describing an adder with a ’+’ rather a network

of AND, OR and XOR gates is much more readable and also less error-prone. The two-

process method uses sequential VHDL statement to code the algorithm of a function,

and allows the usage of more complex and abstract syntax then avalable for concurrent

statements (in the dataflow method). Some ways of increasing the abtraction level for

common digital operations is described below.

5.8.1 Ieee.numeric_std package

The ieee.numeric_std package defines many usefull arithmetic operations, and is pro-

vided free of charge by IEEE. Most simulators and synthesis tools provide built-in,

optimised versions of this package which further improves performances and synthesis

results. In paricular the +, - and compare operators are mapped on the best implemen-

tation style for a given target technology, and the usage of these operators will guaran-

tee optimal design portability.

5.8.2 Loop statement

The loop statement is well suited to implement iterative algorithms, as well as priority

encoding, sub-bus extraction and bus index inversion. The loop statement is supported

by most synthesis tools as long as the loop range is constant. Some examples:

variable v1 : std_logic_vector(0 to 7);
variable first_bit : natural;

-- find first bit set
for i in v1’range loop
if v1(i) = ’1’ then
first_bit := i; exit;

end if;
end loop;

-- reverse bus
for in 0 to 7 loop v1(i) := v2(7-i); end loop;

5.8.3 Multiplexing using integer conversion

Implementing multiplexers and decoders using integer conversion is a more compact

and scalable alternative to a large ’case’ statement. Generic multiplexers can for

instance be implemented as functions:

-- generic multiplexer

function genmux(s,v : std_ulogic_vector) return std_ulogic is
variable res : std_ulogic_vector(v’length-1 downto 0);
variable i : integer;
begin
 res := v; i := 0;
i := to_integer(unsigned(s));
return(res(i));

end;

-- generic decoder

function decode(v : std_ulogic_vector) return std_ulogic_vector is
variable res : std_ulogic_vector((2**v’length)-1 downto 0);
variable i : natural;
begin
 res := (others => ’0’); i := 0;
i := to_integer(unsigned(v));
res(i) := ’1’;

 return(res);
end;

49

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

5.8.4 State machines

Using sequential statements, a state machine can easily be implemented with a ’case’

statement. Using the two-process method with a local varaible v to hold the next state,

both combinational and registered outputs from the state machine is possible:

architecture rtl of mymodule is

type state_type is (first, second, last);

type reg_type is record
state : state_type;
drive : std_logic;

end record;

signal r, rin : reg_type;

begin
comb : process(...., r)
variable v : reg_type;
begin

v := r;

case r.state is
when first =>
if cond0 then v.state := second; end if;

when second =>
if cond1 then v.state := first;
elsif cond2 then v.state := last; end if;

when others =>
v.drive := ’1’; v.state := first;

end case;

if reset = ’1’ then v.state := first; end if;

modout.cdrive <= v.drive; -- combinational output
modout.rdrive <= r.drive; -- registered output

end process;

5.8.5 Sub-programs

Using sub-programs (procedures and functions) is a powerfull method to hide complex-

ity and improve readability. Sub-programs are readily supported by synthesis tools, but

may normally not contain sequential (clocked) logic. This restriction fits well with the

two-process method which only contains combinational logic in the algorithm part.

Tested and reusable sub-programs can be kept in a separate package and use as a IP

library of small algorithms. Below is an example from the LEON3 processor pipeline:

-- REGFILE STAGE

 exception_detect(r, v.r.ctrl.trap, v.r.ctrl.tt);

 op_gen(r, rfo.data1, ex_alu_res, me_bp_res, zero32, r.r.rs1, false,
v.e.op1, v.e.ldbp1);

 op_gen(r, rfo.data2, ex_alu_res, me_bp_res, imm_data(r, rf_icc),
r.r.rs2, imm_select(r.r.ctrl.inst), v.e.op2, v.e.ldbp2);

alu_op(r, v.e.op1, v.e.op2, v.e.aluop, v.e.alusel, v.e.aluadd, v.e.shcnt, v.e.smsb,
v.e.shleft);

 v.e.alucin := cin_gen(v, r);

-- DECODE STAGE

 su_et_select(r, v.r.su, v.r.et);
 v.r.ctrl.wicc := write_icc(r.d.inst);
 de_cwp := cwp_select(r);
 v.r.ctrl.cwp := ncwp_gen(r.d.inst, de_cwp);
 cwp_ctrl(r,v.r.ctrl.cwp, v.r.ctrl.wcwp, v.r.wovf, v.r.wunf);
 v.r.ctrl.rd := regaddr(v.r.ctrl.cwp, r.d.inst(29 downto 25));
 de_rs1 := rs1_gen(r);

50

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

5.9 Dataflow vs. two-process comparison

To illustrate the usefullness of the two-process method, a comparison of common

development tasks has been made with the standard dataflow design style:

From the table, it can be seen that common development tasks are done with less editing

or manual procedures, thereby improving efficiency and reducing coding errors.

5.10 Summary and conclusions

The presented two-process method is a way of producing structured and readable

VHDL code, suitable for efficient simulation and synthesis. By defining a common

coding style, the algorithm can be easily identified and the code analysed and main-

tained also by other engineers than the main designer. Using sequential VHDL state-

ments to code the algorithm also allows the use of complex statements and a higher

abtraction level. Debugging and analysis is simplified due to the serial execution of

statements, rather than the parallel flow used in dataflow coding.

Two-process method Dataflow coding

Adding ports

• Add field in interface record type • Add port in entity declaration

• Add port to sensitivity list (input)

• Add port in component declaration

• Add signal to port map of component

• Add definition of signal in parent

Adding registers

• Add field in register record type • Add two signal declaration (d & q)

• Add q-signal in sensitivity list

• Add driving signal in comb. process

• Add driving statement in seq. process

Debugging

• Put a breakpoint on first line of

combination process and step

forward

• New signal values visible in

local variable v

• Analyze how the signal(s) of interest are

generated

• Put a breakpoint on each process or con-

current statment in the path

• New signal value not immediately visible

Tracing

• Trace the r-signal (state)

• Automatic propagation of added

or deleted record elemenets

• Find all signals that are used to implement

registers

• Trace all found signals

• Re-iterate after each added or deleted sig-

nal

• •

Table 16: Dataflow vs. two-process comparison

