
 2004 Microchip Technology Inc. DS00914A-page 1

AN914

INTRODUCTION

Dynamic memory allocation is a nice functionality that

is provided with virtually all PC-based compilers. How-

ever, not all microcontroller compilers have such capa-

bility, most likely due to the lack of a sophisticated

operating system with memory management. Although

most applications are static in nature, there are cases

where a need for dynamic allocation of memory

resources exists. Examples include any number of net-

work protocols that have a dynamically specified

nature. This application note presents a simple and effi-

cient method for dynamic memory allocation without

the need of an operating system.

THE MODEL

The model is based on a simple form of a linked list. A

block of memory referred to as the dynamic heap is

split into segments. Each segment has a single-byte

header that references the next segment in the list via

an offset, as well as indicating whether the segment is

allocated. Allocation is specified by a single bit.

Figure 1 shows an example. Consequently, the

reference implicitly identifies the length of the segment.

The heap is terminated with a special header that

references itself, referred to as the “tail”.

Why use single-byte headers? The segment headers

are specifically designed to be a single byte wide to

achieve excellent execution performance, reduce code

size and minimize loss of memory space to segment

control information. Essentially, one byte references are

easier and faster to manipulate than multi-byte relative

or absolute references. Plus, they do not consume as

much space. However, some fundamental limits are

imposed by this methodology. The maximum segment

size is 126 bytes, or the size of the heap, whichever is

smaller. The smallest segment size is one byte, resulting

in a maximum number of segments of one-half of the

number of bytes in the heap minus one. For example, in

a 512-byte heap, one could expect to dynamically

allocate as many as 255 single-byte segments.

FIGURE 1: SIMPLE HEAP EXAMPLE

Although this model will allow dynamic allocation down

to a single byte, doing so sacrifices performance and

memory. With more segments within the heap, more

time is required to attempt to allocate memory. In addi-

tion, every segment requires a header byte; therefore,

a large number of smaller segments require more

memory than a small number of large segments. In the

255-segment example mentioned previously, 50% of

the heap is lost to segment header information.

There is also one other potential problem, especially

with smaller segments: memory fragmentation. Frag-

mentation could ultimately doom an application by

reducing the largest allocatable block of memory. Thus,

dynamic allocation should be restricted to larger blocks

to maintain efficiency and effective use of the heap.

Applications that are likely to encounter fragmentation

issues should provide a method to handle allocation

failures. The implementation depends on the complex-

ity of the application. For some applications, a system

Reset may be sufficient. For applications with more

advanced memory requirements, it may be necessary

to provide allocation management functions. An exam-

ple might be to force non-critical tasks to give up their

memory allocations as needed, then re-allocate

memory to them as required.

Author: Ross M. Fosler

Microchip Technology Incorporated Allocation Bit

Memory Heap

Segment

Length/Reference

Segment 1

Segment x

Tail

Dynamic Memory Allocation for the MPLAB® C18 C Compiler

AN914

DS00914A-page 2  2004 Microchip Technology Inc.

SUPPORTING FUNCTIONS

There are three functions that manage the heap:

• SRAMAlloc: Allocate memory

• SRAMFree: Free previously allocated memory

• SRAMInitHeap: Initialize the dynamic heap

SRAMAlloc

unsigned char * NEAR SRAMAlloc(NEAR unsigned
char nBytes)

SRAMAlloc is used to allocate a segment of memory

within the heap. When it is called, a new segment is

created in the heap. Essentially, larger non-allocated

segments are split to achieve the requested segment

size. If there are a number of smaller non-allocated

segments, they will be merged together to create a

single larger segment. If a segment of sufficient size

cannot be allocated, then an error is returned to the

calling application; otherwise, a 16-bit pointer to the

segment is returned, which is the next address after the

stored segment header. Figure 2 outlines the basic pro-

gram flow. The application must remember the pointer

to successfully free the memory.

SRAMFree

void SRAMFree(unsigned char * NEAR pSRAM)

This function is used to free a previously allocated

memory segment. It allows future calls to SRAMAlloc
to merge or split this segment as necessary. The

pointer returned from allocation must be passed to

successfully free the block of memory.

SRAMInitHeap

void SRAMInitHeap(void)

This function must be called at least one time to initial-

ize the heap with the minimum number of segment

headers and the tail. This function could also be called

to initialize the heap. The minimum number is always

the value of (MAX_HEAP_SIZE/126), rounded up for

any remainder. For example, a 256-byte heap will be

initialized with three segments.

FIGURE 2: SEGMENT ALLOCATION FLOWCHART

Start

Scan for Next
Non-allocated

Segment

Segment too
large?

Found tail?

Segment too
small?

Next

allocated?

Merge Adjacent
Segments

Split Segment

Return Pointer

Return NULL

Finish

Yes

No

Yes

No

No

No

Yes

Yes

segment

 2004 Microchip Technology Inc. DS00914A-page 3

AN914

SETTING UP

Compile Time Options

There are only two compile time options to be set:

• NEAR_MODEL: This specifies whether the code

uses access registers or normal data space for

general processing. There is some small

performance improvement using access memory.

• MAX_HEAP_SIZE: This specifies the size of the

dynamic heap. This value should correlate with

the section size specified in the linker script.

The Linker Script

The source code reserves a block of memory specified

by a section in the linker file named

_SRAM_ALLOC_HEAP. Refer to the attached linker

script in Appendix D: “Linker Script” for an example.

PERFORMANCE

The performance of dynamic allocation varies signifi-

cantly depending on the build options, the number of

segments in the heap, the positions and sizes of the

segments and the size of the heap. In the example

code, with the build options selected in the example

project, allocation can occur in as little as 100 instruc-

tion cycles. In other basic tests, with 4 to 5 segments

previously allocated, allocation can occur in as much

as 450 instruction cycles.

Freeing allocated segments is relatively fixed

compared to allocation. In the example code, with the

build options selected in the example project, freeing

allocated memory only requires 18 instruction cycles.

MEMORY USAGE

The memory usage varies depending on the build

options, the number of segments in the heap, the posi-

tions and sizes of the segments and the size of the

heap. In the example code presented here and with the

build options selected in the example project, only

452 bytes of program memory and 20 bytes of data

memory are used. In addition, another 512 bytes of

data memory are reserved for the dynamic heap. Note

that the heap size can be increased or decreased to

meet the needs of the application.

AN914

DS00914A-page 4  2004 Microchip Technology Inc.

APPENDIX A: ABOUT THE SOURCE
CODE

A complete listing of the source code (in C) and the

accompanying linker script for the application

described here follows in Appendices B, C and D.

The complete code project, including all required linker

and header files, is also available from Microchip in

electronic format; it may be downloaded from the

corporate web site as a Zip archive file. Additionally,

this application is included as modular code with

Microchip’s Application Maestro™ software.

To download the archive, or to get more information on

Application Maestro, please visit the Microchip

corporate web site at:

www.microchip.com

 2004 Microchip Technology Inc. DS00914A-page 5

AN914

APPENDIX B: MEMORY ALLOCATION SOURCE CODE

/***
 *

 * Simple SRAM Dynamic Memory Allocation
 *

 * FileName: smalloc.c
 * Dependencies:
 * Processor: PIC18F with CAN

 * Compiler: C18 02.20.00 or higher
 * Linker: MPLINK 03.40.00 or higher
 * Company: Microchip Technology Incorporated

 *
 * Software License Agreement
 *

 * The software supplied herewith by Microchip Technology Incorporated
 * (the "Company") is intended and supplied to you, the Company's
 * customer, for use solely and exclusively with products manufactured

 * by the Company.
 *
 * The software is owned by the Company and/or its supplier, and is

 * protected under applicable copyright laws. All rights are reserved.
 * Any use in violation of the foregoing restrictions may subject the
 * user to criminal sanctions under applicable laws, as well as to

 * civil liability for the breach of the terms and conditions of this
 * license.
 *

 * THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES,
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

 *
 *
 * This is a simple dynamic memory allocation module. The following are the

 * supported services:
 *
 * unsigned char * NEAR SRAMalloc(NEAR unsigned char nBytes)

 * void SRAMfree(unsigned char * NEAR pSRAM)
 * void SRAMInitHeap(void)
 *

 * This version of the dynamic memory allocation limits the segment size
 * to 126 bytes. This is specifically designed such to enable better
 * performance by limiting pointer manipulation.

 *
 *
 * How it works:

 * The model is based on a simple form of a linked list. A block of memory
 * refered to as the dynamic heap is split into segments. Each segment
 * has a single byte header that references the next segment in the list

 * as well as indicating whether the segment is allocated. Consiquently
 * the reference implicitly identifies the length of the segment.

 *
 * This method also enables the possibility of allowing a large number
 * of memory allocations. The maximum is limited by the defined heap size.

 *
 * SRAMalloc() is used to split or merge segments to be allocated.
 * SRAMfree() is used to release segments.

 *

AN914

DS00914A-page 6  2004 Microchip Technology Inc.

 * Example:

 * ----------
 * | 0x7F |0x200 Header Seg1
 * | |

 * | |
 * | |
 * | |

 * | |
 * | |
 * | 0x89 | 0x27F Header Seg2 (allocated)

 * | |
 * | |
 * | 0x77 | 0x288 Header Seg3

 * | |
 * | |
 * | |

 * | |
 * | |
 * | |

 * | |
 * | 0x00 |0x2FF Tail
 * ----------

 *
 *
 * Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 *
 * Alloc------------- reference to next Header --------------
 *

 *
 * Recomendations:
 * Although this model will allow dynamic allocation down to a single byte,

 * doing so sacrifices performance. With more segments within the heap, more
 * time is required to attempt to allocate memory. Plus every segment requires
 * a header byte; therefore, smaller segments require more memory. There is

 * also the possibility of fragmentation, which could ultimately doom an
 * application by reducing the largest allocatable block of memory. Thus the
 * recomendation is to allocate at least 8 bytes of memory.

 *
 *
 *

 * Author Date Version Comment
 *~~
 * Ross Fosler 05/25/03 v1.03 First release

 *
 ***/

 2004 Microchip Technology Inc. DS00914A-page 7

AN914

#define NEAR_MODEL

#define MAX_HEAP_SIZE 0x200

#if defined(NEAR_MODEL)

#define NEAR near
#else
#define NEAR

#endif

#define _MAX_SEGMENT_SIZE 0x7F

#define _MAX_HEAP_SIZE MAX_HEAP_SIZE-1

/***

 * Segment header data type
 **/
typedef union _SALLOC

{
unsigned char byte;
struct _BITS

{
unsigned count:7;
unsigned alloc:1;

}bits;
}SALLOC;

/***
 * Reserve the memory heap
 **/

#pragma udata_SRAM_ALLOC_HEAP
unsigned char _uDynamicHeap[MAX_HEAP_SIZE];

/***
 * Set the memory type

 **/

#if defined(NEAR_MODEL)

#pragma udata access_SRAM_ALLOC
#else
#pragma udata _SRAM_ALLOC

#endif

/***

 * Private function declarations
 **/

NEAR unsigned char _SRAMmerge(SALLOC * NEAR pSegA);

AN914

DS00914A-page 8  2004 Microchip Technology Inc.

/***

 * Function: unsigned char * SRAMalloc(unsigned char length)
 *
 * PreCondition: A memory block must be allocated in the linker,

 * and the memory headers and tail must already be
 * set via the function SRAMInitHeap().
 *

 * Input: unsigned char nBytes - Number of bytes to allocate.
 *
 * Output: unsigned char * - A pointer to the requested block

 * of memory.
 *
 * Overview: This functions allocates a chunk of memory from

 * the heap. The maximum segment size for this
 * version is 126 bytes. If the heap does not have
 * an available segment of sufficient size it will

 * attempt to create a segment; otherwise a NULL
 * pointer is returned. I allocation is succeessful
 * then a pointer to the requested block is returned.

 *
 * Note: The calling function must maintain the pointer
 * to correctly free memory at runtime.

 **/

unsigned char * NEAR SRAMalloc(NEAR unsigned char nBytes)
{

SALLOC * NEAR pHeap;

SALLOC * NEAR temp;
NEAR SALLOC segHeader;
NEAR unsigned char segLen;

// Do not allow allocation above the max minus one bytes
if (nBytes > (_MAX_SEGMENT_SIZE - 1)) return (0);

// Init the pointer to the heap
pHeap = (SALLOC *)_uDynamicHeap;

while (1)
{

// Get the header of the segment
segHeader = *pHeap;

// Extract the segment length from the segment
segLen = segHeader.bits.count - 1;

// A null segment indicates the end of the table
if (segHeader.byte == 0) return (0);

// If this segment is not allocated then attempt to allocate it
if (!(segHeader.bits.alloc))
{

// If the free segment is too small then attempt to merge
if (nBytes > segLen)

{
// If the merge fails them move on to the next segment
if (!(_SRAMmerge(pHeap))) pHeap += segHeader.bits.count;

}
else

 2004 Microchip Technology Inc. DS00914A-page 9

AN914

// If the segment length matches the request then allocate the

// header and return the pointer
if (nBytes == segLen)
{

// Allocate the segment
(*pHeap).bits.alloc = 1;

// Return the pointer to the caller
return ((unsigned char *)(pHeap + 1));

}

// Else create a new segment
else

{
// Reset the header to point to a new segment
(*pHeap).byte = nBytes + 0x81;

// Remember the pointer to the first segment
temp = pHeap + 1;

// Point to the new segment
pHeap += (nBytes + 1);

// Insert the header for the new segment
(*pHeap).byte = segLen - nBytes;

// Return the pointer to the user
return ((unsigned char *) temp);

}
}

// else set the pointer to the next segment header in the heap
else
{

pHeap += segHeader.bits.count;
}

}

}

/***

 * Function: void SRAMfree(unsigned char * pSRAM)
 *
 * PreCondition: The pointer must have been returned from a

 * previously allocation via SRAMalloc().
 *
 * Input: unsigned char * pSRAM - pointer to the allocated

 *
 * Output: void
 *

 * Overview: This function de-allocates a previously allocated
 * segment of memory.
 *

 * Note: The pointer must be a valid pointer returned from
 * SRAMalloc(); otherwise, the segment may not be

 * successfully de-allocated, and the heap may be
 * corrupted.
 **/

void SRAMfree(unsigned char * NEAR pSRAM)
{

// Release the segment
(*(SALLOC *)(pSRAM - 1)).bits.alloc = 0;

}

AN914

DS00914A-page 10  2004 Microchip Technology Inc.

/***

 * Function: void SRAMInitHeap(void)
 *
 * PreCondition: none

 *
 * Input: void
 *

 * Output: void
 *
 * Overview: This function initializes the dynamic heap. It

 * inserts segment headers to maximize segment space.
 *
 * Note: This function must be called at least one time.

 * And it could be called more times to reset the
 * heap.
 **/

void SRAMInitHeap(void)
{

unsigned char * NEAR pHeap;

NEAR unsigned int count;

pHeap = _uDynamicHeap;

count = _MAX_HEAP_SIZE;

while (1)

{
if (count > _MAX_SEGMENT_SIZE)
{

*pHeap = _MAX_SEGMENT_SIZE;
pHeap += _MAX_SEGMENT_SIZE;
count = count - _MAX_SEGMENT_SIZE;

}
else
{

*pHeap = count;
*(pHeap + count) = 0;
return;

}
}

}

/***
 * Function: unsigned char _SRAMmerge(SALLOC * NEAR pSegA)

 *
 * PreCondition: none
 *

 * Input: SALLOC * NEAR pSegA - pointer to the first segment.
 *
 * Output: unsigned char - returns the length of the

 * merged segment or zero if failed to merge.
 *
 * Overview: This function tries to merge adjacent segments

 * that have not been allocated. The largest possible
 * segment is merged if possible.

 **/

NEAR unsigned char _SRAMmerge(SALLOC * NEAR pSegA)

{
SALLOC * NEAR pSegB;
NEAR SALLOC uSegA, uSegB, uSum;

// Init the pointer to the heap

pSegB = pSegA + (*pSegA).byte;

 2004 Microchip Technology Inc. DS00914A-page 11

AN914

// Extract the headers for faster processing

uSegA = *pSegA;
uSegB = *pSegB;

// Quit if the tail has been found
if (uSegB.byte == 0) return (0);

// If either segment is allocated then do not merge
if (uSegA.bits.alloc || uSegB.bits.alloc) return (0);

// If the first segment is max then nothing to merge
if (uSegA.bits.count == _MAX_SEGMENT_SIZE) return (0);

// Get the sum of the two segments
uSum.byte = uSegA.byte + uSegB.byte;

// If the sum of the two segments are > than the largest segment
// then create a new segment equal to the max segment size and

// point to the next segments
if ((uSum.byte) > _MAX_SEGMENT_SIZE)
{

(*pSegA).byte = _MAX_SEGMENT_SIZE;
pSegA += _MAX_SEGMENT_SIZE; //(*pSeg1).byte;
pSegB += uSegB.byte; //(*pSeg2).byte ;

(*pSegA).byte = pSegB - pSegA;

return (_MAX_SEGMENT_SIZE);

}
// Else combine the two segments into one segment and
// do not adjust the pointers to the next segment

else
{

return ((*pSegA).byte = uSum.byte);

}
}

AN914

DS00914A-page 12  2004 Microchip Technology Inc.

APPENDIX C: TEST CODE

#include "sralloc.h"

void main(void)
{

unsigned char * pTest1;
unsigned char * pTest2;
unsigned char * pTest3;

unsigned char * pTest4;
unsigned char * pTest5;
unsigned char * pTest6;

unsigned char * pTest7;

SRAMInitHeap();

while (1)
{

pTest1 = SRAMalloc(1);
pTest2 = SRAMalloc(126);
SRAMfree(pTest2);

SRAMfree(pTest1);

pTest1 = SRAMalloc(8);

pTest2 = SRAMalloc(40);
pTest3 = SRAMalloc(8);
pTest4 = SRAMalloc(20);

pTest5 = SRAMalloc(12);
pTest6 = SRAMalloc(56);
pTest7 = SRAMalloc(92);

SRAMfree(pTest2);
SRAMfree(pTest1);

pTest1 = SRAMalloc(30);
pTest2 = SRAMalloc(120);

SRAMfree(pTest1);
SRAMfree(pTest4);

SRAMfree(pTest3);
SRAMfree(pTest7);
SRAMfree(pTest6);

SRAMfree(pTest5);
SRAMfree(pTest2);

}

}

 2004 Microchip Technology Inc. DS00914A-page 13

AN914

APPENDIX D: LINKER SCRIPT

// Dynamic Memory Allocation Linker Script Example

LIBPATH .

FILES c018i.o

FILES clib.lib
FILES p18f458.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x7FFF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED

CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF000FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF

DATABANK NAME=gpr1 START=0x100 END=0x1FF
//DATABANK NAME=gpr2 START=0x200 END=0x2FF
//DATABANK NAME=gpr3 START=0x300 END=0x3FF

DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
DATABANK NAME=bankedsfr START=0xF00 END=0xF5F PROTECTED

ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config

DATABANK NAME=sramalloc START=0x200 END=0x3FF
SECTION NAME=_SRAM_ALLOC_HEAP RAM=sramalloc

STACK SIZE=0x100 RAM=gpr5

AN914

DS00914A-page 14  2004 Microchip Technology Inc.

NOTES:

DS00914A-page 15  2004 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is intended through suggestion only

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

No representation or warranty is given and no liability is

assumed by Microchip Technology Incorporated with respect

to the accuracy or use of such information, or infringement of

patents or other intellectual property rights arising from such

use or otherwise. Use of Microchip’s products as critical

components in life support systems is not authorized except

with express written approval by Microchip. No licenses are

conveyed, implicitly or otherwise, under any intellectual

property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,

dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,

PRO MATE, PowerSmart and rfPIC are registered

trademarks of Microchip Technology Incorporated in the

U.S.A. and other countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,

SEEVAL, SmartShunt and The Embedded Control Solutions

Company are registered trademarks of Microchip Technology

Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net,

dsPICworks, ECAN, ECONOMONITOR, FanSense,

FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,

ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK,

MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal,

PowerInfo, PowerMate, PowerTool, rfLAB, Select Mode,

SmartSensor, SmartTel and Total Endurance are trademarks

of Microchip Technology Incorporated in the U.S.A. and other

countries.

Serialized Quick Turn Programming (SQTP) is a service mark

of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2004, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in October
2003. The Company’s quality system processes and procedures are for
its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial
EEPROMs, microperipherals, nonvolatile memory and analog
products. In addition, Microchip’s quality system for the design and
manufacture of development systems is ISO 9001:2000 certified.

DS00914A-page 16  2004 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104

China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599

China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521

China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393

China - Shunde
Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571

China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-22290061 Fax: 91-80-22290062

Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910

France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340

United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

02/17/04

WORLDWIDE SALES AND SERVICE

