
The Little Engine That Could: Using EXCEL LIBNAME Engine Options to
Enhance Data Transfers between SAS® and Microsoft® Excel Files

William E Benjamin Jr, Owl Computer Consultancy, LLC

Abstract

Many people are not aware that the SAS ® Access for PC Files product will allow SAS Programmers to
access an Excel spreadsheet in much the same way as any other SAS file. There are of course some
restrictions, but there are also a lot of options that help remove some of the bumps in the road. The
LIBNAME statement allows the user to define an Excel file in SAS terms and gives the programmer access
to LIBNAME and data set options to control how the Excel file is defined, accessed, and yes even how the
data will be formatted. This paper will describe some of those options.

Introduction

Libnames, they are the most common way for SAS programmers to access data. Most programmers only
use libnames to access SAS data files. When external data is required the data is converted to a text file
and input through a Filename connection of some sort. However, SAS has a product called SAS ® / Access
for PC File Formats that will let users read and write data files for Microsoft ® Windows applications. The
most popular of these applications and the focus of this paper is Microsoft ® Excel. SAS is a language of
defaults; the runtime system looks to see how a variable is first used then assigns a default type to the
variable. The programmer types “PROC PRINT; RUN;” and the last created SAS Dataset is sent to the
default printer. The SAS language also gives the programmer choices about the code The ATTRIB
command assigns either a numeric or a character type, and changes the size of the variable to a small
numeric with a limited range of values, or a large character variable bigger than the default. LIBNAME
commands are no different; they have options to change the behavior of the input/output processes. This
paper addresses some options available for reading and writing data to and from EXCEL files using SAS.

Let Us Look at the Defaults First

Part of the syntax (SAS Version 9.2) for accessing Excel files is as follows:

 LIBNAME libref <engine> <physical-file-name>;

That looks pretty much like every other LIBNAME definition. So let‟s make it a little more Excel friendly.

 LIBNAME xls_data EXCEL ‘C:\WUSS_2009\My_Excel_File.xls’;

Now how about putting some data into the file, this will create a file that is made easily and everyone can
have the same file. A SAS Code syntax construct called a name literal is used in the following code. (a name
literal is quoted text followed by an “n” as in the following „Name_Literal‟n)

 Data xls_data.‟sheet1‟n;
 Set sashelp.shoes;
 Run;

Because the space in this paper is limited only one or two examples of each type of option will be shown,
the others will be left for you to explore. The LIBNAME gets its power from the fact that it gives the
programmer access to the defaults, AND ALLOWS THEM TO BE CHANGED. Now let us re-examine the
syntax for the LIBNAME command as it applies to Microsoft Excel files. (Other options are also available for
other file types.)

LIBNAME libref <engine> <physical-file-name>
<SAS/ACCESS-engine-connection-options>
<SAS/ACCESS-libname-options>;

Now we see ”engine-connection-options” and “libname-options”, these are both little used features of the
SAS LIBNAME statements. We will examine these in order and list some examples and outputs from
applying these options.

ENGINE-CONNECTION-OPTIONS

Three options that apply to Excel files are “HEADER”, “MIXED”, and “VERSION”. (The HEADER option has
two aliases [GETNAMES and HDR] and the VERSION option has one alias [VER])

HEADER OPTION

The HEADER option impacts the reading of the first line of the Excel file. When the option value is set to
YES (the default) the first row of data is read to build SAS variable names. The cell values are converted to
SAS Variable names. When the text values would generate valid SAS variable names underscores are
inserted into the SAS variable name. Duplicate names are avoided by adding a number to the end of the
variable name. When the HEADER option is set to NO or the cell value does not convert to a text field the
SAS generates a variable name. Also, when the option is set to NO then the first row is considered data,
and variable names are generated as F1, F2, F3, ... , to Fn. The following is an example of the output when
the HEADER option is set to NO. Note that columns F4 through F7 were defined as numeric by default, and
the titles from row one were translated as missing values.

MIXED OPTION

The MIXED Option is provided to assist in reading fields that are not clearly either all text or all numeric.
Since Excel files can be generated by someone typing data into one cell after another without regard to the
type of data (character or numeric) SAS has to make a default best guess about what the field contains.
When an Excel input column contains both character and numeric data this option will cause all of the data
in that column to be read in as character data. This option is handled by the Microsoft Jet/Excel engine and
is only available in Windows for Excel files. This does not work for delimited files; remember delimited files
are read with a FILENAME statement. When this option is set to YES the SAS variables are crated as
character variables, all numeric data is converted to character data, the Excel file is read in import mode,
and no updates are allowed to the file.

When the MIXED option has a value of NO (the default value), a specified number of rows of the Excel

column are searched and a guess is returned about the data type of the input Excel data field. The Windows
Registry can be changed to modify this behavior, but it will change the behavior for all programs that use the
Microsoft Jet/Excel engine.

NOTE: This option may cause the wrong variable length to be assigned to the field. The following Windows

Registry settings control the behavior of this option, and require administrative privileges to modify. This author

does not recommend changing these settings.

[\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Excel]

Values TypeGuessRows and ImportMixedTypes Specific descriptions can be found in the SAS Help files.

An example of the MIXED option with a value of YES is shown below (combined with HEADER=NO):

There are several changes here, including the loss of the dollar sign in the SAS formatted values, and the
presence of the names in row one for columns F4 through F7. In this case only the top row was impacted.
However, in Excel files with many values that are mixed types the programmer may need to test each value
to determine how to process columns with mixed data. The SAS input function works well to do this type of
testing. The following code would work well to split data into two columns (one character and one numeric)

LIBNAME xls_data EXCEL ‘C:\WUSS_2009\My_Excel_File.xls’ HEADER=NO MIXED=YES;

 Data test1;
 Set xls_data.’sheet1’n;
 x = input(F4,10.0); * convert to numeric values;
 if x = . then y = input(F4,$char25.); * if conversion fails, convert;
 * to character – y is missing by default;
 drop F4;
 Run;

VERSION OPTION

Microsoft Excel has been around for a long time. EXCEL4 was released over 15 years ago, but is not used
very much today. While the SAS EXPORT Wizard (with SAS/ACCESS for PC file Formats installed) will
process EXCEL4 files the LIBNAME only supports the formats for EXCEL5 (95) EXCEL 97, EXCEL 2000,
and EXCEL 2003. (Zender, 2006). SAS LIBNAME support for EXCEL files is in the binary EXCEL (*.xls)
format because the Microsoft Jet/Excel engine is used to read and write the files.

The VERSION option is not required on input because the Microsoft Jet/Excel engine can determine the

format of the input file. However, the output format can be chosen to be one of the two output EXCEL file
formats. (EXCEL5, and EXCEL 97 - 2003). The default version is „97‟. With the actual option codes listed
here '2003', '2002', '2000', '97', '95', '5' (the quotes are valid but not required.)

** NOTE ** Version 2007 of EXCEL is missing from the list. While EXCEL 2007 can read *.xls files in
the native binary formats of 5 through 2003 the native output format for EXCEL 2007 is the *.xlsx file
format. This file format is a “ZIP” file. Meaning that it is a file that when the extension (xlsx) is
changed to zip, the file can be opened with the WINZIP program and the contents examined. Try it
some time, but that is outside the scope of this paper.

The next example shows both options used to write the output files with each of the files opened with the
“NOTEPAD” program to “peek” at the characters inside the files. This will show that the files really do have
different formats.

LIBNAME-OPTIONS

The first set of options above applied to the files in their entirety, and was set for all data within the file. This

next set of options is not as absolute in the uniform application, and can impact the file or the variables

within the file. So here is a list of some of the LIBNAME options that relate to Microsoft Excel, and a brief

description of the function they perform. Several will be shown as examples in the space permitted in this

paper, and were extracted from the information listed in the SAS Help files for LIBNAME Options for PC

Files on Windows. Refer to the Help files for full details about these and other options.

OPTION DEFAULT OPTIONS FUNCTION
---------------------------------- ----------------------------------- -------------------------------- --

ACCESS= (not set) READONLY Prevents write commands if set.

DBGEN_NAME= DBMS DBMS/SAS Specifies how data source column names

 are created. Option Value DBMS creates

 SAS names with invalid characters set to “_”.
 Value = “SAS” set names to _COLn where n

 is the column number starting with zero.

DBMAX_TEXT= 1,024 1 – 32,767 Specifies maximum character string size.

DBSASLABEL= COMPAT COMPAT/NONE Chooses whether or not the source column

 names are used as SAS label values. This

 is valid when reading data into a SAS File.

DEFER= NO YES/NO Determines if the input Excel file is opened

 when the libref is assigned or when the file is

 first accessed.

DIRECT_SQL= YES YES/NO/NONE/ This determines if the SQL that SAS

 Specific-functionality generates is passed to the Microsoft
 Jet/Excel engine when accessing Excel files.
 (See the SAS Help files for specifics, this
 Also works with other PC File formats and
 their respective engines)

SCAN_TEXTSIZE YES YES/NO Scan all Excel Text columns for the longest

 length of any text filed and use that length for

 the size of the SAS Variable (The smaller of

 the text size or the DBMAX_TEXT limit is

 used as the SAS variable length)

 Alais – SCAN_TEXT=, SCANTEXT=, and

 SCANMEMO=

SCAN_TIMETYPE= NO YES/NO Turns on scanning of all rows looking for

 DATETIME data values and automatically

 determine what date or time format to apply.

 An option value of NO assigns either a

 DATE9. or a DATETIME19. format. See

 USE_DATETYPE= for more information.

STRINGDATES= NO YES/NO YES reads datetime values as character

 SAS variables, while NO reads the values

 into SAS as numeric values.

USE_DATETYPE= NO YES/NO YES uses the DATE format on input and NO

 uses the DATETIME format while read date

 values into SAS Variables.

DATASET-OPTIONS

In addition to the LIBNAME options these dataset options are also available when SAS/ACCESS for PC

Files is available and the SAS LIBNAME statement is used in conjunction with PC File data. The DROP=,

CNTLLEV=, FIRSTOBS=, IN=, KEEP=, RENAME=, and WHERE= dataset options are also valid when using

PC data files. Some of these options apply to SAS variables or source data columns individually.

OPTION FUNCTION
---------------------------------- --

AUTOCOMMIT= Determines when updates (saves) are written to the PC file in use.

DBCOMMIT= Saves data after a specified number of rows have been processed.

DBCONDITION= Defines an SQL selection criteria clause to be passed directly to the

 Data source for processing (Proc SQL can connect to an Excel file and

 process data). This SQL clause can be a WHERE, GROUP BY,

 HAVING, or ORDER BY clause.

DBCREATE_TABLE_OPTS= Allows the SAS Programmer to append source specific SQL code to be

 added to a SQL CREATE TABLE command.

DBENCODING= Defines a different character set to be used in accessing the Excel file.

DBFORCE= Defines whether or not data values larger than the defined length are

 inserted into the file, “YES” will insert the value but truncate it. “NO” will
 cause the value not to be inserted.

DBGEN_NAME= Determines how to handle creating SAS dataset variable names when

 the source file has invalid characters in the name.

DBKEY= Specify a column to use an index for a join using a large and a small

 dataset, This can improve performance (or hurt it if not used correctly).

DBLABEL= Choose to use SAS variable labels or names as the output column

 names (YES = Labels, NO = names)

DBMAX_TEXT= Define the maximum length of a character or text variable read or

 written using SAS/ACCESS for PC Files.

DBSASLABEL= Choose to use the source column names as SAS variable labels

DBSASTYPE= Specifies a data type that overrides input default variable data type.

DBTYPE= Specifies a data type that overrides output default variable data type.

INSERT_SQL= Determines if the data source‟s SQL insert method or an alternate
 method is used to add new rows.

READBUFF= Determine how many rows are read into the input buffer for processing.

SASDATEFMT= Define specific date formatting by column when processing dates.

The options selected for this paper represent some of the options that are available for use with Excel files.

The specific syntax of these options can be found in the SAS Help files, but has the general form as follows:

LIBNAME libref engine-name;

PROC PRINT libref.SAS-data-set-name (OPTION-NAME=option-value);

 Or

DATA libref.SAS-data-set-name (OPTION-NAME=option-value);

 Set libref.SAS-data-set-name (OPTION-NAME=option-value);

EXAMPLES

The next pages will show some examples of how some of the dataset options are applied and the results.

For the first three, examples an Excel file was created with a numeric “Order” field, a character “Bin” field,
and three Excel date/time fields “Date_Ordered”, “Date_Delivered” and “Date_Shipped”. All of the Microsoft

date fields are formatted exactly the same way in the Excel workbook.These examples will show how the

processing steps required to get data in the format you want, not the SAS default format. There is not

enough room for all of the options above to be shown, but several will be illustrated here.

EXAMPLE – 1 – SAS Default date, SAS Datetime21.2, and SAS Time8. Formats.

The SASDATEFMT= dataset option controls formatting of dates on input with times being converted to a 24

hour clock instead of “AM” and “PM”.

EXAMPLE – 2 – SAS Default date, SAS numeric field, and SAS character field.

The DBSASTYPE= dataset option controls formatting of fields as numeric or character on input. Note the

conversion to an Excel “Data-Time” number/fraction and the retention of the Excel date format in the SAS

variable.

SAS Window

EXCEL Window

SAS Window

EXCEL Window

EXAMPLE – 3 – Complex WHERE= clause, DROP= clause, and conversion of two fields to

a SAS numeric field, and SAS character field.

Complex example.

Now let‟s review these examples. First Example – 1, This SAS code read all five fields from an Excel file,

and did nothing with the first three fields (Order, Bin, and Date_Ordered). Then, the SAS SASDATEFMT=

dataset option was used to change the Date_Delivered field to a Datetime21.2 format in the SAS file. Finally,

the SAS SASDATEFMT= dataset option was used to change the Date_Shipped field to a Time8. format in

the SAS file. While this provides enhanced flexibility, it is not a free pass to make any conversion you want.

The SAS help files point out that the SAS date format and informat must be equivalent. This restricts the

number and type of changes you can make on input from an Excel file. But, you now have control over what

changes are made.

Looking at Example – 2 The first three fields are processed the same way as in Example - 1, but the dataset

option DBSASTYPE= is used to process the last two date fields. But in this example the Date_Delivered

field is converted to a numeric field in the SAS file and the Date_Shipped field is converted to a character

field. Anyone who has worked with SAS Date and Date/Time values may notice that the numeric conversion

for the Date_Delivered field has HUGE numbers in it as compared to SAS Date and Date/Time values. The

reason for the difference is that SAS uses a base date of 01 Jan 1960 and Excel (the Microsoft Jet engine)

uses 30 DEC 1899 as the base date.

Example – 3 does the same thing as Example -2, with the addition of WHERE= and DROP= clauses on the

SET statement. This example was added to show that the Data Set Options for PC files can be used in

addition to other dataset options that are commonly used. (The REPLACE= dataset option is not supported)

The picture shown above for Example - 3 includes the full Microsoft Excel file used in the test (a title line and

five columns with 30 records), and the full output SAS file that was generated (four variables and five

records). Excel rows 4, 14, 24, and 31 were selected because the “Order” column each contained at least
one “3”. The column contains all numeric values but was converted to a character string to be tested by the
WHERE= clause. Neither the input or output values were changed to character fields. Excel rows 5 and 31

also had lowercase “d” values in the input Excel cell. Of course the WHERE= clause only keeps one copy of
any row in the input file so row 31 was only selected once. Finally the Date_Ordered field was dropped when

the output file was written.

3

2

1

SAS Window

EXCEL Window

For the next example, an Excel file was created with a numeric “Order” field, a character “Bin” field, a

date/time field “Date_Ordered”, and a numeric field formatted as a currency field. This example addresses

one of the first things that a SAS programmer notices about reading data from Excel. It may also be the

major reason that programmers look for another way to get data from Excel.

EXAMPLE – 4 – Reading Excel Columns with BOTH Character and numeric data.

This example has two SAS programs reading the same file and getting different results.

This final example uses two code segments, each includes a LIBNAME statement and a DATA step. The

LIBNAME statements are different because the first one “EXCELXLS” uses no extra options, it just reads the
Excel file using the SAS Default options. The second LIBNAME (“EXCELXL1”) uses the SAS LIBNAME
option “MIXED=yes”. This option converts EXCEL columns with both character and numeric data into

character data when it is being input (from Excel only). The picture above shows the Excel Window with the

Bin column of mixed data, SAS File TEST 2 with the Bin variable with missing data, and SAS File TEST 3

with character data in the Bin column and Order variables.

Code Step 2 reads the Excel file and uses the DBSASTYPE= SAS Data Step Option to convert

Date_Ordered to character and Monthly_Sales to numeric. But, the code uses the default input routines to

read the Order and Bin variables. The result is that rows 4 and 6 have missing values for the Bin variable.

The first time a programmer sees this condition and cannot find a way to get the data, is the last time the

programmer uses the LIBNAME statement to read Excel data files.

Code Step 3 reads the Excel file and uses the DBSASTYPE= SAS Data Step Option to convert

Date_Ordered to character and Monthly_Sales to numeric. It also uses the DBSASTYPE= SAS Data Step

Option to convert variable Order to Character (note it is left justified), and variable Bin to character also (note

it is left justified too). In this example rows 4 and 6 have the numeric values (converted to character and left

justified) in the new SAS dataset (Test3).

SAS Window

EXCEL Window

Test File 2

Test File 3

Code Step 2

Code Step 3

EXCEL
Mixed Data

Missing Data

Character Data

Conclusion

The information presented in this paper is intended to show that, like the train in the children‟s story, the
SAS LIBNAME also has an “engine” that won‟t give up. The SAS/ACCESS for PC Files software is a
powerful addition to BASE SAS, and this paper only looked at the options that apply directly to Microsoft

Excel files on a PC (except native Microsoft Excel 2007 *.xlsx files). SAS/ACCESS for PC Files will also

process Microsoft Access files. These LIBNAME and DATASET options are available to enhance access to

non-SAS data files. They are available in DATA steps, and SAS PROC executions, and PROC SQL

processing. This software, in conjunction with PC Files Server software, allows these file formats to be

processed on LINUX, UNIX, or Windows – 64 Bit platforms via a network connection. This pushes the power

of the LIBNAME engine far beyond the IMPORT/EXPORT engines of Base SAS.

This paper was written for all of the programmers that have ask “Why can‟t SAS read and write my Excel
files better than that?” The paper was written to show them that SAS can do better, if only the programmer

takes the time to just stop using the defaults, and find out what the SAS LIBNAME Engine really can do for

them!

Bibliography

Zender, Cynthia, 2006, Base SAS® to Microsoft Excel: Counting the Ways, SAS Institute Inc

Cary, NC.

SAS Help files distributed with the Base SAS system and SAS/ACCESS for PC Files were

referenced above.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name William E Benjamin Jr

Enterprise Owl Computer Consultancy, LLC

Address P.O. Box 42434

City, State ZIP Phoenix AZ, 85023

Work Phone: 602-942-0370

Fax: 602-942-3204

E-mail: William@OwlComputerConsultancy.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

