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ABSTRACT

To be applicable in realistic scenarios, blind source sep-

aration approaches should deal evenly with non-square cases

and the presence of noise. We consider an additive noise

mixing model with an arbitrary number of sensors and pos-

sibly more sources than sensors (the non-square case) when

sources are disjointly orthogonal. We formulate the max-

imum likelihood estimation of the coherent noise model,

suitable when sensors are nearby and the noise field is close

to isotropic, and also under the direct-path far-field assump-

tions. The implementation of the derived criterion involves

iterating two steps: a partitioning of the time-frequency plane

for separation followed by an optimization of the mixing pa-

rameter estimates. The structure of the solution is surprising

at first but logical: it consists of a beamforming linear filter,

which reduces noise, and a filter across time-frequency do-

main to separate sources. The solution is applicable to an

arbitrary number of microphones and sources. Experimen-

tally, we show the capability of the technique to separate

four voices from two, four, six, and eight channel record-

ings in the presence of isotropic noise.

1. INTRODUCTION

Source separation promises to further a variety of applica-

tions of speech enhancement and separation beyond what is

possible today with classical microphone array techniques

[1]. In particular for audio signals (the domain of interest

in this work), a variety of BSS techniques have been intro-

duced in recent years. Few work on real audio data (e.g.

[2, 3, 4]), even fewer with noisy data [5], and most deal

with the “square” case of source separation (equal number

of sources and sensors). Claims of generalization to the

non-square case exist, however most often it is not clear

how techniques would scale, neither from an algorithmic

perspective nor in terms of computational properties.

[6] introduced a BSS technique for the separation of an

arbitrary number of sources from just two mixtures provided

the time-frequency representations of sources do not over-

lap. The key observation in the technique is that each time-

frequency (TF) point depends on at most one source and its

associated mixing parameters. This deterministic hypoth-

esis was called W-disjoint orthogonality and is reviewed in

section 2.2. In anechoic non-noisy environments, it is possi-

ble to extract the mixing parameters from the ratio of the TF

representations of the mixtures. Using the mixing parame-

ters, one can partition the TF representation of the mixtures

to produce the original sources. Such an approach was used

in [7] as well.

The deterministic signal model was extended to a stochas-

tic signal model in [8], where each time-frequency coeffi-

cient was modeled as a product between a continuous ran-

dom variable and a 0/1 discrete Bernoulli random variable

(indicating the “presence” of the source). This way signals

can be modeled as independent random variables, and one

can derive the maximum likelihood (ML) estimator of the

mixing parameters.

In contrast to the case of [9], in this paper we analyze the

estimators when noise comes from an isotropic diffuse noise

field, as studied in differential microphone microphone ar-

ray literature [1]. Such a model is consistent with the as-

sumption about the microphone array geometry, whereby

microphone spacing is as small as one centimeter.

The ICA literature scarcely discusses the noise case [10].

BSS and deconvolution results of a theoretical nature in

dealing with noise were presented in [5]. For the two-channel

system in [4], the ML estimator of the mixing parameters

was derived in the presence of Gaussian sensor noise. How-

ever the noise element represented a technicality in that it

was considered in the limit zero in order to be able to de-

rive parameter update equations. Nonetheless the approach

proved effective on real non-noisy data.

In this paper we deal with the multi-channel case from

an algorithmic perspective. We present a novel approach

to BSS exploiting TF properties of the input data, and of

the noise, which are readily applied to speech separation on

two, four, and six channels. For this, we extend the ML

estimators derived before (under the W-disjoint orthogonal-



ity assumption). The ML approach considers both mixing

parameters and sources, unlike in [4] where the optimiza-

tion was over mixing parameters only. The estimation al-

gorithm iterates two optimization steps. First, likelihood is

optimized over the set of mixing parameters for each source

separately. Second the partition of TF points is optimized.

Unlike [9] here we consider and compare the isotropic noise

field (characterized by a sinc coherence matrix) to the un-

correlated noise field, and show the gains offered by tak-

ing into account the right noise model. For the purposes

of this paper we consider the anechoic mixing model only.

However the method presented can be extended to arbitrary

complex mixing models.

The organization of the paper is as follows. Section 2

presents the signal mixing model and a statistical motiva-

tion of the W-disjoint orthogonality signal model. Section

3 shows the derivation of the ML estimator of mixing pa-

rameters and source signals, and its implementation by an

iterative procedure. Section 4 experimentally highlights the

capability of the system to deal with noisy echoic data, and

its scaling properties. Experiments with two, four, six, and

eight inputs show increased separation capability and de-

creased artifacts with an increase in the number of inputs on

data ranging from anechoic to echoic.

2. MIXING MODEL AND SIGNAL ASSUMPTION

2.1. The Mixing Model

Consider the measurements of L source signals by a equis-
paced linear array of D sensors under far-field assumption
where only the direct path is present. In this case, without
loss of generality, we can absorb the attenuation and delay
parameters of the first mixture x1(t), into the definition of
the sources:

x1(t) =
L

∑

l=1

sl(t) + n1(t)

xk(t) =
L

∑

l=1

(1 − ak,l)sl(t − τk,l) + nk(t), 2 ≤ k ≤ D (1)

where n1, . . . , nD are the sensor noises, and (ad,l; τd,l) are
the attenuation and delay parameters of source l to sensor d.
For the far-field model and equispaced sensor array, the at-
tenuations ad,l and delays τd,l are linearly distributed across
the sensors (i.e. with respect to index d). Thus we can define
the average attenuation al, and delay τl, so that

ad,l = (d − 1)al, τd,l = (d − 1)τl, 1 ≤ d ≤ D, 1 ≤ l ≤ L (2)

Clearly other mixing models can be considered at the ex-

pense of increasing the model complexity. We use ∆ to de-

note the maximal possible delay between adjacent sensors,

and thus |τl| ≤ ∆, ∀l.
We denote by Xd(k, ω), Sl(k, ω), Nd(k, ω) the short-

time Fourier transform of signals xd(t), sl(t), and nd(t), re-
spectively, with respect to a window W (t), where k is the

frame index, and ω the frequency index. Then the mixing
model (1) turns into

Xd(k, ω) =
L

∑

l=1

(1− (d−1)al)e
−iω(d−1)τl Sl(k, ω)+Nd(k, ω) (3)

or, more compactly,

X(k, ω) =

L
∑

l=1

Zl(ω)Sl(k, ω) + N(k, ω) (4)

with

Zl(ω) =
[

1 (1 − al)e
−iωτl · · · (1 − (D − 1)al)e

−iω(D−1)τl

]T

(5)

and X, N the D-vectors of measurements, respectively noises.

When no danger of confusion arises, we drop the arguments

k, ω.

We assume the noise is Gaussian distributed with a co-

variance matrix of the form

Rn = σ2Γn (6)

where σ2 is the average noise field spectral power, and Γn

the coherence matrix. The uncorrelated noise field is char-

acterized by the identity matrix,

Γn = ID (7)

whereas the isotropic, diffuse noise field has the coherence
matrix given by (see [1])
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Our problem is: given measurements (x1(t), . . ., xD(t))1≤t≤T

of the system (1) we want to determine the ML estimates of

the mixing parameters (al, τl)1≤l≤L and the source signals

(s1(t), . . ., sL(t))1≤t≤T in the presence of isotropic diffuse

noise. When the number of sources is greater than the num-

ber of mixtures the problem is degenerate. In order to solve

this we rely on the W-disjoint orthogonality assumption.

2.2. The W-Disjoint Orthogonal Signal Model

Two signals s1 and s2 are called W-disjoint orthogonal, for

a given windowing function W (t), if the supports of the

windowed Fourier transforms of s1 and s2 are disjoint, that

is:

S1(k, ω)S2(k, ω) = 0 , ∀k, ω (9)

For L sources S1,. . .,SL the definition generalizes to:

Si(k, ω)Sj(k, ω) = 0 , ∀ 1 ≤ i �= j ≤ L, ∀k, ω (10)

Disjoint orthogonality has been extensively studied as

the basis for time-frequency processing in [11]. Relation



(9) does indeed hold in an approximate sense for real speech

signals and a large class of real signals. In [9] we addition-

ally proved that (9) can be seen as the limit of a stochastic

model introduced in [8]. In this paper we assume that (10)

is satisfied for all practical purposes. In addition, we as-

sume that noise is Gaussian distributed with zero mean and

coherence given by (8).

3. THE MAXIMUM LIKELIHOOD ESTIMATOR

OF SIGNAL AND MIXING PARAMETERS

In this section we derive the joint maximum likelihood es-

timator of parameters and source signals under assumption

10. The source signals naturally partition the time-frequency

plane into L disjoint subsets Ω1, . . . ,ΩL, where each source

signal is non-zero (i.e. active). Thus the signals are given

by the collection Ω1,. . .,ΩL and one complex variable S that

defines the active signal:

Sl(k, ω) = S(k, ω)1Ωl
(k, ω) (11)

Let the model parameters θ consist of the mixing pa-
rameters (al, τl), 1 ≤ l ≤ L, the partition (Ωl)1≤l≤L and S.
Based on equations 4 and 6, its likelihood and maximum
log-likelihood estimator are given by:

L(θ) =
∏L

l=1

∏

(k,ω)∈Ωl

1
πDσ2D exp{− 1

σ2 Y ∗

l
(k, ω)Γ−1

n (ω)Yl(k, ω)}

θ̂ML = argminθ

∑L
l=1

∑

(k,ω)∈Ωl
Y ∗

l
(k, ω)Γ−1

n (ω)Yl(k, ω)} (12)

where Yl(k, ω) = X(k, ω) −Zl(ω)Sl(k, ω). For any parti-

tion (Ω1, . . .,ΩL) we define the selection map Σ : TF-plane →
{1, . . . , L}, Σ(k, ω) = l iff (k, ω) ∈ Ωl. Clearly Σ defines

a unique partition. Optimizing over S in (12) we obtain

Ŝ =
Z∗

l Γ−1
n X

Z∗
l Γ−1

n Zl

(13)

where l = Σ(k, ω). Let us denote by A = (al, τl)1≤l≤L the

mixing parameters. Inserting (13) into (12), the optimiza-

tion problem reduces to:

(Â, Σ̂) = argmaxA,ΣJ(A, Σ) (14)

where:

J(A, Σ) =
∑

(k,ω)

|Z∗
Σ(k,ω)Γ

−1
n X(k, ω)|2

Z∗
Σ(k,ω)Γ

−1
n ZΣ(k,ω)

(15)

Note the criterion to maximize depends on a set of contin-

uous parameters A, and a selection map Σ. A typical op-

timization algorithm for such a criterion works as follows.

The optimization is done in two steps: first the optimization

over the continuous parameters, and then the optimization

over the selection map (or, equivalently, the partition). Such

a procedure is iterated until the criterion reaches a satura-

tion floor. Because the criterion is bounded above, we are

guaranteed it will converge. Next we describe solutions for

the two optimization problems.

3.1. Optimal Partition

Given a set of mixing parameters, A = (al, τl)1≤l≤L, the

optimal selection map is simply given by

Σ̂(k, ω) = argmaxl

|Z∗
Σ(k,ω)Γ

−1
n X(k, ω)|2

Z∗
Σ(k,ω)Γ

−1
n ZΣ(k,ω)

(16)

The partition is then immediate: Ωl = {(k, ω)|Σ(k, ω) = l}.

3.2. Optimal Mixing Parameters

Now given a partition (Ωl)1≤l≤L, the optimal mixing pa-
rameters are obtained independently for each l by:

(âl, τ̂l) = argmaxal,τl

∑

(k,ω)∈Ωl

|Z∗

Σ(k,ω)
Γ−1

n X(k, ω)|2

Z∗

Σ(k,ω)
Γ−1

n ZΣ(k,ω)

(17)

Note that both the denominator and numerator depend on ω,

unlike the independent noise case when the numerator was

independent of k and ω (see [9]). Therefore a 2-dimensional

optimization procedure is required in order to solve (17). In

the numerical simulations presented next we used the gradi-

ent descent method to search for the optimum.

Summing these findings, the optimization algorithm be-

comes:

3.3. ML Algorithm

• Step 0. Initialize (a0
l , τ

0
l )1≤l≤L with random values

so that |a0
l | < 1 and |τ0

l | < ∆; Set s = 0, Js = 0,

and choose a stopping threshold ǫ;

• Step 1. Find the optimal partition (Ωs+1
l )1≤l≤L, and

selection map, Σs+1 by solving (16) with al = as
l ,

τl = τs
l ;

• Step 2. Apply gradient descent to (17) until it con-

verges to a local optimum (as+1
l , τs+1

l ) for each 1 ≤
l ≤ L, and subset of time-frequency points Ωs+1

l ;

• Step 3. Set s = s + 1, and compute J s = J(As, Σs).
If (Js − Js−1)/Js > ǫ then go to Step 1; otherwise:

• Step 4. Estimated parameters after s iterations are

al = as
l , τl = τs

l , and Ωl = Ωs
l . The source signal

are then computed by converting the estimated time-

frequency representations back into the time domain.



The algorithm can be modified to deal with an echoic

mixing model or different array configurations at the ex-

pense of increased computational complexity. It requires

knowledge of the number of sources, however this number

is not limited to the number of sensors. It works also in the

non-square case.

The solution (11,13) can be understood in the follow-

ing way. Once the mixing parameters have been estimated,

we apply two independent linear filters. One linear filter is

across the spatial channels (13) and performs a beamform-

ing in order to reduce the output noise. The other (11) is

across time-frequency domain and solves the source sep-

aration problem by selecting those time-frequency points

where, by our W-disjoint orthogonality assumption, only

one source is active.

4. EXPERIMENTAL RESULTS

We implemented the algorithm and applied it to realistic

synthetic mixtures generated with a ray tracing model. Mix-

tures consisted of four source signals in different room envi-

ronments and Gaussian noise. The room size was 4×5×3.2
m. We used four setups corresponding to anechoic mixing,

low echoic (reverberation time 18 ms), echoic (reverbera-

tion time 130 ms), and strong echoic (reverberation time

260 ms). The microphones formed a linear array with 2

cm spacing. Source signals were distributed in the room.

Input signals were sampled at 16KHz. For time-frequency

representation we used a Hamming window of 256 samples

and 50% overlap. Coherent noise was added on each chan-

nel. The average input signal-to-interference-ratio (SIR)

was about −5 dB. The average individual signal-to-noise-

ratio (SNR) was 10 dB (i.e. SNR of one source with re-

spect to noise only). Each test was performed three times

with independent noise realizations that were filtered to the

isotropic diffuse noise coherence.

The optimization problem (17) was solved by perform-

ing 30 gradient descent steps at each iteration (Step 2 of

the algorithm). Experimentally, the optimization algorithm

converged very fast. In at most five iterations it reached

0.1% of the local maximum. Also experimentally, we no-

ticed the algorithm converges more often to the true direct-

path parameters when we add small noise to the diagonal of

(8). In fact we chose Γn as the sum between (8) and 0.01
times the identity matrix.

In the following we present the results obtained as de-
scribed above. To compare results, we used three criteria:
output average signal to interference ratio gain (includes
other voices and noise), segmental SNR, and signal distor-
tion, defined as follows:

SIRgain =
1

Nf

Nf
∑

k=1

10log10(
‖ So ‖2

‖ Ŝ − So ‖2

‖ X − Si ‖
2

‖ Si ‖2
) (18)

segSNR =
1

Nf

Nf
∑

k=1

10log10

‖ Si ‖2

‖ Ŝ − Si ‖2
(19)

distortion =
1

Nf

Nf
∑

k=1

10log10

‖ So − Si ‖2

‖ Si ‖2
(20)

where: Ŝ is the estimated signal that contains So contribu-

tion of the original signal; X is the mixing at sensor 1, and

Si is the input signal of interest at sensor 1; Nf is the num-

ber of frames where the summand is above −10 dB for SIR

gain and segmental SNR, and −30 dB for distortion. The

summands for SIR gain and segmental SNR computation

were saturated at +30 dB, and were saturated at +10 dB
for distortion. Ideally, SIRgain should be a large positives,

whereas distortion should be a large negative.

SIR gains are presented in Figure 1, segmental SNR in

Figure 2, and the distortion values are given in Table 1. Re-

sults show separation of all voices particularly for D ≥ 4.

A sample of input and outputs for D = 4 is given in Fig-

ure 3. Also SIR gains tend to improve with an increase in

the number of sensors. This indicates that separation power

of the system increases. Also, one can notice a decrease

in performance as we move from anechoic to echoic data.

Interestingly, the 8 microphone setup seems to increase by

little (if any) compared to the 6-mic case. This seems to be

due to the simplified mixing model (enforcing an anechoic

model, when in fact it is echoic).

Fig. 1. SIR gains for 2-8 microphones on four data types

(anechoic, low echoic, echoic, and strongly echoic). Each

bar includes one standard deviation bounds.

5. CONCLUSIONS

Real source separation scenarios are rarely square. On the

contrary, situations constantly vary between the so called



Fig. 2. Segmental SNRs for 2-8 microphones on four data

types (anechoic, low echoic, echoic, and strongly echoic).

Each bar includes one standard deviation bounds.

D Anechoic LowEch Echoic StrongEch

2 -3.98 (1.35) -3.49 (1.17) -2.58 (0.92) -2.61 (1.01)

4 -4.36 (1.41) -3.69 (1.53) -2.79 (0.92) -2.70 (0.78)

6 -4.43 (1.68) -3.74 (1.10) -2.88 (0.93) -2.61 (0.85)

8 -4.36 (1.71) -3.57 (1.18) -2.61 (0.73) -2.01 (0.50)

Table 1. Distortions for -5dB input SIR and 10dB individ-

ual input SNR: mean (standard deviation) for D = 2, 4, 6, 8.

degenerate case and the over specified case. Particularly

for small microphone arrays, noise is coherent. By being

able to deal evenly with such cases and in the presence of

coherent noise, the present approach opens the door to audio

source separation in realistic scenarios.

This was possible by exploiting the time frequency sparse-

ness of signals within the more general noisy signal model.

Our source separation algorithm implements the maximum

likelihood estimator for both mixing parameters and source

signals under a direct-path mixing model and for a linear

array of sensors. We presented an iterative procedure to op-

timize the likelihood, similar in spirit to hybrid optimization

algorithms. Interestingly enough, the optimal solution con-

sists of a beamforming filter, which reduces output noise,

followed by time-frequency processing for source separa-

tion.

The resulting algorithm exhibits nice scaling properties

both algorithmically and experimentally. The former refers

to scalability in the number of inputs (here we used two,

four, six, and eight microphone linear arrays). The latter

views the increased separation power on echoic data (as

showed by SIR gain and segmental SNR) at decreasing or

0 1 2 3 4 5 6 7

−0.5

0

0.5

x

0 1 2 3 4 5 6 7

−0.5

0

0.5

s
1

0 1 2 3 4 5 6 7

−0.5

0

0.5

s
2

0 1 2 3 4 5 6 7

−0.5

0

0.5

s
3

0 1 2 3 4 5 6 7

−0.5

0

0.5

s
4

time [s]

Fig. 3. Example of 6-channel algorithm behavior on mix-

ture of coherent noise and four voices. The separated out-

puts are s1-s4.

relatively constant artifacts with an increase in the number

of inputs.

Future work could address the question whether any-

thing is to be gained by considering an echoic model. This

extension is naturally feasible in this approach.
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