
1 

 

Tutorial on Client-Server Communications 
 

EE368/CS232 Digital Image Processing, Spring 2014 

 

Version for Your Personal Computer 

 

Introduction 
 

In this tutorial, we will learn how to set up client-server communication for running an image 

processing application on a server from an Android device. Since many image processing 

algorithms require high complexity cost, running these algorithms on a mobile client with 

responsive interactions is often infeasible. One remedy to this problem is to offload the work to a 

high-performance server over the network.  

 

 
Figure 1 An example of a client-server image processing system 

 

As an illustrating example, suppose you would like to offload the computation of SIFT1 from an 

Android device to a server in your class project. Figure 1 depicts a possible scheme for a client-

server image processing system. The user will first capture an input image using an Android 

client and send the image to a server via HTTP. A PHP script on the server then invokes the 

server-side application to compute SIFT on the image. After the computation is completed, the 

server will send the result back to the Android device for display.  

                                                           

1
 SIFT: Scale-invariant feature transform. For reference, see EE368 “Scale-Space Image Processing” and 

“Feature-based Methods for Image Matching” lecture slides or Lowe, David G. (2004) “Distinctive 

Image Features from Scale-Invariant Keypoints”. 



2 

 

 

We will be using the above example throughout our tutorial. The tutorial is divided into two 

parts. The first part of the tutorial will focus on how to set up the server application. We will 

implement a PHP script to facilitate client-server communication and build a server-side 

application to compute SIFT using Matlab and VLFeat library. In the second part, we will 

explain how to handle client-server communication on an Android client.  

 

Disclaimer: This tutorial is for educational purpose only. It is intended for students who would 

like to build a fast-working prototype for their class projects. Please be aware that the tutorial 

does not consider practical system issues, such as security and reliability, in a real-world setting.  

 

Pre-requisite:  

 Completed Android tutorial #1 of EE368, “Tutorial on Using Android for Image 
Processing Projects”. 

 Prior experience with PHP and running a web server. 

 A server with Matlab, HTTP software (Apache, IIS, etc) and PHP installed 

 

Part I: Server   
 

Server Setup 

This tutorial assumes you have a web server with HTTP software (Apache, IIS, etc) and PHP 

installed.  Otherwise, please refer to the following links on how to setup a web server: 
 

http://www.wampserver.com/en/     (Windows) 
http://www.mamp.info/en/index.html    (Mac) 
https://help.ubuntu.com/community/ApacheMySQLPHP  (Linux/Ubuntu) 

 

Download Server Source Code 

In your server, download the server source code of the tutorial from: 
http://www.stanford.edu/class/ee368/Android/Tutorial3/EE368_Android_Tutorial3_Server.zip 

 

Extract EE368_Android_Tutorial3_Server.zip to your web hosting directory. Example: 

/var/www/ or /home/<username>/public_html in Linux/Ubuntu.  

 

VLFeat Library 

In this tutorial, we will use VLFeat library (http://www.vlfeat.org) to compute SIFT of an 

image on the server. VLFeat is an open-source software written in C with interface to Matlab for 

ease of use and experimentation. The library implements many common computer vision 

algorithms including SIFT, MSER and k-means. Some of you may find this library very useful 

for your class project.  

 

To use VLFeat, download  and unpack the binary package from: 
http://www.vlfeat.org/download.html 

 

Alternatively, you can use VLFeat package (./vlfeat-0.9.14) that is already provided in the 

tutorial files.  

http://www.wampserver.com/en/
http://www.mamp.info/en/index.html
https://help.ubuntu.com/community/ApacheMySQLPHP
http://www.stanford.edu/class/ee368/Android/Tutorial3/EE368_Android_Tutorial3_Server.zip
http://www.vlfeat.org/
http://www.vlfeat.org/download.html


3 

 

 

To use and interface VLFeat with Matlab, add this line to your startup.m file: 

run('<path_to_your_VLFeat_Library>/toolbox/vl_setup') 

 

Please refer to this link for creating or modifying startup.m: 

http://www.mathworks.com/help/techdoc/ref/startup.html 

 

Matlab Script : computeSIFT.m 

Inside the tutorial files, we have already written a Matlab script, computeSIFT.m, to compute 

SIFT of an image for you. It takes an input image from the upload folder and converts it to a 

grayscale image with single precision: 
 

InputImg = imread(input_img_path) ;  
GrayImg = single(rgb2gray(InputImg)) ; 

 

After obtaining a grayscale image, we simply use vl_sift from VLFeat to compute SIFT,  

 
[f,d] = vl_sift(GrayImg) ; 

  

 Each column of f is a SIFT keypoint with format [X; Y; S; TH], X,Y is the center of the 

keypoint, S is the scale and TH is the orientation (in radians). 

 Each column of d is the 128-dimensional SIFT descriptor.   

 

After SIFT is computed, we plot the relevant keypoints using vl_plotframe on the colored 

image and save the result to the output folder.  

 

PHP script : computeSIFT.php 

A PHP script called computeSIFT.php is also included in the tutorial files. Please have a quick 

look. This PHP script allows a client to upload a captured image and returns the difference-of-

Gaussian (DoG) keypoints of the image  from the computation of SIFT. Below is a code snippet 

from computeSIFT.php for taking an input image uploaded from a client: 

 
#declare target path for storing photo uploads on the server 
$photo_upload_path = "./upload/"; 
$photo_upload_path = $photo_upload_path. basename( 
$_FILES['uploadedfile']['name']); 
 
# copy temporary upload file to target path that stores the photo upload 
if(copy($_FILES['uploadedfile']['tmp_name'], $photo_upload_path)) { 
 #perform something on the image …. 
} 

 

On the client side, we will post an image upload to the server by calling computeSIFT.php.   

The image file is uploaded to a temporary storage area on the server. To save our uploaded file, 

we need to refer to the associative array $_FILES, which stores all the information about the file 

posted. There are three elements of this array you should know for our purpose: 

http://www.mathworks.com/help/techdoc/ref/startup.html


4 

 

 uploadedfile - the reference we will assign when we post a file from a client. We will need 

this to tell the $_FILES array which file we want to process. 

 $_FILES['uploadedfile']['name'] - name contains the original path of the client’s  
uploaded file. 

 $_FILES['uploadedfile']['tmp_name'] - tmp_name contains the path to the temporary 

file that resides on the server.  

 

After the temporary file path is known, we can copy the uploaded file to our upload folder for 

processing. To invoke our Matlab script computeSIFT.m in PHP, we write (see 

computeSIFT.php, line #59-60): 
 
$command = "matlab -nojvm -nodesktop -nodisplay -r  
\"computeSIFT('$photo_upload_path','$processed_photo_output_path');exit\"";  
exec($command); 
 

 $command variable defines the command line needed to execute computeSIFT.m  as if 

you are running from a command line prompt. For the Matlab command, we specify the 

options  “-nojvm -nodesktop –nodisplay” to disable Matlab GUI and display.  We 

then call our Matlab function using 

“computeSIFT('$photo_upload_path','$processed_photo_output_path')”. 
‘$photo_upload_path' and ‘$processed_photo_output_path’ specify the input 

image path and the output image path respectively.  

 exec simply executes the command defined. 

 

After the Matlab script is executed, computeSIFT.php needs to automatically push the result 

back to the Android client. We have implemented a PHP function called streamFile (see line 

#9) to do this for you easily:  

 
streamFile( $location, $filename, $mimeType) 
 

 $location is the file path of the source file. 

 $filename  is the filename that the client will use to save file.  

 $mimeType  is the character set type.  You may use ‘application/octet-stream' as the 

MIME type in this example.  

 

Testing Server Code 

To test your server code, we provide test.html in the tutorial files. You can load test.html 

using an Internet browser and upload a test image in JPEG format.  If your server scripts are 

setup successfully, an output image with SIFT keypoints annotation will be downloaded to your 

browser within a few seconds.  Figure 2 shows an example of a test image and its corresponding 

result.  

 



5 

 

   
Figure 2 (Left) Input test image (Right) Output result with SIFT keypoints 

 

 

When Matlab is not available 

If you do not have Matlab available in your server, you can easily refer to VLFeat library and 

write your own C program for computing SIFT. Instead of invoking Matlab command, you can 

replace the $command (line #59) with your binary execution command in computeSIFT.php: 

 
$command = "<your_program_path>/<your_program_name> <arguments>” 

 

Part II:  Android Client   
 

Download Client Source Code 

In your server, download and unzip the client source code from: 
http://www.stanford.edu/class/ee368/Android/Tutorial3/EE368_Android_Tutorial3_Client.zip 

 

Setting up Android Client Application 

Open Eclipse, and select File → New → Android Project. 
 

Choose ‘Create project from existing source’ and enter project name ‘SIFTExample’. For the 

project location, select the path of your unzipped client code.  

 

Select your Android build target. Android 2.2 is recommended.  

 

Go to SIFTExampleActivity.java and enter your server URL of computeSIFT.php by editing 

line #51: 
 

private final String SERVERURL = ""; 

to 
private final String SERVERURL = "http://<server-path>/computerSIFT.php"; 

http://www.stanford.edu/class/ee368/Android/Tutorial3/EE368_Android_Tutorial3_Client.zip


6 

 

Run the application on your Android device. Please make sure your phone is already connected 

to the Internet.  A camera preview will be displayed. Take an image snapshot by pressing the 

camera button. Then, the image should be automatically uploaded to your server. If everything is 

setup correctly, an output image with SIFT keypoints should be displayed on the screen after a 

few seconds. To take another image, you can press the camera button again.  

 

Congratulations! You have successfully built your own client-server image processing system. 

 

Handling of Client-Sever Communication on Android Client 

In SIFTExample project, we have three main source files: 

 SIFTExampleActivity.java: Main activity file. Handles UI and client-server 

communication. 

 ResultView.java: A surface view to draw your output image result. 

 Preveiew.java:  A surface view that displays camera preview. Same as what you have seen 

in Tutorial #1.  

 

Often times, it is a good programing practice to have server-client communication not interfering 

with the flow of our main program thread. This helps keep our application responsive at all time.  

Therefore, one solution to this problem is to have an asynchronous task to manage our server-

client communication. To implement an asynchronous task, please refer to AsyncTask API from 

Android SDK: http://developer.android.com/reference/android/os/AsyncTask.html. 

You can also refer to  SIFTExampleActivity.java, line #180 to #338, for the actual 

implementation in the tutorial. 

 

To offload our image processing to the server, we implemented a function called processImage 

(see SIFTExampleActivity.java, line #277 to #299) that abstracts all handling of server-client 

communication for you. Below is a code snippet of processImage:  

 
void processImage (String inputImageFilePath){    
   

File inputFile = new File(inputImageFilePath); 
try { 

  //<1> create file stream for input image   
               FileInputStream fileInputStream  = new FileInputStream(inputFile); 
   
               //<2> upload photo 
  final HttpURLConnection  conn = uploadPhoto(fileInputStream);    
                
               //<3> get processed photo from server 
  if (conn != null){ 
       getResultImage(conn); 
               } 
  fileInputStream.close(); 
 
 } 
 catch (FileNotFoundException ex){Log.e(TAG, ex.toString()); } 
 catch (IOException ex){Log.e(TAG, ex.toString()); 
 } 
} 
 

In processImage, <2> uploadPhoto (see SIFTExampleActivity.java, line #191- #257) will 

help you establish a HTTP connection to your URL and upload your photo. When the HTTP 

http://developer.android.com/reference/android/os/AsyncTask.html


7 

 

connection is successful, the server will reply your HTTP request with the result data. Using <3> 

getResultImage(conn) (see SIFTExampleActivity.java, line #260-273), we can download 

and display the data. Please take a look at these functions for their implementations. You may 

want to modify them for your project.  

 

Reference 
1. PHP - File Upload. http://www.tizag.com/phpT/fileupload.php 

2. Post a File from the Phone to a PHP Server. 

http://getablogger.blogspot.com/2008/01/android-how-to-post-file-to-php-server.html 

3. VLFeat. http://www.vlfeat.org/ 

4. Android AsyncTask. http://developer.android.com/reference/android/os/AsyncTask.html 

5. Android HttpURLConnection. 

http://developer.android.com/reference/java/net/HttpURLConnection.html 

6. EE368 “Scale-Space Features” and “Image Matching” lecture slides.  

7. Lowe, David G. (2004) “Distinctive Image Features from Scale-Invariant Keypoints”. 

http://www.tizag.com/phpT/fileupload.php
http://getablogger.blogspot.com/2008/01/android-how-to-post-file-to-php-server.html
http://www.vlfeat.org/
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/java/net/HttpURLConnection.html

