
Preventing Equivalence Attacks in Updated,

Anonymized Data

Yeye He, Siddharth Barman, Jeffrey F. Naughton

Computer Science Department, University of Wisconsin-Madison
{heyeye, sid, naughton}@cs.wisc.edu

Abstract—In comparison to the extensive body of existing
work considering publish-once, static anonymization, dynamic
anonymization is less well studied. Previous work, most notably
𝑚-invariance, has made considerable progress in devising a
scheme that attempts to prevent individual records from being
associated with too few sensitive values. We show, however, that
in the presence of updates, even an 𝑚-invariant table can be
exploited by a new type of attack we call the “equivalence-
attack.” To deal with the equivalence attack, we propose a
graph-based anonymization algorithm that leverages solutions
to the classic “min-cut/max-flow” problem, and demonstrate
with experiments that our algorithm is efficient and effective
in preventing equivalence attacks.

I. INTRODUCTION

Publishing microdata for research purposes without vio-

lating an individual’s privacy is a problem of practical im-

portance. The majority of existing privacy models deal with

the problem of static anonymization, where the microdata

table is anonymized once and released. By contrast, dynamic

anonymization addresses the problem where the base table can

be updated and released many times.

Dynamic anonymization is intrinsically more difficult than

static anonymization, as multiple releases of data enable

attacks not possible with a single release. In particular, while

differentially private data publishing has recently gained favor

for static tables [2], [10], [12], [17], [18], [28], applying

differential privacy to dynamic anonymization may be prob-

lematic for the same reason repeated queries to a differentially

anonymizing system are problematic — intuitively, the noise

that must be added grows, since adversaries can use differenc-

ing to detect and remove the anonymizing noise [4], [8]. While

extending or modifying ideas found in differential privacy to

apply to the dynamic anonymization problem is an interesting

area for future work, because of the intrinsic difficulty of

randomizing noise-based approaches in the context of multiple

releases, we focus on more syntactic anonymization techniques

that may be more attractive for this problem.

In this paper we focus on the line of work that uses a

partitioned table structure to protect against certain privacy

attacks. To get a sense of the kinds of attacks possible in such

a scenario, consider the following example.

Table Ia shows a sample microdata base table, while Ta-

ble Ib shows its generalization at time 𝑇1. In Table Ib, the

Age and Zip columns are the so-called quasi-identifiers, and

Disease is the sensitive value. The Owner column is included

only for clarity of exposition and is not published. Table II

Owner Age Zip Disease

Alice 35 53000 cancer

Bob 49 55000 flu

Chris 42 65000 cancer

Dan 49 55000 flu

Ellen 43 62000 measles

Frank 41 67000 cancer

(a) Microdata at 𝑇1

Owner Age Zip Disease

Alice [30-49] [50k-59k] cancer

Bob [30-49] [50k-59k] flu

Chris [40-49] [50k-69k] cancer

Dan [40-49] [50k-69k] flu

Ellen [40-49] [50k-69k] measles

Frank [40-49] [50k-69k] cancer

(b) Generalization at 𝑇1

TABLE I: A 2-diverse generalization at T1

Owner Age Zip Disease

Alice 35 53000 cancer

Chris 42 65000 cancer

Ellen 49 55000 measles

Greg 45 60000 flu

Harry 42 65000 cancer

Ian 45 60000 measles

Jane 42 65000 cancer

(a) Microdata at 𝑇2

Owner Age Zip Disease

Alice [30-49] [50k-59k] cancer

Ellen [30-49] [50k-59k] measles

Chris [40-49] [50k-69k] cancer

Greg [40-49] [50k-69k] flu

Harry [40-49] [50k-69k] cancer

Ian [40-49] [50k-69k] measles

Jane [40-49] [50k-69k] cancer

(b) Generalization at 𝑇2

TABLE II: A naive 2-diverse generalization at T2

Owner Age Zip Disease

Alice 35 53000 cancer

Chris 42 65000 cancer

Ellen 49 55000 measles

Greg 45 60000 flu

Harry 42 65000 cancer

Ian 45 60000 measles

Jane 42 65000 cancer

(a) Microdata at 𝑇2

Owner Age Zip Disease

Alice [30-49] [50k-69k] cancer

Greg [30-49] [50k-69k] flu

Chris [40-49] [50k-69k] cancer

𝑐1 [40-49] [50k-69k] flu

Ellen [40-49] [50k-69k] measles

Harry [40-49] [50k-69k] cancer

Ian [40-49] [50k-69k] measles

Jane [40-49] [50k-69k] cancer

(b) Generalization at 𝑇2

TABLE III: A 2-invariant generalization at T2

corresponds to the microdata and anonymization at 𝑇2, with

records corresponding to {Bob, Dan, Frank} removed and

records of {Greg, Harry, Ian, Jane} inserted. In this naive

anonymization, there are privacy vulnerabilities not present

in either of the 2-diverse snapshots Table Ib and Table IIb in

isolation.

One such vulnerability has been studied in previous work.

To see this vulnerability, suppose there is an adversary who

observed that Alice was in the hospital at times 𝑇1 and 𝑇2.

The adversary, knowing that Alice is in her 30’s, will be

able to determine that Alice’s record must appear in the first

partition of both snapshots. Observing that the sensitive values

associated with the first partition are {cancer, flu} and {cancer,

measles}, the adversary can infer that the true sensitive value

of Alice is cancer.

In view of this type of privacy violation, the authors in [26]

proposed a novel anonymization mechanism, 𝑚-invariance.

Their key idea is to require that in any snapshot, a particular

data record can only be placed in partitions with a fixed

set of sensitive values, called a signature. Table IIIb is an

anonymization that follows the 2-invariance principle. Here,

Alice is placed in a partition with sensitive values {cancer,

flu} at both 𝑇1 and 𝑇2, which blocks the intersection attack.

Observe that a counterfeit tuple 𝑐1 with value flu that does

not exist in the original microdata is used in order to enforce

𝑚-invariance.

Although this prior work successfully protects against this

“value association attack” (the adversary cannot associate too

small a set of sensitive values with any individual), we observe

that there is another way that the partitioned structure of the

released data can be exploited. We call this new type of attack

the “value equivalence attack.”

As an example of this attack, notice that by comparing the

first partitions of snapshots published at times 𝑇1 and 𝑇2 in

Table Ib and Table IIIb, the adversary learns that Bob and

Greg must have contracted the same disease. To make matters

worse, suppose later at time 𝑇3, Greg recovers and someone

else, Kate, who has flu, is grouped with Alice to form a new

partition {cancer, flu}. This will further disclose the fact that

Kate has the same disease as Bob and Greg. This process

can continue as more snapshots are published, and the list of

individuals known to share the same sensitive value will grow

monotonically.

This type of equivalence information can be dangerous, for

if the adversary somehow learns the true sensitive value of

any individual, the privacy of the remaining people in the

same equivalence class will all be compromised. The adversary

could even be one of the individuals in the data set. In the

previous example, Bob, who knows he himself contracted

flu at 𝑇1, can look at the table series and determine that

Greg and Kate both have flu. Clearly, this also happens if

an external adversary somehow learns of someone’s sensitive

value. Furthermore, the damage from such an attack is not

limited to one equivalence class. Using the previous example,

if the adversary learns that Bob has flu, he can not only

determine that Greg and Kate have flu, but also deduce that

Alice, along with other tuples in Alice’s equivalence class,

must have the sensitive value cancer. In that sense, localized

disclosures that are confined to one partition become global

violations of privacy in the presence of dynamic updates,

which pose privacy threats that need to be carefully addressed.

In this paper, we address information leakage via such

“equivalence attacks,” which to our knowledge has not been

studied before. We propose a privacy framework that combines

previously proposed dynamic anonymization techniques with

our new graph-based techniques which leverage a min-cut

algorithm, to protect against both the old “value association

attack” and the new “equivalence attack.”

II. RELATED WORK

Various methods have been proposed for anonymizing dy-

namic relational data [5], [6], [7], [9], [19], [22], [23], [26],

[30], all of which only focus on value association attacks but

not value equivalence attacks.

The work [7] is among the first to identify possible attacks

in the dynamic setting. However, in this pioneering work,

only insertion into the base table is supported, which is not

applicable to a fully dynamic data set with both insertion and

deletion as studied in this work. Similarly, the authors in [6]

and [19] also propose practical incremental anonymization

techniques in an insertion only setting. The authors in [26]

propose the novel 𝑚-invariance framework. This simple yet

elegant solution is the first work that successfully anonymizes

a fully dynamic data set. However, it targets the “value

association attack” and so does not protect against the “value

equivalence attack” addressed in our work. We present more

details of 𝑚-invariance in Section III.

Another recent work [9] addresses value association attacks

in an insertion only setting, where the knowledge that every

record in previous data releases has a “corresponding record”

in subsequent releases lead to “correspondence attacks” (note

that despite the similarity in names, it is in its nature a value as-

sociation attack and very different from the equivalence attack

addressed in this work). Among other things, they improve

over previous techniques by ensuring that no counterfeits are

introduced in the anonymization process.

The work [5] addresses another interesting variant of serial

data publishing, where the adversary leverages the knowledge

that some sensitive values are permanent while others tran-

sient. The authors propose a practical solution that anonymizes

microdata in conjunction with public table, which is the

collection of public information of individuals that can be

used to link to anonymized tuples. Largely along the same

line, authors in [23] observe that global privacy guarantees

can be compromised when sensitive values associated with

the same record change over time across multiple snapshots,

and propose a novel privacy framework to address the involved

privacy compromises.

The authors in [20] consider the problem of ensuring privacy

of a one table snapshot, when the sensitive values of some

individuals in the table are compromised. While the motivation

to prevent information disclosure even when some tuples are

compromised in [20] is somewhat similar to that of this

work, the techniques proposed in [20] are only designed to

work on one table snapshot that cannot be straightforwardly

applied to a table series. In addition, even in the absence of

the knowledge of the sensitive values of some individuals,

the value equivalence information being disclosed when data

are dynamically updated already poses privacy threats that

warrants a thorough analysis.

None of this previous work addresses the problem of the

value equivalence attack that we study in this paper.

III. PRELIMINARIES: m-INVARIANCE [26]

Since we in our work rely on the state-of-art dynamic

anonymization algorithm 𝑚-invariance [26] to protect against

“value association attack”, it is important to understand some

concepts used in 𝑚-invariance. The key idea of 𝑚-invariance

is to ensure that in a series of table snapshots, any given tuple

must always be placed in a partition with the same set of 𝑚
sensitive values, as defined below.

Let 𝑇 be a microdata table maintained by the publisher.

Let 𝑇 (𝑗) be the snapshot of 𝑇 at time 𝑗. First define what

QI-group, or partition is.

Definition 1. [26] For a microdata table 𝑇 (𝑗), QI groups (or

partitions) are disjoint subsets of the tuples in 𝑇 (𝑗), whose

union equals 𝑇 (𝑗).

Let 𝑇 ∗(𝑗) be the anonymized snapshot of 𝑇 (𝑗) at time 𝑗,

the signature of a QI group is defined as follow.

Definition 2. [26] Let 𝑄𝐼∗ be a QI group in 𝑇 ∗(𝑗) for any

𝑗 ∈ [1, 𝑛]. The signature of 𝑄𝐼∗ is the set of distinct sensitive

values in 𝑄𝐼∗.

Intuitively signature is the set of sensitive values of the QI

group in which the data is generalized.

Definition 3. [26] A generalized table 𝑇 ∗(𝑗) is 𝑚-unique, if

each QI group in 𝑇 ∗(𝑗) contains at least 𝑚 tuples, and all

the tuples in the group have different sensitive values.

Definition 4. [26] A sequence of published relations {𝑇 ∗(1),
..., 𝑇 ∗(𝑛)} (where 𝑛 ≥ 1) is 𝑚-invariant if the following

conditions hold:

1. 𝑇 ∗(𝑗) is 𝑚-unique for all 𝑗 ∈ [1, 𝑛].

2. For any tuple 𝑡 with lifespan [𝑥, 𝑦], 𝑡.𝑄𝐼∗(𝑥), 𝑡.𝑄𝐼∗(𝑥+
1), ..., 𝑡.𝑄𝐼∗(𝑦) have the same signature, where 𝑡.𝑄𝐼∗(𝑗)
denote the QI group that contains 𝑡 at time 𝑗 ∈ [𝑥, 𝑦].

Lemma 1. [26] If {𝑇 ∗(1), ..., 𝑇 ∗(𝑛)} is 𝑚-invariant, then

for any tuple 𝑡 ∈
∪𝑛

𝑖=1 𝑇 (𝑖), the adversary cannot associate 𝑡
with less than 𝑚 possible sensitive values.

We use our running example to illustrate the various con-

cepts associated with 𝑚-invariance.

Example 1. 𝑚-invariant generalization

Table Ib and Table IIIb is a sequence of two snapshots that is

2-invariant. Each pair of two tuples in the generalized Table Ib

(for example tuples representing Alice and Bob), form a QI

group, or a partition, which are standard definitions used in

the privacy literature.

In Table Ib, the signature of the partition with tuples {Alice,

Bob} is the set of sensitive values {cancer, flu}; similarly the

signature of the partition {Ellen, Frank} is {cancer, measles}.

According to Definition 3, both Table Ib and Table IIIb

are apparently 2-unique, for each partition in the generalized

tables has two tuples with distinct values.

Furthermore, the table series in Table Ib and Table IIIb

is 2-invariant as per Definition 4. Because first of all both

tables are 2-unique, additionally the signature of each tuple

representing the same person are the same across Table Ib

and Table IIIb (for instance the signature of tuple Alice in

Table Ib and Table IIIb is the same, namely {cancer, flu}).

Observe that there is a counterfeit tuple 𝑐1 in Table Ib with

sensitive value flu to satisfy the 2-invariance requirement.

Alice Bob Ellen Frank

Chris Dan

cancer flu

bucket1

meas. cancer

bucket21 2

(a) Buckets at 𝑇1

Alice Ellen

Chris

cancer flu

bucket1

meas. cancer

bucket21 2

(b) Buckets after deletion

Alice Greg Ellen Harry

Chris c1

cancer flu

bucket1

meas. cancer

bucket21 2

(c) Buckets after balancing

Alice Greg Ellen Harry

Chris c1 JaneIan

cancer flu

bucket1

meas. cancer

bucket21 2

(d) Buckets after insertion

Fig. 1: 𝑚-invariance Bucketization

By Lemma 1, we know that given the 2-invariant table series

Table Ib and Table IIIb, the adversary cannot associate any

tuple 𝑡 with less than 2 possible sensitive values. Intuitively,

this is because when the signature of any tuple is the same in

every published table snapshot, the adversary will not be able

to reduce the set of sensitive values that could be associated

with any individual beyond a set of 𝑚 sensitive values. For

instance, in our example the adversary cannot tell what Alice’s

sensitive value is by looking at Table Ib and Table IIIb,

because the tuple representing Alice is always found in a

partition of the signature {cancer, flu} across the two different

table snapshots (as opposed to when Alice’s record is found

in a partition {cancer, flu} in Table Ib while in a partition

{cancer, measles} in Table IIb, in which case the adversary

knows that Alice has to be a cancer patient by set intersection).

The 𝑚-invariance technique ensures that the adversary can-

not associate any tuple with fewer than 𝑚 sensitive values.

In [26] a “bucketization” algorithm is used to achieve 𝑚-

invariance, where a bucket contains all tuples sharing the same

signature.

Briefly, each tuple stays in the same “bucket” throughout

its lifespan. Newly inserted data without a fixed signature yet

can be inserted to an appropriate bucket so that there are equal

number of tuples for each sensitive value in all buckets. Each

bucket can then be split into fine granularity partitions (where

each partition has precisely 𝑚 distinct sensitive values). We

use the following example to illustrate the use of “bucketiza-

tion” in 𝑚-invariance anonymization.

Example 2. Figure 1a shows how tuples in Table Ib are buck-

etized according to their signature at time 𝑇1. At 𝑇2, tuples

representing {Bob, Dan, Frank} are removed, as reflected in

Figure 1b. In the next step in Figure 1c, newly inserted tuples

are distributed into appropriate buckets so that each bucket

has the same number of tuples for each sensitive value. For

instance the tuple representing “Greg” with sensitive value

“flu” is added to the first bucket, while the tuple “Harry”

with “cancer” is added to the second bucket. Note that since

there are no more tuples that carry flu, a “counterfeit” tuple

𝑐1 is inserted into the first bucket. Then in Figure 1d, tuples

that remain to be inserted, {Ian, Jane} are placed in the

second bucket. Finally tuples within a bucket are split into fine-

granularity partitions and published as shown in Table IIIb.

IV. THE EQUIVALENCE ATTACK

As we have mentioned in the introduction, we classify

adversarial attacks into two categories: the previously-studied

“value-association” attack, and the new “value-equivalence

attack,” which is the main focus of this paper. We formally

define both attacks as follows.

Definition 5. Let 𝑇 ∗(𝑖) be an anonymized table published at

time 𝑖, and 𝑇 ∗ ={𝑇 ∗(1), 𝑇 ∗(2), ..., 𝑇 ∗(𝑡)} a table series

published over time 1 to 𝑡. There is a 𝑝-value association

attack, if an adversary can associate any tuple 𝑡 with a

particular sensitive value with probability (confidence) 𝑝. The

table series 𝑇 ∗ is a 𝑝-value association table series if there is

no instance of a 𝑝′-value association attack in 𝑇 ∗ for 𝑝′ > 𝑝.

The notion of the 𝑝-value association attack has been

commonly used in existing privacy models. For example, 𝑙-
diversity [16] ensures that no 1

𝑙
-value association attack is

possible in the static anonymization scenario, whereas 𝑚-

invariance protects against 1
𝑚

-value association attacks for

dynamic data publishing.

Definition 6. Let 𝑇 ∗(𝑖) be an anonymized table published at

time 𝑖, and 𝑇 ∗ ={𝑇 ∗(1), 𝑇 ∗(2), ..., 𝑇 ∗(𝑡)} a table series

published over times 1 to 𝑡. There is an 𝑒-value equivalence

attack if an adversary can determine that the multiset of

sensitive values associated with a multiset of tuples 𝑃 is the

same as that of another multiset of tuples 𝑄, where 𝑃 ∩𝑄 = ∅
and ∣𝑃 ∣ = ∣𝑄∣ = 𝑒. The table series 𝑇 ∗ is an 𝑒-value

equivalence table series if there is no instance of 𝑒′-value

equivalence attack in 𝑇 ∗ with 𝑒′ < 𝑒.

Note that the worst 𝑒-value equivalence attack is the one

with the smallest 𝑒.

Example 3. We return to the 𝑚-invariant table series in

Table Ib and Table IIIb. The two tables are 2-invariant, so

it is a 1
2 -value association table series.

As an example of an equivalence attack, we see that in

Table Ib, both the partition {Alice, Bob} and {Chris, Dan} are

associated with sensitive values {cancer, flu}. Thus, this is an

instance of a 2-equivalence attack. Additionally, observe that

both {Alice, Bob} in Table Ib and {Alice, Greg} in Table IIIb

are associated with {cancer, flu}. Thus we can infer that Bob

and Greg have the same sensitive value, which is a 1-value

equivalence attack. Obviously 𝑒-value equivalence attacks with

smaller 𝑒 are more problematic.

Note that the value equivalence attack also applies, though

trivially, to many static, publish-once anonymization models.

For instance, by definition, 𝑘-anonymity and 𝑙-diversity allow

𝑘-equivalence attacks and 𝑙-equivalence attacks, respectively.

However, the equivalence attack problem is worse in dynamic

scenarios, when multiple releases allow an adversary to reduce

the 𝑒 value in 𝑒-equivalence attacks over time.

In this work we assume that the adversary has the knowl-

edge that the sensitive values of some individuals do not

change over a certain period of time. This assumption makes

the anonymization problem harder, since it provides another

way to link individuals to values over time. In the case that

certain value does change between two snapshots, our ap-

proach would still ensure the privacy as the value equivalence

connection addressed in this work is lost in that case.

Value equivalence attacks are possible because of the what

we term data-value group correspondence structure, as defined

below.

Definition 7. Let 𝑃 be a multiset of people, 𝑉 a multiset

of sensitive values, with ∣𝑃 ∣ = ∣𝑉 ∣. A data-value group

correspondence structure 𝑐 is the knowledge that collectively

the multiset of individuals in 𝑃 carry sensitive values in 𝑉 ,

denoted as 𝑔 : {𝑃 → 𝑉 }.

The typical example of data-value correspondence is seen

in partitions. While the partitioned table structure in the

published table conceals one-to-one tuple-to-value mappings,

it reveals a mapping from a multiset of tuples to a multiset

of values. For instance, the adversary learns from Table Ib

three correspondence structures for each partition: 𝑔1 :{{Alice,

Bob} → {cancer, flu}}, 𝑔2 :{{Chris, Dan} → {cancer, flu}},

and 𝑔3 :{{Ellen, Frank} → {measles, cancer}}. As more ta-

ble snapshots are published, more data-value correspondence

structures are exposed.

We note that, like previous work studying 𝑘-anonymity and

its successors, we assume that the adversary may know the

set of people corresponding to the tuples in the published,

anonymized table. The adversary could obtain this information

through a linking attack from some public data source to the

quasi-identifiers in the anonymized table.

A. Possible remedies: merge partitions to bucket

In this section we explore solutions to equivalence attacks.

Our first observation is that the way data published in 𝑚-

invariance needs to be modified. Specifically, in the original

𝑚-invariance each partition of 𝑚 tuples has precisely 𝑚
distinct sensitive values, or what we call “fine granularity par-

tition” (partitions that cannot be further split without violating

a given “value association” privacy requirement).

In order to prevent both 1
𝑚

-value association attacks and

𝑒-value equivalence attacks for all 𝑒 < 𝑚, data cannot always

be published in “fine granularity partitions.”

The reason we focus on 𝑒-equivalence attacks with 𝑒 < 𝑚
is that 𝑚-invariance already implies the existence of 𝑚-

equivalence attacks, since even in a single release, two par-

titions of 𝑚 records sharing the same set of sensitive values

are vulnerable to an 𝑚-equivalence attack by definition. Fur-

thermore, a single release 𝑚-invariant table is not vulnerable

Owner Age Zip Disease

Alice [30-49] [50k-69k] cancer

Bob [30-49] [50k-69k] flu

Chris [30-49] [50k-69k] cancer

Dan [30-49] [50k-69k] flu

Ellen [40-49] [60k-69k] measles

Frank [40-49] [60k-69k] cancer

(a) Merged partitions at 𝑇1

Owner Age Zip Disease

Alice 35 53000 flu

Bob 49 55000 flu

Chris 42 65000 cancer

Dan 49 55000 cancer

Ellen 43 62000 measles

Frank 41 67000 cancer

(b) Using Anatomy at 𝑇1

TABLE IV: Alternative table release at 𝑇1

Owner Age Zip Disease

Alice [30-49] [50k-69k] cancer

Greg [30-49] [50k-69k] flu

Chris [30-49] [50k-69k] cancer

𝑐1 [30-49] [50k-69k] flu

Ellen [40-49] [50k-69k] measles

Harry [40-49] [50k-69k] cancer

Ian [40-49] [50k-69k] measles

Jane [40-49] [50k-69k] cancer

(a) Merged partitions at 𝑇2

Owner Age Zip Disease

Alice 35 53000 flu

Greg 45 60000 flu

Chris 42 65000 cancer

𝑐1 49 51000 cancer

Ellen 43 62000 measles

Harry 42 65000 measles

Ian 45 60000 cancer

Jane 42 65000 cancer

(b) Using Anatomy at 𝑇2

TABLE V: Alternative table release at 𝑇2

to any 𝑒-equivalance attack for 𝑒 < 𝑚, because any record

in the partition could be associated with any one of these

sensitive values. What we are concerned with is the possibility

that, through multiple releases, even though the sequence is

𝑚-invariant, and thus not vulnerable to 1/𝑒-value association

attacks for 𝑒 < 𝑚 (this is the whole goal of 𝑚-invariance), the

sequence of tables may be vulnerable to 𝑒-value equivalence

attacks for 𝑒 < 𝑚. That is what we seek to prevent.

As an example of why data cannot be published in “fine

granularity partitions” without being vulnerable to both value

association attack and value equivalence attack, let us again

look at the two 2-invariant snapshots in Table Ib and Table IIIb.

Observe that when the tuple Bob is deleted from the partition

{Alice, Bob} in Table Ib, no tuple can be paired with the

remaining tuple Alice to form a new 2-tuple partition if both

value equivalence attacks and value association attacks are to

be prevented. To see this, suppose the tuple Alice is paired

with a tuple that carries any sensitive value other than flu. It

will then violate 𝑚-invariance and a value association attack

becomes possible. On the other hand, if the tuple Alice is

grouped with a tuple, say Greg, with sensitive value flu, a

value equivalence attack becomes possible (the adversary will

learn that Greg and Bob have the same sensitive value).

Intuitively, fine granularity partitions expose too much data-

value correspondence structure. Larger partitions, on the other

hand, entail a significant loss of utility. Accordingly, we

propose a hybrid table publishing mechanism that publishes

large partitions while preserving data utility.

Specifically, we first merge partitions sharing the same

signature to a big partition for which we call bucket. So,

for instance, the two {cancer, flu} partitions in Table Ib are

merged into one bucket in Table IVa. The same applies to

Table IIIb, and we get Table Va. Note that the bucket concept

is the same as the bucket used in 𝑚-invariance which holds all

data sharing the same signature. It is also worth noting that

there is a syntactic difference between the merged partition

used in our new publishing scheme, which contains multiples

of the signature, and the original 𝑚-invariance partitions,

which require all tuples in the same partition to have distinct

sensitive values. However we observe that the risk of linking

any person in the partition to a sensitive value — or essentially

the value-association attack — in the merged partition is still
1
𝑚

, the same as that of the original 𝑚-invariance. As a result

the new publishing scheme we introduce it is not relaxing the

privacy requirement as defined in the original 𝑚-invariance.

We then resort to a previously proposed privacy mechanism

known as Anatomy [25], which publishes quasi-identifiers as

is while perturbing the associations between quasi-identifiers

and sensitive value. This is illustrated in Table IVb and

Table Vb. It has been shown in [25] that Anatomy greatly

improves range query accuracy as compared to generalization-

based anonymization.

Definition 8. Let 𝑇 be an anonymized table, 𝐴𝑖 and 𝑣𝑖 the 𝑖-
th quasi-identifier and its value, 𝐴𝑠 and 𝑣𝑠 the sensitive value

attribute and its value. Count-style range queries are of the

form:

select count(*) from 𝑇
where 𝑣1𝑙𝑏 < 𝐴1 < 𝑣1𝑢𝑏 AND .. 𝑣𝑛𝑙𝑏 < 𝐴𝑛 < 𝑣𝑛𝑢𝑏 AND 𝐴𝑠 =
𝑣𝑠;

We observe that applying Anatomy on merged partitions

that share the same signature preserves data utility.

Proposition 1. Let 𝑇 ∗ be a 𝑚-invariance table published

using fine granularity partitioning and Anatomy. Let 𝑅∗ be the

table where the partitions in 𝑇 ∗ that share the same signature

are merged. Let 𝑄 be any count-style range query. Define the

relative query result difference 𝑑 = ∣𝑄(𝑇∗)−𝑄(𝑅∗)∣
𝑄(𝑇∗) . We have

the following:

(1) 𝑑 = 0 if there is no counterfeits in 𝑇 ∗;

(2) 𝑑 ≤ max{𝑝𝑏,
𝑝𝑞

1−𝑝𝑞
} otherwise, where 𝑝𝑞 denote the

percentage of counterfeit tuples in the query region, and 𝑝𝑏
denote the maximum percentage of counterfeits in any buckets.

An explanation of this proposition can be found in the full

version of this paper [11]. The authors in [26] have shown that

empirically the percentage of counterfeit tuples injected by the

𝑚-invariance algorithm is well below 0.1%. As a result, both

𝑝𝑏 and 𝑝𝑞 tend to be small, making the relative difference

between answering queries over 𝑅∗ (the proposed hybrid

table publishing using merged partition and Anatomy) and 𝑇 ∗

(the original 𝑚-invariance with fine granularity partition and

Anatomy) insignificant. As we will see, our experimental re-

sults confirm this observation. Note that following the practice

of previous work, Proposition 1 considers utility as defined by

the error in expected counts returned by queries. Alternative

utility definitions, like a less common metric that measures

the range of values that could be returned by count queries,

could leads to lower utility for the merged partitions that we

propose.

Notice in the example in Table IVb and Table Vb, with

Owner Age Zip Disease

Alice 35 53000 flu

Greg 45 60000 flu

Chris 42 65000 cancer

𝑐1 49 51000 cancer

Ian 45 60000 measles

Jane 42 65000 cancer

TABLE VI: A 2-invariant anonymization at 𝑇3 using Anatomy

merged partitions, the adversary can no longer tell whether the

sensitive value of Bob is the same as that of Greg. With this

new table publishing mechanism, a intuitive greedy approach

to prevent 𝑒-equivalence attack for all 𝑒 < 𝑚 seems to

be simply ensuring that all updates are of at least size 𝑚.

However, we show that the new table publishing mechanism

is only part of the solution, and does not completely prevent

𝑒-equivalence attacks for all 𝑒 < 𝑚, as can be illustrated in

the following example.

Example 4. Continuing with the Table IVb, Table Vb in

Example 3, suppose that at time 𝑇3, tuples {Ellen, Harry}
are deleted from Table Vb at 𝑇2, resulting in Table VI.

And equivalence attack can still happen. First, with 𝑔1 :
{{𝐸𝑙𝑙𝑒𝑛, 𝐹𝑟𝑎𝑛𝑘} → {𝑚𝑒𝑎𝑠𝑙𝑒𝑠, 𝑐𝑎𝑛𝑐𝑒𝑟}} in Table IVb and

𝑔2 : {{𝐼𝑎𝑛, 𝐽𝑎𝑛𝑒} → {𝑚𝑒𝑎𝑠𝑙𝑒𝑠, 𝑐𝑎𝑛𝑐𝑒𝑟}} in Table VI, we

can see a 2-equivalence attack involving {Ellen, Frank} and

{Ian, Jane}.

More problematically, one can infer 𝑔3 :{{𝐸𝑙𝑙𝑒𝑛, 𝐹𝑟𝑎𝑛𝑘,
𝐼𝑎𝑛, 𝐽𝑎𝑛𝑒} → {𝑐𝑎𝑛𝑐𝑒𝑟, 𝑐𝑎𝑛𝑐𝑒𝑟, 𝑚𝑒𝑎𝑠𝑙𝑒𝑠, 𝑚𝑒𝑎𝑠𝑙𝑒𝑠}}
from 𝑔1 and 𝑔2 using simple composition. Given 𝑔3 and

𝑔4 : {{𝐸𝑙𝑙𝑒𝑛, 𝐻𝑎𝑟𝑟𝑦, 𝐼𝑎𝑛, 𝐽𝑎𝑛𝑒} → {𝑐𝑎𝑛𝑐𝑒𝑟, 𝑐𝑎𝑛𝑐𝑒𝑟,
𝑚𝑒𝑎𝑠𝑙𝑒𝑠,𝑚𝑒𝑎𝑠𝑙𝑒𝑠}} in Table Vb we know that Frank and

Harry have the same sensitive value.

Observe in this example that the naive greedy approach

which always inserts/deletes 2 tuples at a time does not prevent

1-equivalence attack; the equivalence-attack problem needs to

be better formalized and a more sophisticated solution to be

developed. This toy example involving only three table snap-

shots also shows how data value correspondence structures

can be composed into value equivalence attack in a fairly

complex way. We will show that the decision problem of 𝑒-

equivalence attack for a given 𝑒 is in general NP-hard.

V. FORMALIZATION OF EQUIVALENCE ATTACK

We formally define equivalence attacks in this section.

Definition 9. Given 𝑁 partitions {𝑃1, 𝑃2, ...𝑃𝑁} of a pub-

lished table series 𝑇 ∗, the person vector 𝑆𝑘 of partition 𝑃𝑘

with respect to a sequence of 𝑛 individuals 𝑅 = {𝑟1, 𝑟2, ...
𝑟𝑛} is a row vector 𝑆𝑘 = [𝑠1, 𝑠2, ... 𝑠𝑛], where 𝑠𝑖 ∈ {0, 1}
and represents the presence/absence of individual 𝑝𝑖 in 𝑃𝑘.

Similarly a value vector 𝑈𝑘 of partition 𝑃𝑘 with respect to a

sequence of 𝑚 sensitive values 𝑉 = {𝑣1, 𝑣2, ... 𝑣𝑚} is a row

vector 𝑈𝑘 = [𝑢1, 𝑢2, ... 𝑢𝑚], where 𝑢𝑖 ∈ ℤ
+ is a non-negative

integer that represents the number of occurrences of sensitive

value 𝑣𝑖 in 𝑃𝑘.

We define the person matrix 𝑆 to be the 𝑁 × 𝑛 matrix

with 𝑆𝑘 as row 𝑘, or 𝑆 = [𝑆𝑇
1 , 𝑆

𝑇
2 , ...𝑆

𝑇
𝑁]𝑇 ; and similarly

the value matrix 𝑈 as the 𝑁 ×𝑚 matrix with 𝑈𝑘 as row 𝑘,

𝑈 = [𝑈𝑇
1 , 𝑈

𝑇
2 , ...𝑈

𝑇
𝑛]𝑇 .

Example 5. As an example of person/value vector, consider

the first partition {Alice, Bob, Chris, Dan}:{flu, flu, cancer,

cancer} in Table IVb. The set of people can be represented

using the vector 𝑆1 = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] with respect

to {Alice, Bob, Chris, Dan, Ellen, Frank, Greg, Harry , Ian,

Jane, 𝑐1}; while the set of values can be represented by

the value vector 𝑈1 = [2, 2, 0] with respect to {cancer, flu,

measles}.

There are 6 partitions in Table IVb, Table Vb and Table VI.

The person matrix is 𝑆 = [𝑆𝑇
1 , 𝑆

𝑇
2 , ...𝑆

𝑇
6]

𝑇 , where 𝑆1 corre-

sponds to the set of people in the first partition in Table IVb;

𝑆2 the second partition in Table IVb, 𝑆3 the first partition in

Table Vb, so on and so forth. We have the person matrix

𝑆 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S1
S2
S3
S4
S5
S6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 c1
1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1 1 1 0
1 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Similarly, with 𝑈1 = [2, 2, 0], etc, we have value matrix

𝑈 = [𝑈𝑇
1 , 𝑈

𝑇
2 , ...𝑈

𝑇
6]𝑇 :

𝑈 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

U1

U2

U3

U4

U5

U6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

𝑐𝑎𝑛𝑐𝑒𝑟 𝑓𝑙𝑢 𝑚𝑒𝑎𝑠.

2 2 0
1 0 1
2 2 0
2 0 2
2 2 0
1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Definition 10. Let 𝑆 be the person matrix and 𝑈 the value

matrix defined above. An instance of an 𝑒-equivalence attack

is characterized by a not all-zero vector of weights 𝑊 =
[𝑤1, 𝑤2, ..., 𝑤𝑁], where 𝑒 = ∣∣𝑊 ⋅𝑆∣∣1

2 ∕= 0, such that

(1) 𝑊 ⋅ 𝑈 = 0⃗,

(2) 𝑊 ⋅ 𝑆 ∈ ℤ
𝑛.

Additionally, the 𝑊 that minimizes ∣∣𝑊 ⋅ 𝑆∣∣1 character-

izes an instance of the minimum equivalence attack, and

Min Eqi(𝑆,𝑈) = 𝑚𝑖𝑛(∣∣𝑊 ⋅𝑆∣∣1
2) is the minimum equivalence

attack value.

Example 6. We revisit the equivalence attacks identified in

Example 4. The 2-equivalence attack illustrated in Example 4,

{Ellen, Frank} equivalent to {Ian, Jane}, corresponds to the

weight vector 𝑊3 = [0, 1, 0, 0, 0,−1]. To see this, 𝑊3 ⋅ 𝑈 =
[0, 0, 0] (condition (1) of Definition 10), suggesting that the

linear combination 𝑊3 of sensitive values in partition struc-

tures produces value equivalence. This linear combination 𝑊3

can be decoded with 𝑊3 ⋅ 𝑆 = [0, 0, 0, 0, 1, 1, 0, 0,−1,−1, 0],
illustrating the fact that the sensitive value assumed by {Ellen,

Frank} is the same as {Ian, Jane}. Notice 𝑒 = ∣∣𝑊3⋅𝑆∣∣1
2 =

2, suggesting that this is a 2-equivalence attack. Also ob-

serve in this example how the second entry “1” in 𝑊3 =
[0, 1, 0, 0, 0,−1] effectively points to 𝑆2 ({Ellen, Frank}) in

𝑆, while the sixth entry “-1” to 𝑆6 ({Ian, Jane}).

Additionally the weight vector 𝑊4 = [0, 1, 0,−1, 0, 1]
corresponds to the 1-equivalence attack demonstrated in Ex-

ample 4, because we have 𝑊4⋅𝑈 = [0, 0, 0], 𝑒 = ∣∣𝑊4⋅𝑆∣∣1
2 = 1,

and 𝑊4 ⋅ 𝑆 = [0, 0, 0, 0, 0, 1, 0, −1, 0, 0, 0], suggesting that

the sensitive value of Frank is the same as that of Harry.

Note that 𝑊 ⋅ 𝑆 ∈ ℤ
𝑛 is required, due to the value

equivalence semantics in equivalence attacks.

Lemma 2. Let 𝑊 be the weight vector representing an

equivalence attack as defined in Definition 10. The decision

problem of whether 𝑀𝑖𝑛 𝐸𝑞𝑖(𝑆,𝑈) = 𝑒 for some 𝑒 given a

table series 𝑇 ∗ is independent of 𝑊 ∈ ℤ
𝑁 or 𝑊 ∈ ℝ

𝑁 .

This is a useful property that allows us to consider only

𝑊 ∈ ℤ
𝑁 . Theorem 1 states the hardness of this minimum

equivalence attack problem, which follows from Lemma 2 and

a reduction from the Shortest Vector problem. Both proofs can

be found in the full version of this paper [11].

Theorem 1. Given person matrix 𝑆 and value matrix 𝑈 ,

determining Min Eqi(𝑆,𝑈) is NP-Hard.

Given Theorem 1, we are unlikely to be able to effi-

ciently determine if the published table series is exactly an

𝑒-equivalence table series for some 𝑒, and the problem of

optimally anonymizing given an 𝑒-equivalence table series

privacy requirement appears even more daunting. Accordingly

we use a graph-based approximation to anonymize an 𝑒-

equivalence table series.

VI. GRAPH BASED ANONYMIZATION

We note that since 𝑚-invariance is the state-of-art in pre-

venting value association attacks, orthogonal to the value

equivalence attack this work addresses, we enforce 𝑚-

invariance principle in our anonymization using a variant of

𝑚-invariance bucketization algorithm (in Section III). Because

𝑚-invariance imposes a special structure on the people matrix

𝑆 and value matrix 𝑈 , this allows us to simplify the problem

with the following matrix manipulation. We show that even

with the 𝑚-invariance constraints, the problem is NP-hard in

the full version of this paper [11].

A. Matrix manipulation

To enable a graph representation of the anonymization

problem, the matrix consisting of person/value vectors is

processed as follows.

Matrix Partition. Let the person matrix be

𝑆 = [𝑆𝑇
1 , 𝑆

𝑇
2 , ...𝑆

𝑇
𝑁]𝑇 , and the value matrix

𝑈 = [𝑈𝑇
1 , 𝑈

𝑇
2 , ...𝑈

𝑇
𝑁]𝑇 . Partition the set of value vectors

{𝑈1, 𝑈2, ..., 𝑈𝑁} into �̂�1, �̂�2 ..., �̂�𝑀 , such that for any

𝑈𝑟, 𝑈𝑠 ∈ �̂�𝑖, 𝑈𝑟 and 𝑈𝑠 are pairwise linearly dependent; and

for any 𝑈𝑟 ∈ �̂�𝑖 and 𝑈𝑠 ∈ �̂�𝑗 , 𝑖 ∕= 𝑗, 𝑈𝑟 are 𝑈𝑠 are linearly

independent. Partition the person vectors {𝑆1, 𝑆2, ..., 𝑆𝑁}
into 𝑃1, 𝑃2 ..., 𝑃𝑀 accordingly, such that 𝑆𝑟 ∈ 𝑃𝑖 if and

only if 𝑈𝑟 ∈ �̂�𝑖.

Let 𝑃𝑖 be the sub-matrix generated by adjoining rows

vectors from 𝑃𝑖, so that 𝑃𝑖 = [𝑆𝑇
𝜎1
, 𝑆𝑇

𝜎2
, ...]𝑇 for all 𝑆𝜎𝑘

∈ 𝑃𝑖.

Maintaining the same order we construct 𝑄𝑖 = [𝑈𝑇
𝜎1
, 𝑈𝑇

𝜎2
, ...]𝑇

for all 𝑈𝜎𝑘
∈ �̂�𝑖.

Example 7. We revisit Example 6, which identifies equivalence

attack over Table IVb, Table Vb and Table VI. Partition 𝑈
into 𝑄1 and 𝑄2, where 𝑄1 = [𝑈𝑇

1 , 𝑈
𝑇
3 , 𝑈

𝑇
5]𝑇 and 𝑄2 =

[𝑈𝑇
2 , 𝑈

𝑇
4 , 𝑈

𝑇
6]𝑇 ; accordingly partition 𝑆 into 𝑃1 = [𝑆𝑇

1 ,
𝑆𝑇
3 , 𝑆

𝑇
5]

𝑇 and 𝑃2 = [𝑆𝑇
2 , 𝑆

𝑇
4 , 𝑆

𝑇
6]

𝑇 . Observe that the row

vectors in 𝑄1 are pairwise linearly dependent (they come from

partitions of the same signature), and the same is true for 𝑄2.

𝑃1 =

∣

∣

∣

∣

∣

∣

∣

𝑆1

𝑆3

𝑆5

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

𝐴 𝐵 𝐶 𝐷 𝐺 c1
1 1 1 1 0 0
1 0 1 0 1 1
1 0 1 0 1 1

∣

∣

∣

∣

∣

∣

∣

, 𝑄1 =

∣

∣

∣

∣

∣

∣

∣

𝑈1

𝑈3

𝑈5

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

𝑐𝑎𝑛𝑐𝑒𝑟 𝑓𝑙𝑢𝑚𝑒𝑎𝑠.

2 2 0
2 2 0
2 2 0

∣

∣

∣

∣

∣

∣

∣

With 𝑃1, 𝑄1 we can derive 2-equivalence attacks 𝑊 ′
1 =

[1,−1, 0], 𝑊 ′
2 = [1, 0,−1].

𝑃2 =

∣

∣

∣

∣

∣

∣

∣

𝑆2

𝑆4

𝑆6

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

𝐸 𝐹 𝐻 𝐼 𝐽

1 1 0 0 0
1 0 1 1 1
0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

, 𝑄2 =

∣

∣

∣

∣

∣

∣

∣

𝑈2

𝑈4

𝑈6

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

𝑐𝑎𝑛𝑐𝑒𝑟 𝑓𝑙𝑢 𝑚𝑒𝑎𝑠.

1 0 1
2 0 2
1 0 1

∣

∣

∣

∣

∣

∣

∣

Similarly with 𝑃2, 𝑄2 possible equivalence attacks include

𝑊 ′
3 = [1, 0,−1] and 𝑊 ′

4 = [1,−1, 1], matching the attacks

identified in Example 6. Note that some columns in 𝑃1 and

𝑃2 are omitted for clarity of presentation, as they are always

0 due to 𝑚-invariance.

Lemma 3. Let 𝑃𝑖 and 𝑄𝑖, 1 ≤ 𝑖 ≤ 𝑀 , be the partitioned

sub-matrices for 𝑆 and 𝑈 respectively. If 𝑆 and 𝑈 follows

𝑚-invariance for some 𝑚 and 𝑀𝑖𝑛 𝐸𝑞𝑖(𝑆,𝑈) ≤ 𝑚, then

we have the following equality: min𝑖 (𝑀𝑖𝑛 𝐸𝑞𝑖(𝑃𝑖, 𝑄𝑖)) =
𝑀𝑖𝑛 𝐸𝑞𝑖(𝑆,𝑈).

Since we enforce 𝑚-invariance, which in its original form

implies the existence of 𝑚-equivalence attacks (any two 𝑚-

tuple partitions with the same signature allows for an 𝑚-

equivalence attack), if we only consider 𝑒-equivalence attacks

with 𝑒 ≤ 𝑚, by Lemma 3 we can partition person/value

vectors in the matrices according to the signatures of their

original partitions, and compute the minimum equivalence

attack individually. This restriction 𝑒 ≤ 𝑚 will be relaxed

to any 𝑒-value in min-cut based anonymization.

Delta Encoding. We publish merged partitions that share

the same signature in one bucket in each snapshot as discussed

in Section IV-A. In each partitioned matrix, we order row

vectors by timestamp, and then use a delta encoding scheme

to facilitate its representation as a graph. Given a person matrix

𝑆 = [𝑆𝑇
1 , 𝑆

𝑇
2 , ..., 𝑆

𝑇
𝑁]𝑇 , we define the recoded person matrix

as 𝑆′ = [𝑆𝑇
1 , 𝑆

𝑇
2 − 𝑆𝑇

1 , ..., 𝑆
𝑇
𝑁 − 𝑆𝑇

𝑁−1]
𝑇 . Similarly given

a value matrix 𝑈 = [𝑈𝑇
1 , 𝑈

𝑇
2 , ..., 𝑈

𝑇
𝑁]𝑇 , the recoded vector

matrix is 𝑈 ′ = [𝑈𝑇
1 , 𝑈

𝑇
2 − 𝑈𝑇

1 , ..., 𝑈
𝑇
𝑁 − 𝑈𝑇

𝑁−1]
𝑇 .

Example 8. 𝑃1 and 𝑄1 in Example 7 are recoded as

𝑃 ′

1
=

∣

∣

∣

∣

∣

∣

∣

𝐴 𝐵 𝐶 𝐷 𝐺 c1
1 1 1 1 0 0
0 −1 0 −1 1 1
0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

, 𝑄′

1
=

∣

∣

∣

∣

∣

∣

∣

𝑐𝑎𝑛𝑐𝑒𝑟 𝑓𝑙𝑢 𝑚𝑒𝑎𝑠.

2 2 0
0 0 0
0 0 0

∣

∣

∣

∣

∣

∣

∣

The same 2-equivalence attack in Example 7 is represented

with 𝑊 ′
1
′ = 𝑊 ′

2
′ = [0, 1, 0]. Similarly with

𝑃 ′

2
=

∣

∣

∣

∣

∣

∣

∣

𝐸 𝐹 𝐻 𝐼 𝐽

1 1 0 0 0
0 −1 1 1 1
−1 0 −1 0 0

∣

∣

∣

∣

∣

∣

∣

, 𝑄′

2
=

∣

∣

∣

∣

∣

∣

∣

𝑐𝑎𝑛𝑐𝑒𝑟 𝑓𝑙𝑢 𝑚𝑒𝑎𝑠.

1 0 1
1 0 1
−1 0 −1

∣

∣

∣

∣

∣

∣

∣

there is a 2-equivalence attack 𝑊 ′′
3 = [0, 1, 1] and a 1-

equivalence attack 𝑊 ′′
4 = [1, 0, 1].

The recoded person matrix can be interpreted as follows.

Each row vector corresponds to a bucket snapshot (merged

partitions with the same signature), and each column repre-

sents a tuple. Additionally, each column now has no more

than two non-zero entries: a “1” entry for the first snapshot

0

w=4�(A,�B,�C,�D)

11

(a) 𝑇1

0

w=2 (G C1)

2

w 2�(G,�C1)

w=2�(A,�C)

1

2

w=2�(B,�D)

1

(b) 𝑇2

0

2

w=2�(G,�C1)

w=2�(A,�C)

1

2

w=2�(B,�D)

31 3

(c) 𝑇3

Fig. 2: graph of 𝑏𝑢𝑐𝑘𝑡1 with sig. {cancer, flu} in Example 9

at which the tuple is inserted, and a “-1” entry indicating the

snapshot at which the tuple is deleted.

Lemma 4. Let 𝑃 ′, 𝑄′ be the recoded sub-matrix of 𝑃 , 𝑄 as

described above. We have the following equality: Min Eqi(𝑃 ′,

𝑄′) = Min Eqi(𝑃 , 𝑄).

This is because if there is a minimum equivalence attack

𝑊 = {𝑤1, 𝑤2, 𝑤3, ..., 𝑤𝑛} for 𝑃 ′, 𝑄′, then 𝑊 ′ = {𝑤1, 𝑤1 +
𝑤2, 𝑤1 + 𝑤2 + 𝑤3, ..., 𝑤1 + .. + 𝑤𝑛} must be the minimum

equivalence attack for 𝑃,𝑄 by adjustment of weight vector.

B. Graph based representation

Algorithm 1 Graph construction

BuildGraph (pMatrix, vMatrix)

add a special node 0

i=1

for each row vector pVector in pMatrix and corresponding

row vector vVector in vMatrix do

add a node i representing the row vector i

for each “1” entry at position c in pVector do

increment the weight of the edge from node i to node

0 (add edge if one does not exist)

end for

for each “-1” entry at position c in pVector do

find node j where the corresponding j-th row vector in

pMatrix has an “1” entry at position c

decrement the weight of the edge from node j to node

0 (remove edge if weight is 0)

increment the weight of the edge from node j to node

i (add edge if one does not exist)

end for

i++

end for

Next the matrices are translated to a graph as by Algo-

rithm 1. A graph is built for each partitioned person matrix

𝑃𝑖, where each row vector 𝑆𝑘 ∈ 𝑃𝑖 will be represented by a

graph node .𝑘 (which maps to a bucket snapshot). For every

vector 𝑆𝑘, if there is a “1” entry, add an edge of weight 1

from node .𝑘 representing 𝑆𝑘 to the special node .0. If there

is a “-1” entry at column 𝑗, find the row vector 𝑆𝑙 in which

0

w=2�(E,�F)

11

(a) 𝑇1

0

w=3 (H I J)

2

w 3�(H,�I,�J)

w=1�(E)

1

2

w=1�(F)

1

(b) 𝑇2

0

w=2 (I J)

2

w 2�(I,�J)

1

2

w=1�(F)

3

w=1�(H)

1
w=1�(E)

3

(c) 𝑇3

Fig. 3: graph of 𝑏𝑢𝑐𝑘𝑡2 with sig. {cancer, meas.} in Example 9

there is a “1” entry at the same column 𝑗 (there has to be

one for the deletion has to happen after insertion), increment

the weight of edge .𝑙 to .𝑘, and decrement weight of edge .𝑙
to .0. In the end, each tuple is represented by an edge that

connects two graph nodes representing the snapshot in which

it is inserted and deleted, with the exception of all tuples not

yet deleted, which are represented by edges from snapshot it

is inserted to .0.

Example 9. In this example we translate the matrix in

Example 8 into graphs. First we translate 𝑃 ′
1 in Example 8,

which corresponds to the first partition in Table IVb, Table Vb

and Table VI, to Figure 2. The special node 0 is initially added

as the first node in the graph. At time 𝑇1, the first row vector

of 𝑃 ′
1 is processed by adding an edge with 𝑤 = 4(𝐴,𝐵,𝐶,𝐷)

from node 1 to node 0, leading to Figure 2a. At 𝑇2, for the

second row vector in 𝑃 ′
1, an edge with 𝑤 = 2(𝐺, 𝑐1) is inserted

from node 2 to node 0. Furthermore, the tuples for Bob and

Ellen are deleted in this snapshot, so we decrement the weight

of edge (1 → 0) by 2 and increment the weight of edge

(1 → 2) by 2, resulting the graph in Figure 2b. At 𝑇3, node 3

is added with no edge modification due to the third, all-zero

person vector in 𝑃 ′
1. Likewise 𝑃 ′

2 can be translated to Figure 3

following the same steps.

In these graphs the equivalence attacks identified in Ex-

ample 8 are marked by the dashed lines. For example, in

Figure 2c, node 2 has a cut with in-edge of weight 2 and

an out-edge of weight 2, suggesting a 2-equivalence attack

{Bob, Dan} ↔ {Greg, 𝑐1}. Similarly, in Figure 3c, collectively

node 2 and node 3 have a cut with an in-edge of weight 2

and out-edge of weight 2, indicating a 2-equivalence attack

{Ellen, Frank} ↔ {Ian, Jane}. In the same graph node 1

and node 3 have a cut with weight 1 in-edge and a weight 1

out-edge, illustrating the minimum-equivalence attack in this

graph {Frank} ↔ {Harry}.

Theorem 2. Let 𝐺 be the graph representation of the person

matrix 𝑆 and value matrix 𝑈 , and 𝐺′ be the undirected version

of graph 𝐺. Let the connected components of 𝐺′ be 𝐺𝑖, let

𝑐𝑖 be the value of the min-cut of component 𝐺𝑖. Let 𝑐 be

the minimum non-zero value among 𝑐𝑖. We have the following

inequality: 2∗ Min Eqi(𝑆, 𝑈) ≥ 𝑐.

Algorithm 2 Graph based min-cut anonymization

Anonymize (bucketSet, graphSet, pMatrixSet, insertion,

deletion, m, e)

for each bucket in bucketSet do

graph ← current graph of the bucket in graphSet

pMatrix ← current person matrix of the bucket in pMa-

trixSet

signature ← the signature of bucket

necessaryInsertionCurrBucket ← AnonymizeBucket

(bucket, graph, insertion, deletion, m, e)

remove necessaryInsertionCurrBucket from insertion;

add counterfeits if needed

end for

bucketize remaining insertion data in insertion using 𝑚-

invariance bucketization

update graph in graphSet for bucket that has new insertions.

This theorem states a necessary condition of an 𝑒-

equivalence attack, that is the min-cut value of connected

components of this graph has to be no greater than 2 ∗ 𝑒
(We give a proof of this fact in the full version of this

paper [11]). On the other hand, in order to anonymize an 𝑒-

equivalence table series, it would be sufficient to ensure that

the min-cut value of connected components is greater than

2 ∗ (𝑒− 1), since then the value of the minimum equivalence

attack Min Eqi(𝑆, 𝑈) has to be greater than 𝑒 − 1, thus

satisfying the 𝑒-equivalence table series requirement.

Algorithm 3 Anonymization for each bucket

AnonymizeBucket(bucket, graph, insertion, deletion, m,e)

deletionCurrBucket ← deletion in this bucket

deletionCurrBucket ← deletionCurrBucket ∪ all counter-

feits tuples in bucket

insertionCurrBucket ← tuples necessary to ensure 𝑚-

invariance

newGraph ← BuildGraph(graph, insertionCurrBucket,

deletionCurrBucket)

while (MinCut(newGraph) ≤ 2 ∗ (𝑒− 1)) do

insertionCurrBucket = insertionCurrBucket ∪ signature

newGraph ← BuildGraph(graph, insertionCurrBucket,

deletionCurrBucket)

end while

update the graph of this bucket to newGraph

return insertionCurrBucket

Our anonymization algorithm produces a 1
𝑚

-value associa-

tion, 𝑒-value equivalence table series as follows. Algorithm 2

(Anonymize) calls Algorithm 3 (AnonymizeBucket) for each

graph translated from a sub-matrix, which corresponds to a

history of bucket snapshots that has all tuples sharing the

same signature. In AnonymizeBucket, all counterfeits in the

current bucket are greedily marked as deleted (to attempt to

reduce the number of counterfeits). We then check the current

tuples in the bucket, to determine the minimal set of tuples

0

w=4�(E,�F,�c2, c3)

11

(a) 𝑇1

0

w=3 (H I J)

2

w 3�(H,�I,�J)

w=1�(E)

1

2

w=3�(F,�c2,�c3)

1

(b) 𝑇2

0

2 (I J)

2

w=2�(I,�J)
w=2�(c4,�c5)

1

2

3

w=1�(H)
w=3�(F,�c2,�c3)

1
w=1�(E)

3

(c) 𝑇3

Fig. 4: graph of 𝑏𝑢𝑐𝑘𝑡2 with sig. {cancer, meas.} in Exam-

ple 10

Owner QIs Disease

Alice 𝑞𝑖1 cancer

Bob 𝑞𝑖2 flu

Chris 𝑞𝑖3 cancer

Dan 𝑞𝑖4 flu

Ellen 𝑞𝑖5 meas.

Frank 𝑞𝑖6 cancer

𝑐2 𝑞𝑖′
2

meas.

𝑐3 𝑞𝑖′
3

cancer

(a) 𝑇1

Owner QIs Disease

Alice 𝑞𝑖1 cancer

Greg 𝑞𝑖7 flu

Chris 𝑞𝑖3 cancer

𝑐1 𝑞𝑖′
1

flu

Ellen 𝑞𝑖5 meas.

Harry 𝑞𝑖8 cancer

Ian 𝑞𝑖9 meas.

Jane 𝑞𝑖10 cancer

(b) 𝑇2

Owner QIs Disease

Alice 𝑞𝑖1 cancer

Greg 𝑞𝑖7 flu

Chris 𝑞𝑖3 cancer

𝑐1 𝑞𝑖′
1

flu

Ian 𝑞𝑖9 meas.

Jane 𝑞𝑖10 cancer

𝑐4 𝑞𝑖′
4

meas.

𝑐5 𝑞𝑖′
5

cancer

(c) 𝑇3

TABLE VII: A 1
2 -value association, 2-value equivalence table

series

necessary to be inserted in order to ensure 1
𝑚

-value association

(by making sure that each sensitive value has equal numbers

of tuples in the bucket, similar to 𝑚-invariance). Next we

check, after applying the deletion and minimal insertion, if

the min-cut value of the new graph will ensure an 𝑒-value

equivalence table series. We can return if the min-cut of the

graph is greater than 2∗ (𝑒−1) (as per Theorem 2); otherwise

we iteratively insert into the bucket a set of 𝑚 tuples whose

sensitive values are exactly the signature (such that 1
𝑚

-value

association is always maintained), until the min-cut value of

the new graph becomes greater than 2∗(𝑒−1), at which point

we stop and return (this is guaranteed to stop by Lemma 5).

In this process whenever there is a need to insert some tuple

that is absent in the global set of inserted tuples we make up a

counterfeit accordingly. After all buckets have been processed,

tuples that remain to be inserted will be bucketized in the same

manner as the bucketization in 𝑚-invariance.

Lemma 5. In AnonymizeBucket procedure, the iterative pro-

cess where a set of 𝑚 tuples is inserted until the min-cut value

of the new graph is greater than 2 ∗ (𝑒− 1) is guaranteed to

stop.

A proof of Lemma 5 can be found in the full version of

this paper [11].

Example 10. We apply this algorithm on our running example,

assuming the privacy requirement is 𝑚 = 2 and 𝑒 = 2. Note

that according to Theorem 2, a sufficient condition for a 2-

value equivalence table series is that the value of the min-cut

of the graph has to be greater than 2 ∗ (2− 1) = 2.

At time 𝑇1, the tuples {Alice, Bob, Chris, Dan} are buck-

etized to the 𝑏𝑢𝑐𝑘𝑒𝑡1 with signature {cancer, flu} by 𝑚-

invariance bucketization (Figure 1 in Example 2), resulting

to the graph in Figure 2a. The min-cut of this graph is 4,

satisfying the equivalence publishing requirement. Similarly

tuples {Ellen, Frank} are placed in 𝑏𝑢𝑐𝑘𝑒𝑡2 with signature

{measles, cancer}, however the min-cut value of the corre-

sponding graph is 2 in Figure 3a. So our algorithm inserts

two more tuples with value {measles, cancer} to increase the

min-cut value. There are no more tuples with value measles

or cancer to be inserted, so we make up two counterfeits 𝑐2,

𝑐3 with values measles and cancer. The new insertion batch

{Ellen, Frank, 𝑐2, 𝑐3} leads to the graph in Figure 4a. This

time the min-cut becomes 4, a sufficient condition that no 1-

equivalence attack is possible.

At 𝑇2, the tuples {Bob, Dan} are deleted from 𝑏𝑢𝑐𝑘𝑒𝑡1,

leaving two tuples with value cancer, which violates the 1
𝑚

-

value association requirement (Figure 1b in Example 2). Given

that there is only one tuple (Greg) with flu to be inserted, we

make another counterfeit 𝑐1 with value flu and insert {Greg,

𝑐1} into 𝑏𝑢𝑐𝑘𝑒𝑡1. The resulting graph is in Figure 2b, which

has min-cut of value 4 and is sufficient. Now in 𝑏𝑢𝑐𝑘𝑒𝑡2, where

tuple Frank was deleted, we also greedily mark {𝑐2, 𝑐3} as

deleted, leaving only one tuple with value measles. Again to

ensure 1
𝑚

-value association, we need to insert at least one

tuple with value cancer, so we insert tuple Harry. However

the min-cut value of the resulting graph is 2, accordingly we

further insert a pair of {cancer, flu} tuples, {Ian, Jane} in

addition to Harry, which gives us Figure 4b. The min-cut

value of this graph is 4, ensuring a 2-equivalence table series.

Observe that in this example, the counterfeits 𝑐2, 𝑐3 that were

previously inserted are successfully removed.

Finally, at 𝑇3, with no insertion and deletion in 𝑏𝑢𝑐𝑘𝑒𝑡1,

we get the graph in Figure 2c. Note that the minimum min-cut

value of all connected components is still 4 (the min-cut of a

single node graph is undefined), so we leave 𝑏𝑢𝑐𝑘𝑒𝑡1 as is.

In 𝑏𝑢𝑐𝑘𝑒𝑡2, the tuples {Ellen, Harry} are deleted, resulting a

graph of min-cut of 2. We insert two counterfeits {𝑐4, 𝑐5} with

values {measles, cancer} given the absence of any insertion

tuples, which boosts the value of min-cut to 4 (Figure 4c). The

resulting table series are shown in Table VII.

VII. EXPERIMENTS

A. Experimental Setup

In our experiments, we used the same data sets as previous

work on 𝑚-invariance [26], namely the two census data sets

OCC and SAL that are downloadable from http://ipums.org.

Each data set contains 600K tuples from American census

data.

OCC data set has a sensitive attribute Occupation, in

addition to four QI attributes, Age, Gender, Education and

Birthplace. SAL has the same set of four QI attributes,

but a different sensitive column Salary. All attribute values

are discrete, and their domain size information is shown in

Table VIII.

attribute Age Gender Education Birthplace Occupation Salary

domain size 79 2 17 57 50 50

TABLE VIII: Attribute domain size of OCC and SAL data

sets

In order to simulate insertion and deletion, we adopt the

same method used in prior work [26], which is to randomly

draw a subset of tuples from the original data set as an

update batch. Specifically, we first randomly select 𝑑 tuples

from the original data set of 𝐷 tuples as the initial batch 𝑇0.

Subsequently, at each time stamp 𝑖, 𝑖 ≥ 1, we randomly delete

𝑟 tuples from 𝑇𝑖−1, while picking 𝑟 tuples from the pool of

remaining data as the insertion batch into 𝑇𝑖−1, for a total of
𝐷−𝑑
𝑟

timestamps. By default 𝑑 is set at 200k, 𝑟 at 20k, which

gives us 𝐷−𝑑
𝑟

= 600𝑘−200𝑘
20𝑘 = 20 snapshots.

In addition, we synthetically generate extremely skewed

update data to “stress test” the algorithms. Since the randomly

chosen insertion/deletion batches are well-behaved in the sense

that the distribution of sensitive values is close to the overall

value distribution of the data pool, it is interesting to see how

the anonymization algorithms behave when the distribution

of sensitive value in update batch becomes very skewed.

We explore the behavior of the anonymization algorithms in

response to the updates of varied skewness. Conceivably the

more skewed the update batch, the more difficult it is to

anonymize and more counterfeits may be necessary.

#�tuples

min+49*s

min+2s

min

min+s

sensitive�value�id1 2 49�…0

Fig. 5: Synthetic data generation

We construct synthetic insertion batches parameterized by a

skewness parameter 𝑠 as follows. First build a linear function

with slope 𝑠 over the domain of natural numbers [0, 𝑁 − 1],
where 𝑁 is the domain size of sensitive values (in our case

50), as the probability mass function as shown in Figure 5.

Then randomly map each sensitive value to [0, 𝑁 − 1], and

populate sensitive values in the update batch according to

the probability mass, i.e., 𝑚𝑖𝑛 number of tuples for the least

frequent sensitive value, and 𝑚𝑖𝑛+49∗𝑠 for the most frequent

one. Note that in order to maintain that the sum of all sensitive

values equal to 𝑟 (the size of the update batch), 𝑚𝑖𝑛 will

be set to appropriate values according to slope 𝑠. We are

able to vary the skewness from no skewness (𝑠 = 0) to

extreme skewness(𝑠 = 15, in which case 𝑚𝑖𝑛 approaches 0).

Note that the mapping from sensitive values to [0, 𝑁 − 1]
is randomly generated each time, creating different skewed

insertion batches. On the other hand, the deletion batches are

randomly drawn from previous snapshot of database. We apply

1000

10000

100000

m
p
ro
m
is
e
d

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20

#
�o
f�
co
m
p
ro
m
is
e
d

time

orig�m�inv�(no�split)

m�inv�(with�split)

(a) SAL data set

1000

10000

100000

m
p
ro
m
is
e
d

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20
#
�o
f�
co
m
p
ro
m
is
e
d

time

orig�m�inv�(no�split)

m�inv�(with�split)

(b) OCC data set

Fig. 6: time vs. # of tuples compromised in 𝑚-invariance

this skewed update stream over both SAL and OCC data sets.

We evaluate both 𝑚-invariance [26] and our 𝑒-equivalence

anonymization algorithm using our implementations of the al-

gorithms in C++. Execution time is reported from experiments

on an Intel Pentium4 3GHz server with 2GB memory running

Linux. The iGraph library [1] is used to compute graph min-

cut. Although we vary privacy parameters, by default we set

𝑚 in 𝑚-invariance to 10, and 𝑒 in 𝑒-equivalence to 5.

B. Experimental Results

Existing Anonymization and Equivalence Attacks. In the

first set of experiments, we show that data can be compromised

by equivalence attacks via partitioned table structures. We first

feed the state of art 𝑚-invariance algorithm [26] and our 𝑒-

equivalence algorithm with the same sequence update batches

randomly generated as described in Section VII-A; and then

we count the number of tuples compromised by 𝑒-equivalence

attacks, with 𝑒 < 5. The result is plotted in Figure 6. The upper

curve in each graph denotes the number of tuples compromised

if the original 𝑚-invariance algorithm is used. Because the

original 𝑚-invariance splits tuples in the same bucket into

fine-granularity partitions, an exhaustive check of equivalence

attacks becomes too computational expensive beyond the fifth

snapshot, where the curve stops and the number of tuples

compromised is already significant. Additionally, we alter the

𝑚-invariance algorithm by not splitting buckets into fine-

granularity partitions and show the number of compromised

tuples in the lower curve. Observe that even in this case the

number of tuples compromised is still significant after 20

updates. In comparison, no tuples will be compromised if our

𝑒-equivalence anonymization is used.

While the more rigorous 𝑒-equivalence anonymization pro-

posed in this work affords protection against equivalence

attacks, one might wonder if the approach causes a loss of

utility. Encouragingly, we found that the cost of utility is

minimal, as measured by the number of counterfeits introduced

and the query error rate.

Number of Counterfeits Injected. Similar to 𝑚-

invariance [26], 𝑒-equivalence may need to use counterfeits

in order to release data conforming to given privacy criteria.

The number of counterfeits is an important metric, with the

intuition that fewer counterfeits is better.

20

25

30

35

u
n
te
rf
e
it
s

e�eqi�e=1

e�eqi�e=3

e�eqi�e=5

m�inv

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

#
�o
f�
co
u
n
te
rf
e
it
s

time

e�eqi�e=1

e�eqi�e=3

e�eqi�e=5

m�inv

(a) SAL data set

15

20

25

30

u
n
te
rf
e
it
s

e�eqi�e=1

e�eqi�e=3

e�eqi�e=5

m�inv

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

#
�o
f�
co
u
n
te
rf
e
it
s

time

e�eqi�e=1

e�eqi�e=3

e�eqi�e=5

m�inv

(b) OCC data set

Fig. 7: time vs. # of counterfeits with random updates

1000

1200
e�eqi�s=15

m�inv�s=15

e�eqi s=12

600

800

1000

1200

u
n
te
rf
e
it
s

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

200

400

600

800

1000

1200

#
�o
f�
co
u
n
te
rf
e
it
s

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

#
�o
f�
co
u
n
te
rf
e
it
s

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

#
�o
f�
co
u
n
te
rf
e
it
s

time

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

#
�o
f�
co
u
n
te
rf
e
it
s

time

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

(a) SAL data set

1000

1200
e�eqi�s=15

m�inv�s=15

e�eqi s=12

600

800

1000

1200

u
n
te
rf
e
it
s

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

200

400

600

800

1000

1200

#
�o
f�
co
u
n
te
rf
e
it
s

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

#
�o
f�
co
u
n
te
rf
e
it
s

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

#
�o
f�
co
u
n
te
rf
e
it
s

time

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

#
�o
f�
co
u
n
te
rf
e
it
s

time

e�eqi�s=15

m�inv�s=15

e�eqi�s=12

m�inv�s=12

e�eqi�s=9

m�inv�s=9

(b) OCC data set

Fig. 8: time vs. # of counterfeits with skewed update

Figure 7 shows the comparison of 𝑒-equivalence and 𝑚-

invariance, with 𝑚 = 10 and various values of 𝑒. While

𝑒-equivalence anonymization uses slightly more counterfeits

than 𝑚-invariance, both only inject a small number of coun-

terfeits (well under 100, which is a very small portion of the

200k tuples concurrently published).

In addition, we “stress-test” the algorithm in face of skewed

updates synthetically generated as described in Section VII-A,

with results reported in Figure 8. When the update batch is

moderately skewed (with skewness 𝑠 < 9), both algorithms

use no counterfeits. As the skewness parameter 𝑠 goes up,

more counterfeits are injected by both algorithms (in order

to make up for the sudden rise/drop of tuples of certain

sensitive value, say “flu”). However, even in the extremely

skewed case (𝑠 = 15, the largest skewness parameter possible

in our data set), the number of counterfeits introduced is

still proportionally insignificant to total number of tuples.

Furthermore, observe that the number of counterfeits used by

𝑒-equivalence is rather close to 𝑚-invariance, again suggesting

that the cost of preventing 𝑒-equivalence attack is insignificant.

Range Query Error Rate. Relative query error rate is

a commonly used method to measure utility [25], [26]. It is

defined as ∣𝑎𝑐𝑡−𝑒𝑠𝑡∣/𝑎𝑐𝑡, where 𝑎𝑐𝑡 and 𝑒𝑠𝑡 are the actual and

estimated count of tuples satisfying the count query, using the

original and anonymized table respectively. Figure 9 compares

the utility of anonymizations produced by 𝑚-invariance (with

Anatomy) and 𝑒-equivalence algorithm (with merged partitions

in addition to Anatomy), using the relative query error rate

of 1000 randomly generated range queries after applying the

0.8

1

1.2

1.4

o
r�
ra
te

e�eqi

m�inv

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.01 0.02 0.05 0.1 0.2 0.5

e
rr
o
r�
ra
te

selectivity

e�eqi

m�inv

(a) SAL data set

0.2

0.25

0.3

0.35

0.4

o
r�
ra
te

e�eqi

m�inv

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.01 0.02 0.05 0.1 0.2 0.5

e
rr
o
r�
ra
te

selectivity

e�eqi

m�inv

(b) OCC data set

Fig. 9: selectivity vs. error rate

18

19

20
e�eqi

m�inv

15

16

17

18

19

20

e
�(
se
c)

e�eqi

m�inv

12

13

14

15

16

17

18

19

20

ti
m
e
�(
se
c)

e�eqi

m�inv

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5

ti
m
e
�(
se
c)

e�eqi

m�inv

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5

ti
m
e
�(
se
c)

e

e�eqi

m�inv

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5

ti
m
e
�(
se
c)

e

e�eqi

m�inv

(a) SAL data set

18

19

20
e�eqi

m�inv

15

16

17

18

19

20

e
�(
se
c)

e�eqi

m�inv

12

13

14

15

16

17

18

19

20

ti
m
e
�(
se
c)

e�eqi

m�inv

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5

ti
m
e
�(
se
c)

e�eqi

m�inv

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5

ti
m
e
�(
se
c)

e

e�eqi

m�inv

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5

ti
m
e
�(
se
c)

e

e�eqi

m�inv

(b) OCC data set

Fig. 10: elapsed time vs. 𝑒

sequence of updates randomly drawn from the original data

set. While the error rate goes up for more selective queries,

the differences between 𝑚-invariance and 𝑒-equivalence are

not significant. Similarly, the difference in error rate is also

negligible when skewed updates are used. This is encouraging,

for it indicates that our graph min-cut based anonymization

algorithm can protect the new type of equivalence attack with

virtually no additional utility penalty over the previous state-

of-art 𝑚-invariance anonymization.

Execution Time. Figure 10 compares the execution time

for anonymization for 𝑚-invariance with our 𝑒-equivalence

anonymization. The 𝑒-equivalence anonymization runs slightly

slower than 𝑚-invariance due to the overhead of the graph

min-cut computation.

VIII. CONCLUSIONS

In this paper we studied a new type of adversarial attack,

equivalence attacks, that arises in anonymizing dynamic data

sets. We propose a graph-based anonymization algorithm to

protect against such attacks. Our experimental studies show

that this new algorithm addresses equivalence attacks effi-

ciently and effectively, and can be applied to anonymizing

a dynamic data set.

There are several directions in which this work can be

extended. First, while we have greatly reduced the storage and

computation overhead by capturing the structural information

embedded in the released table series using graphs, it would be

interesting to explore the possibilities of developing a graph

reduction algorithm that can further reduce the size of the

graph that needs to be maintained. Second, this work, like

most existing work that focuses on syntactic anonymization,

is susceptible to certain types of adversarial attacks like

minimality attack [24] and deFinetti attack [15]. Extending the

current work to address such weakness would be interesting

future work.

REFERENCES

[1] The igraph library: http://igraph.sourceforge.net/.
[2] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar.

Privacy, accuracy, and consistency too: a holistic solution to contingency
table release. In Proc. of PODS, 2007.

[3] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Privacy
in dynamic social networks. In Proc. of WWW, 2010.

[4] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The
SuLQ framework. In PODS, 2005.

[5] Y. Bu, A. Fu, R. Wong, L. Chen, and J. Li. Privacy preserving serial
data publishing by role composition. In Proc of VLDB, 2008.

[6] J. Byun, T. Li, E. Bertino, N. Li, and Y. Sohn. Privacy-preserving
incremental data dissemination. In Journal of Computer Security, 2009.

[7] J. Byun, Y. Sohn, E. Bertino, and N. Li. Secure anonymization for
incremental datasets. In SDM, 2006.

[8] C. Dwork, F. McSherry, and K. Talwar. The price of privacy and the
limits of LP decoding. In Symposium on Theory of Computing, 2007.

[9] B. Fung, K. Wang, A. Fu, and J. Pei. Anonymity for continuous data
publishing. In EDBT, 2008.

[10] M. Goetz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke.
Privacy in search logs. In CoRR abs/0904.0682, 2009.

[11] Y. He, S. Barman, and J. Naughton. Preventing equivalence attack
in updated anonymized data. Manuscript http://cs.wisc.edu/∼heyeye/
EquivalenceAttack.pdf.

[12] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino. Private record
matching using differential privacy. In Proc. of EDBT, 2010.

[13] X. Jin, M. Zhang, N. Zhang, and G. Das. Versatile publishing for privacy
preservation. In Proc. of SIGKDD, 2010.

[14] X. Jin, N. Zhang, and G. Das. Algorithm-safe privacy-preserving data
publishing. In Proc. of EDBT, 2010.

[15] D. Kifer. Attacks on privacy and deFinetti’s theorem. In Proc. of

SIGMOD, 2009.
[16] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam.

l-diversity: Privacy beyond k-anonymity. In Proc. of ICDE, 2006.
[17] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and L. Vilhuber.

Privacy: Theory meets practice on the map. In Proc. of ICDE, 2008.
[18] F. McSherry. Privacy integrated queries: an extensible platform for

privacy-preserving data analysis. In Proc. of SIGMOD, 2009.
[19] J. Pei, J. Xu, Z. Wang, W. Wang, and K. Wang. Maintaining k-anonymity

against incremental updates. In SSDBM, 2007.
[20] Y. Tao, X. Xiao, J. Li, and D. Zhang. On anti-corruption privacy

preserving publication. In Proc. of ICDE, 2008.
[21] H. W. Wang and R. Liu. Hiding distinguished ones into crowd: privacy-

preserving publishing data with outliers. In Proc. of EDBT, 2009.
[22] K. Wang and B. Fung. Anonymizing sequential releases. In Proc. of

SIGKDD, 2006.
[23] R. C.-W. Wong, A. W.-C. Fu, J. Liu, K. Wang, and Y. Xu. Global

privacy guarantee in serial data publishing. In Proc. of ICDE, 2010.
[24] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack

in privacy preserving data publishing. In Proc. of VLDB, 2007.
[25] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy preservation.

In Proc. of ACM SIGMOD, 2007.
[26] X. Xiao and Y. Tao. m-invariance: Towards privacy preserving re-

publication of dynamic datasets. In Proc. of SIGMOD, 2007.
[27] X. Xiao and Y. Tao. Dynamic anonymization: Accurate statistical

analysis with privacy preservation. In Proc. of SIGMOD, 2008.
[28] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet

transforms. In ICDE, 2010.
[29] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate query

answering on anonymized tables. In Proc. of ICDE, 2007.
[30] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia. Continuous privacy

preserving publishing of data streams. In EDBT, 2009.

