
© 2009, Leffingwell, LLC. All Rights Reserved.     

 

1 

 

 

Leffingwell, LLC. 

 

 

A User Story Primer 

 

 

 

By Dean Leffingwell  

  with Pete Behrens 

 

Abstract:  

In this whitepaper, we provide an overview on the derivation and application of user stories, which are 

the primary agile mechanism that carries customer’s requirements through the agile software 

development value stream. In turn, user stories are a critical element of the Lean and Scalable 

Requirements Information Model for Agile Enterprises and The Big Picture of Enterprise Agility, both of 

which may be found on the blog http://scalingsoftwareagility.wordpress.com/. This paper is extracted 

from the forthcoming book Agile Requirements: Lean Requirements Practices for Teams, Programs and 

the Enterprise, scheduled for publication in 2010. A special thanks to Jennifer Fawcett and Don Widrig 

for their contributions as well. 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

2 

 

Contents 

Introduction .......................................................................................................................................... 3 

User Story Overview.......................................................................................................................... 3 

User Stories Help Bridge the Developer – Customer Communication Gap ...................................... 4 

User Stories Are Not Requirements .................................................................................................. 4 

User Story Form .................................................................................................................................... 5 

Card, Conversation and Confirmation............................................................................................... 5 

User Story Voice ................................................................................................................................ 5 

User Story Detail ............................................................................................................................... 6 

User Story Acceptance Criteria ......................................................................................................... 6 

INVEST in Good User Stories ................................................................................................................. 7 

Independent...................................................................................................................................... 7 

Negotiable... and Negotiated ............................................................................................................ 8 

Valuable ............................................................................................................................................ 8 

Estimable........................................................................................................................................... 9 

Small.................................................................................................................................................. 9 

Testable........................................................................................................................................... 11 

Splitting User Stories ........................................................................................................................... 11 

Spikes .................................................................................................................................................. 14 

Guidelines for Spikes ....................................................................................................................... 14 

Story Modeling with Index Cards ........................................................................................................ 15 

Summary ............................................................................................................................................. 16 

 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

3 

 

A User Story Primer 

They have been at a great feast of languages, and stol'n the scraps. 

   -- Moth to Costard, Love's Labor's Lost, Act 5, scene 1, William Shakespeare 

 

Introduction 

In agile development, the user story is a lightweight and more nimble substitute for what has been our 

traditional means of specifying software requirements - software requirements specifications, use case 

specifications, and the like. Indeed, an argument can be made that the user story is the most important 

artifact in agile development, because it is the container that primarily carries the value stream to the user, 

and agile development is all about rapid value delivery. 

The user story also serves as a metaphor for our entire, incremental-value-delivery approach, i.e.:  

Define a valuable user value story – implement and test it in a short iteration - demonstrate/and or deliver 

it to the user – capture feedback – learn – repeat forever! 

I’ve discussed user stories briefly in the context of my broader whitepapers, A Lean and Scalable 

Requirements Information Model for Agile Enterprises and The Big Picture of Enterprise Agility
1
, where , 

along with themes, epics, and features, they are primary requirement artifacts used by the agile teams. 

In this whitepaper, we’ll describe the user story in more detail, because it is here we will find one of the 

key agile practices that help us to align our solution directly to the user’s specific needs, and help assure 

quality at the same time.  

User Story Overview 

In the referenced whitepapers and the related blog series, I’ve highlighted many of the contributions of 

the Scrum model to enterprise agile practices, noting for example, the definition of the product owner 

role, which is integral to our requirements practices. But it is to XP that we owe the invention of the user 

story, and it is the proponents of XP that have developed the breadth and depth of this artifact. However, 

this is less of a “methodological fork in the road” than it might appear, as user stories are now routinely 

taught within the constructs of Scrum training as a tool for building product backlogs and defining Sprint 

content. Perhaps we have Mike Cohn to thank for much of this integration, as he has developed user 

stories extensively in his book User Stories Applied [Cohn 2004], and he has been very active in the 

Scrum Alliance as well.  

For our purposes, we’ll define a user story simply as: 

A User Story is a brief statement of intent that describes something the system needs to do for the user. 

In XP, user stories are often written by the customer, thus integrating the customer directly in the 

development process. In Scrum, the product owner often writes the user stories, with input from the 

                                                           
1 www.scalingsoftwareagility.wordpress.com 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

4 

customers, stakeholders, and the team. However, in actual practice, any team member with sufficient 

domain knowledge can write user stories, but it is up to the product owner to accept and prioritize these 

potential stories into the product backlog.  

User stories are a tool for defining a system’s behavior in a way that is understandable to both the 

developers and users. User stories focus the work on the value defined by the user rather than a functional 

breakdown structure, which is the way work has traditionally been tasked. They provide a lightweight and 

effective approach to managing requirements for a system. 

A user story captures a short statement of function on an index card, or perhaps with an online tool.  

Examples:  

Log in to my web energy-monitoring portal 

See my daily energy usage 

Check my current electricity billing rate 

Details of system behavior do not appear in the brief statement, and are left to be developed later through 

conversations and acceptance criteria between the team and the product owner.  

User Stories Help Bridge the Developer – Customer Communication Gap 

In agile development, it is the developer’s job to speak the language of the user, not the user’s job to 

speak the language of technology. Effective communication is the key, and we need a common language. 

The user story provides the common language to build understanding between the user and the technical 

team. 

Bill Wake, one of the creators of XP, describes it this way
2
: 

A pidgin language is a simplified language, usually used for trade, that allows people who can't 

communicate in their native language to nonetheless work together. User stories act like this. We don't 

expect customers or users to view the system the same way that programmers do; stories act as a pidgin 

language where both sides can agree enough to work together effectively. 

With user stories, we don’t have to understand each other’s language with the degree of proficiency 

necessary to craft a sonnet; we just need to understand each other enough to know when we have struck a 

proper bargain! 

User Stories Are Not Requirements 

While user stories do most of the work previously done by software requirements specifications, use 

cases, and the like, they are materially different in a number of subtle, yet critical ways. 

• They are not detailed requirements specifications (something a system shall do) but are 

rather negotiable expressions of intent (it needs to do something about like this) 

• They are short and easy to read, understandable to developers, stakeholders, and users 

• They represent small increments of valued functionality, that can be developed in a 

period of days to weeks 

• They are relatively easy to estimate, so effort to implement the functionality can be 

rapidly determined 

• They are not carried in large, unwieldy documents, but rather organized in lists that can 

be more easily arranged and re-arranged as new information is discovered  

• They are not detailed at the outset of the project, but are elaborated on a just-in-time basis 

– thereby avoiding too-early specificity, delays in development, requirements inventory, 

and an over-constrained statement of the solution 

                                                           
2 http://xp123.com/xplor/xp0308/index.shtml 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

5 

• They need little or no maintenance and can be safely discarded after implementation
3
  

• User stories, and the code that is created quickly thereafter, serve as inputs to 

documentation, which is then developed incrementally as well 

User Story Form 

Card, Conversation and Confirmation 

Ron Jeffries, another of the creators of XP, described what has become our favorite way to think about 

user stories. He used the alliteration, Card, Conversation, and Confirmation
4
 to describe the three 

elements of a user story. Where: 

Card represents 2-3 sentences used to describe the intent of the story. The card serves as a memorable 

token, which summarizes intent and represents a more detailed requirement, whose details remain to be 

determined. 

Note: In XP and agile, stories are often written manually on 

physical index cards. More typically in the enterprise, the 

“card” element is captured as text and attachments in a 

spreadsheet or agile project management tooling, but teams 

often still use cards for early planning and brainstorming, as 

we will see later. 

Conversation represents a discussion between the team, customer, 

product owner, and other stakeholders, which is necessary to 

determine the more detailed behavior required to implement the intent. 

In other words, the card also represents a “promise for a conversation” 

about the intent. 

Confirmation represents the Acceptance Test, which is how the 

customer or product owner will confirm that the story has been 

implemented to their satisfaction. In other words, Confirmation 

represents the conditions of satisfaction that will be applied to 

determine whether or not the story fulfills the intent as well as the 

more detailed requirements.  

With this simple alliteration, we have an object lesson in how quality in agile is achieved during, rather 

than after, actual code development. We do that by simply making sure that every new user story is 

a) discussed and refined in whatever detail is necessary, and b) is tested to the satisfaction of the key 

stakeholders.  

User Story Voice  

In the last few years, a new, standardized, form has been applied which strengthens the user story 

construct significantly. The form is as follows: 

As a <role> I can <activity> so that <business value> 

where: 

• Role – represents who is performing the action or perhaps one who is receiving the value 

from the activity. It may even be another system, if that is what is initiating the activity. 

                                                           
3 Subject to the development and persistence of acceptance tests, which define the behavior of the system in regression-testable 

detail 
4
 http://xprogramming.com/xpmag/expcardconversationconfirmation/ 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

6 

• Activity – represents the action to be performed by the system.  

• Business Value – represents the value to the business. 

We call this the “user voice” form of user story expression and find it an exceedingly useful construct
5
 

because it spans the problem space (<business value> delivered) and the solution space (<activity> the 

user performs with the system). It also provides a user-first (<role>) perspective to the team, which keeps 

them focused on business value and solving real problems for real people. 

This user story form greatly enhances the why and how understanding that developers need to implement 

a system that truly meets the needs of the users.  

For example a user of a home energy management system might want to:
6
  

As a Consumer, (<role>) I want to be able to see my daily energy usage (<what I do with the system>) 

so that I can start to understand how to lower my costs over time (<business value I receive>)”. 

Each element provides important, expansionary, context. The role allows a segmentation of the product 

functionality and typically draws out other role-based needs and context for the activity. The activity 

typically represents the ‘requirement’ needed by the role. And the value communicates why the activity is 

needed, which can often lead the team to finding possible alternative activities that could provide the 

same value for less effort. 

User Story Detail 

The details for user stories are conveyed primarily through conversation between the product owner and 

the team, keeping the team involved from the outset. However, if more details are needed about the story, 

they can be provided in the form of an attachment (mockup, spreadsheet, algorithm, or whatever), which 

is attached to the user story. In that case, the user story serves as the “token” which also carries the more 

specific behavior to the team. The additional user story detail should be collected over time (just-in-time) 

through discussions and collaboration with the team and other stakeholders before and during 

development. 

User Story Acceptance Criteria 

In addition to the statement of the user story, additional notes, assumptions, and acceptance criteria can be 

kept with a user story. Many discussions about a story between the team and customers will likely take 

place before and during the time the story is committed to code. The alternate flows in the activity, 

acceptance boundaries, and other clarifications should be captured along with the story. Many of these 

can be turned into acceptance test cases, or other functional test cases, for the story. 

For example,  

As a Consumer, I want to be able to see my daily energy usage so that I can start to understand how 

to lower my costs over time  

Acceptance Criteria: 

• Read DecaWatt meter data every 10 seconds and display on portal in 15 minute increments 

and display on in-home display every read 

• Read KiloWatt meters for new data as available and display on the portal every hour and on 

the in-home display after every read 

• No multi-day trending for now (another story). 

• Etc… 

                                                           
5 While looking for the origin of this form, I received the following note from Mike Cohn: “It started with a team at Connextra in 

London and was mentioned at XP2003. I started using it then and wrote about it in my 2004 book, User Stories Applied.  
6
 Thanks to Jennifer Fawcett of Tendril Networks for providing these examples  



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

7 

Acceptance Criteria are not functional or unit tests, rather they are the conditions of satisfaction being 

placed on the system. Functional and unit tests go much deeper in testing all functional flows, exception 

flows, boundary conditions, and related functionality associated with the story.  

INVEST in Good User Stories 

Agile teams spend a significant amount of time (perhaps as much as half or more) in discovering, 

elaborating, and understanding user stories and writing acceptance tests for them. This is as it should be, 

because it represents the fact that:  

Writing the code for an understood objective is not necessarily the hardest part of software development, 

rather it is understanding what the real objective for the code is.  

Therefore, investing in good user stories, albeit at the last responsible moment, is a worthy effort for the 

team. Bill Wake, coined the acronym INVEST
7
, to describe the attributes of a good user story.  

Independent 

Negotiable 

Verifiable 

Estimable 

Small 

Testable 

The INVEST model is fairly ubiquitous and many agile teams evaluate their stories with respect to these 

attributes. Here’s our view of the value of the team’s INVESTment. 

Independent 

Independence means that a story can be developed, tested, and potentially even delivered, on its own. 

Therefore, it can also be independently Valued. 

Many stories will have some natural, sequential dependencies as the product functionality builds, and yet 

each piece can deliver value independently. For example, a product might display a single record, then a 

list, then sort the list, filter the list, prepare a multi-page list, export the list, edit items in the list, etc. 

Many of these items have sequential dependencies, yet each item provides independent value and the 

product can be potentially shipped through any stopping point of development. 

However, many non-valued dependencies, either technical or functional, also tend to find their way into 

backlogs and these we need to find and eliminate. For example, a non-valued functional dependency 

might be: 

As an administrator, I can set the consumer’s password security rules so that users are required to 

create and retain secure passwords, keeping the system secure. 

As a consumer, I am required to follow the password security rules set by the administrator so that I 

can maintain high security to my account. 

In this example, the consumer story depends on the administrator story. The administrator story is only 

testable in setting, clearing, and preserving the policy; but it is not testable as enforced on the consumer. 

                                                           
7 Bill Wake. www.XP123.org. 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

8 

In addition, completing the administrator story does not leave the product in a potentially shippable state 

– therefore, not independently valuable. 

By reconsidering the stories, (and the design of the system) we can remove the dependency by splitting 

the stories in a different manner – in this case through the types of security policies applied and by 

combining the setup with enforcement in each story:  

As an Administrator, I can set the password expiration period so that users are forced to change 

their passwords periodically. 

As an Administrator, I can set the password strength characteristics so that users are required to 

create difficult to hack passwords. 

Now, each story can stand on its own, and can be developed, tested, and delivered independently. 

Negotiable... and Negotiated 

Unlike traditional requirements, a user story is not a contract for specific functionality, but rather a 

placeholder for requirements to be discussed, developed, tested, and accepted. This process of negotiation 

between the business and the team recognizes the legitimacy and primacy of the business inputs, but 

allows for discovery through collaboration and feedback. 

In our prior, silo’ed organizations, written requirements were generally required to facilitate the limited 

communication bandwidth between departments and to serve as a record of past agreements. Agile, 

however, is founded on the concept that a team-based approach is more effective at solving problems in a 

dynamic collaborative environment. A user story is real-time and structured to leverage this effective and 

direct communication and collaboration approach.  

Finally, the negotiability of user stories helps teams achieve predictability. The lack of overly 

constraining and too-detailed requirements enhances the teams and businesses ability to make tradeoffs 

between functionality and delivery dates. Because each story has flexibility, the team has more flexibility 

to meet release objectives, which increases dependability and fosters trust. 

Valuable 

An agile team’s goal is simple: to deliver the most value given their existing time and resource 

constraints. Therefore, Value is the most important attribute in the INVEST model and every user story 

must provide some value to the user, customer, or stakeholder of the product. Backlogs are prioritized by 

value and businesses succeed or fail based on the value the teams can deliver.  

A typical challenge facing teams is learning how to write small, incremental, user stories that can 

effectively deliver value. Traditional approaches have ingrained us to create functional breakdown 

structures based on technical components. This technical layering approach to building software delays 

the value delivery until all of the layers are brought together after multiple iterations. Wake
8
 provides his 

perspective of vertical, rather than technical, layering. 

Think of a whole story as a multi-layer cake, e.g., a network layer, a persistence layer, a logic 

layer, and a presentation layer. When we split a story [horizontally], we're serving up only part 

of that cake. We want to give the customer the essence of the whole cake, and the best way is to 

slice vertically through the layers. Developers often have an inclination to work on only one layer 

at a time (and get it "right"); but a full database layer (for example) has little value to the 

customer if there's no presentation layer. 

Creating valuable stories requires us to re-orient our functional breakdown structures from a horizontal to 

a vertical approach. We create stories that slice through the architecture so that we can present value to 

the user and seek their feedback as early and often as possible.  

                                                           
8
 ibid 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

9 

While normally the value is focused on the user interacting with the system, sometimes the value is more 

appropriately focused on a customer representative or key stakeholder. For example, perhaps a Marketing 

Director is requesting a higher click-thru rate on ads presented on the website. While the story could be 

written from the perspective of the end-user: 

As a consumer, I can see other energy pricing programs that appeal to me so that I can enroll in a 

program that better suits my lifestyle 

…to provider a clearer perspective on the real value, it would be more appropriately written from the 

Marketing Director’s perspective: 

As a utility Marketing Director, I can present users with new pricing programs so that they are more 

likely to continue purchasing energy from me. 

Another challenge faced by teams is to articulate value from technical stories such as code refactoring, 

component upgrades, etc. For example, how would the product owner determine the value of: 

Refactor the error logging system. 

Articulating the value of a technical solution as a user story will help communicate to the business its 

relative importance. For example: 

As a consumer, I can receive a consistent and clear error message anywhere in the product so that I 

know how to address the issue.  OR 

As a technical support member, I want the user to receive a consistent and clear message anywhere in 

the application so they can fix the issue without calling support. 

In these latter examples, the value is clear to the user – to the product owner – stakeholders – and to the 

team. 

Estimable 

A good user story is estimable. While a story of any size can be in the backlog, in order for it to be 

developed and tested in an iteration, the team should be able to provide an approximate estimation of its 

complexity and amount of work required to complete it. The minimal investment in estimation is to 

determine if it can be completed within a single iteration. Additional estimation accuracy will increase the 

team’s predictability. 

If the team is unable to estimate a user story, it generally indicates that the story is too large or uncertain. 

If it is too large to estimate, it should be split into smaller stories. If the story is too uncertain to estimate, 

then a technical or functional spike story can be used to reduce uncertainty, so that one or more estimable 

user stories result. (Each of these topics is discussed in more detail in the following sections). 

One of the primary benefits of estimating user stories is not simply to derive a precise size, but rather to 

draw out any hidden assumptions, missing acceptance criteria, and to clarify the team’s shared 

understanding of the story. Thus, the conversation surrounding the estimation process is as (or more) 

important, than the actual estimate. The ability to estimate a user story is highly influenced by the size of 

the story, as we’ll see next. 

Small 

User stories should be small enough to be able to be completed in an iteration, otherwise they can’t 

provide any value or be considered done at that point. However, even smaller user stories provide more 

agility and productivity. There are two primary reasons for this: increased throughput and decreased 

complexity.  



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

10 

Increased Throughput 

From queuing theory, we know that smaller batch sizes go through a system faster. This is one of the 

primary principles of lean flow and is captured in Little’s law: 

  

In a stable system (where throughput, the amount of work that can be done in a unit time, is constant), we 

have to decrease work in process (the amount of things we are working on) in order to decrease cycle 

time (the time elapsed between the beginning and end of the process). In our case, that means fewer, 

smaller stories in process will come out faster.  

Moreover, when a system is loaded to capacity, it can become unstable, and the problem is compounded. 

In heavily loaded systems, larger batches move disproportionately slower (throughput decreases) through 

the system. (Think of a highway system at rush hour. A motorcycle has a much higher throughput than do 

cars and trucks. There is more space to maneuver smaller things through a loaded system.) Because 

development teams are typically fully allocated at or above capacity (80-120%), they fall in the “rush 

hour” highway category.  

When capacity hits 80% or so, larger objects increase cycle time (slow down) much more than smaller 

objects. Worse, the variation in cycle time increases, meaning that it becomes harder to predict when a 

batch might actually exit the system, as can be seen in Figure 1 below
9
. In turn, this lower predictability 

wreaks havoc with schedules, commitments, and the credibility of the team. 

 

Figure 1  Large batches have lower cycle times and higher cycle time variability 

Decreased Complexity 

Smaller stories not only go through faster because of their raw, proportional size, but they go through 

faster yet because of their decreased complexity, and complexity has a non-linear relationship to size. 

This is seen most readily in testing where the permutations of tests required to validate the functionality 

increase at an exponential rate with the complexity of the function itself. This correlates to the advice we 

receive about developing clean code, as Robert Martin 
 
[Martin 2009] notes on his rules for writing 

software functions:  

Rule 1: Do one thing 

Rule 2: Keep them small 

                                                           
9 Source: [Poppendieck 2007].

 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

11 

Rule 3: Make them smaller than that 

This is one of the primary reasons that the Fibonacci estimating sequence (i.e. 1,2,3,5,8,13,21…) is so 

effective in estimating user stories – the effort estimate grows nonlinearly with increasing story size.  

On the Relationship of Size and Independence 

A fair question arises as to the relationship between size and independency, as it seems logical that 

smaller stories increase the number of dependencies. However, smaller stories, even with some increased 

dependency, deliver higher value throughput and provide faster user feedback than larger stories. So the 

agilist always leans to smaller stories, and then makes them smaller still. 

Testable 

In properly done agile, all code is tested code, so it follows that stories must be testable. If a story does 

not appear to be testable, then the story is probably ill formed, overly complex, or perhaps dependent on 

other stories in the backlog.  

To assure that stories don’t get into an iteration if they can’t get out, (be successfully tested) many agile 

teams today take a write-the-test-first approach. This started in the XP community using Test Driven 

Development, a practice of writing automated unit tests prior to writing the code to pass the test.  

Since then, this philosophy of approach is being applied to development of story acceptance criteria and 

the necessary functional tests prior to coding the story itself. If a team really knows how to test it, then 

they likely know how to code it as well.  

In order to assure testability, user stories share some common testability pitfalls with requirements. Vague 

words such as quickly, manage, nice, clean, etc. are easy to write, but very difficult to test because they 

mean different things to different people, and therefore should be avoided. And while these words do 

provide negotiability, framing them with some clear boundaries will help the team and the business share 

expectations of the output and avoid big surprises.  

Splitting User Stories 

A user story generally starts out as a feature or an epic – a large, vague concept 

of something we want to do for a user. We often find these big value stories 

during our discovery process and capture them in the backlog. However, these 

are compound stories, as pictured on the right, and are usually far too big to be 

implemented within an iteration. In order to prepare the work for iterations, a 

team must break them down into smaller stories.  

There is no set routine for splitting user stories into iteration-sized bites, other 

than the general guidance to make each story provide a vertical slice, some piece 

of user value, through the system. However, based on some recent work by 

Richard Lawrence, we recommend applying an appropriate selection of ten 

common patterns to split a user story, as Table 1 indicates
10

 : 

                                                           
10
 Adapted from Richard Lawrence, http://www.richardlawrence.info/2009/10/28/patterns-for-splitting-user-stories/. 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

12 

 

1. Workflow Steps 

Identify specific steps that a user takes to accomplish a specific workflow and then implement the 

workflow in incremental stages. 

As a utility, I want to update and publish 

pricing programs to my customer 

...I can publish pricing programs to the customers 

In-Home Display 

...I can send a message to the customer’s web 

portal 

...I can publish the pricing table to a customer’s 

smart thermostat 

2. Business Rule Variations 

At first glance, some stories seem fairly simple. However, sometimes the business rules are more complex 

or extensive than the first glance revealed. In this case, it might be useful to break the story into several 

stories to handle the business rule complexity. 

As a utility, I can sort customers by 

different demographics 

...sort by zip code 

...sort by home demographics 

...sort by energy consumption 

3. Major Effort 

Sometimes a story can be split into several parts where most of the effort will go towards implementing the 

first one. In the example shown below, processing infrastructure should be built to support the first story; 

adding more functionality should be relatively trivial later on.  

As a user, I want to be able to select/change 

my pricing program with my utility through 

my web portal 

...I want to use Time-of-Use pricing 

...I want to Pre-pay for my energy 

…I want to enroll in Critical-Peak-Pricing 

4. Simple/Complex 

When the team is discussing a story, and the story seems to be getting larger and larger (“what about x? - 

have you considered y?”), stop and ask “what’s the simplest that can possibly work?” Capture that simple 

version as its own story, and then break out all the variations and complexities into their own stories.  

As a user, I basically want a fixed price, but 

I also want to be notified of Critical-Peak-

Pricing events. 

...respond to the time and the duration of the 

critical peak pricing event 

...respond to emergency events 

5. Variations in Data 

Data variations and data sources are another source of scope and complexity. Consider adding stories just-

in-time after building the simplest version. A localization example is shown here. 

As a utility, I can send messages to 

customers 

...in English. 

...in Spanish 

...in Arabic., etc. 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

13 

6. Data Entry Methods 

Sometimes complexity is in the user interface rather than the functionality itself. In that case, split the story 

to build it with the simplest possible UI and then build the richer UI later. 

As a user, I can view my energy consumption 

in various graphs 

...using bar charts that compare weekly 

consumption 

...in a comparison chart, so I can compare my 

usage to those who have the same or similar 

household demographics 

7. Defer System Qualities 

Sometimes, the initial implementation isn’t all that hard and the major part of the effort is in making it fast 

– or reliable – or more precise – or more scalable. However, the team can learn a lot from the base 

implementation and it should have some value to a user, who wouldn’t otherwise be able to do it all. In this 

case, break the story into successive “ilities”. 

As a user, I want to see real-time 

consumption from my meter 

...interpolate data from the last known reading 

...display real time data from the meter  

8. Operations (example: Create Read Update Delete (CRUD)) 

Words like manage or control are a giveaway that the story covers multiple operations, which can offer a 

natural way to split the story. 

As a user, I can manage my account. ...I can sign up for an account. 

...I can edit my account settings. 

...I can cancel my account. 

…I can add more devices to my account 

9. Use Case Scenarios 

If use cases have been developed to represent complex user-to-system or system-to-system interaction, then 

the story can often be split according to the individual scenarios of the use case. 

“I want to enroll in the energy savings 

program through a retail distributor.” 

Use Case/Story #1 (happy path): Notify utility that 

consumer has equipment 

Use Case/Story #2: Utility provisions equipment and 

data, notifies consumer 

Use Case/Story #3 (alternate scenario): Handle data 

validation errors 

10. Break Out a Spike 

In some cases, a story may be too large or overly complex, or perhaps the implementation is poorly 

understood. In that case, build a technical or functional spike to figure it out; then split the stories based on 

that result. (See Spikes in the following section). 

Table 1  Ten patterns for splitting a user story 

When splitting stories, the team should use an appropriate combination of the above techniques to 

consider means of decomposition or multiple patterns in combination. With this skill, the team will be 

able to move forward at a more rapid pace, splitting user stories at release and iteration planning 

boundaries into bite-sized chunks for implementation.  



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

14 

Spikes 

Spikes, another invention of XP, are a special type of story that is used to drive out risk and uncertainty in 

a user story or other project facet. Spikes may be used for a number of reasons: 

1. The team may not have knowledge of a new domain, and spikes may be used for basic 

research to familiarize the team with a new technology or domain. 

2. The story may be too big to be estimated appropriately, and the team may use a spike to 

analyze the implied behavior, so they can split the story into estimable pieces. 

3. The story may contain significant technical risk, and the team may have to do some 

research or prototyping to gain confidence in a technological approach that will allow 

them to commit the user story to some future timebox. 

4. The story may contain significant functional risk, in that while the intent of the story may 

be understood, it’s not clear how to the system needs to interact with the user to achieve 

the benefit implied. 

Technical Spikes and Functional Spikes 

Technical spikes are used to research various technical approaches in the solution 

domain. For example, a technical spike may be used to determine a build vs. buy 

decision, evaluation of potential performance or load impact of a new user story, 

evaluation of specific implementation technologies that can be applied to a solution, 

or for any reason when the team needs to develop a more confident understanding of 

a desired approach before committing new functionality to a timebox. 

Functional spikes are used whenever there is significant uncertainty as to how a user 

might interact with the system. Functional spikes are often best evaluated through 

some level of prototyping, whether it be user interface mockups, wireframes, page 

flows, or whatever techniques is best suited to get feedback from the customer or 

stakeholders. Some user stories may require both types of spikes. For example: 

As a consumer, I want to see my daily energy use in a histogram, so that I can quickly understand my 

past, current, and likely near term, future energy consumption.  

In this case, a team might create two spikes:  

Technical Spike: Research how long it takes to update a customer display to current usage, 

determining communication requirements, bandwidth, and whether to push or pull the data. 

Functional Spike: Prototype a histogram in the web portal and get some user feedback on presentation 

size, style, and charting attributes. 

Guidelines for Spikes 

Estimable, Demonstrable, and Acceptable 

Like other stories, spikes are put in the backlog, estimable and sized to fit in an iteration. Spike results are 

different from a story, as they generally produce information, rather than working code. A spike may 

result in a decision, a prototype, storyboard, proof of concept, or some other partial solution to help drive 

the final results. In any case, the spike should develop just the information sufficient to resolve the 

uncertainty in being able to identify and size the stories hidden beneath the spike. 

The output of a spike is demonstrable to the team. This brings visibility to the research and architectural 

efforts and also helps build collective ownership and shared responsibility for the key decisions that are 

being taken.  

And like any other story, spikes are accepted by the product owner when the acceptance criteria for the 

spike have been fulfilled.  



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

15 

The Exception, not the Rule 

Every user story has uncertainty and risk – this is the nature of agile development. The team discovers the 

right solution through discussion, collaboration, experimentation, and negotiation. Thus, in one sense, 

every user story contains spike-level activities to flush out the technical and functional risk. The goal of 

an agile team is to learn how to embrace and effectively address this uncertainty in each iteration. A spike 

story, on the other hand, should be reserved for the more critical and larger unknowns. 

When considering a spike for future work, first consider ways to split the story through the strategies 

discussed above. Use a spike as a last option. 

Consider implementing the spike in a separate sprint from the resulting stories  

Since a spike represents uncertainty in one or more potential stories, planning for both the spike and the 

resultant stories in the same iteration is risky, and should generally be avoided. However, if the spike is 

small and straightforward and a quick solution is likely to be found, there is nothing wrong with 

completing the stories in the same iteration. Just be careful. 

Story Modeling with Index Cards  

Story writing and visually modeling value delivery using physical index cards provides a powerful visual 

and kinesthetic means for engaging the entire team in backlog development. There are a number of 

advantages to this interactive approach: 

The physical size of index cards forces a text length 

limit, requiring the story writer to articulate their 

ideas in just a sentence or two. This helps keep user 

stories small and focused – a key attribute. Also, the 

tangible, physical nature of the cards gives teams the 

ability to visually and spatially arrange them in 

various configurations to help define the backlog:  

 Cards may be arranged by feature (or epic or 

theme) and may be written on the same 

colored cards as the feature for visual differentiation. 

 Cards can also be arranged by size to help developers ‘see’ the size relationships between 

different stories.  

 Cards can be arranged by time or iteration to help evaluate dependencies, understand logical 

sequencing, see the impact on team velocity, and better align and communicate differing 

stakeholder priorities.  

Any team member can write a story card and the physical act of moving these small, tangible “value 

objects” around the table creates an interactive kinesthetic learning setting where participants “see and 

touch” the value they are about to create for their stakeholders. 

Experience has shown that teams with a shared vision are more committed to implementing that vision. 

Modeling value delivery with physical story cards provides a natural engagement model for all team 

members and stakeholders, and one that results in a shared, tangible vision – for all to see and experience. 



© 2009, Leffingwell, LLC. All Rights Reserved.     

 

16 

 

Summary 

In this whitepaper, we’ve provided an overview of the derivation and application of user stories as the 

primary requirements proxy used by agile teams. Along with background and history, we’ve described the 

alliteration Card, Conversation, and Confirmation, which defines the key elements of a user story. We 

have provided some recommendations for developing good user stories in accordance with the INVEST 

model and specifically described how small stories increase throughput and quality. A set of patterns for 

splitting large stories into small stories has also been described, so that each resultant story can 

independently deliver value in an iteration. We’ve also provided guidelines for creating spikes as story-

like backlog items for understanding and managing development risk. In conclusion, we’ve suggested that 

teams apply visual modeling using physical index cards for develop user stories and create a shared vision 

for implementing user value using this uniquely agile requirements construct. 

===================================== 

Bibliography 

Cohn, Mike. 2004. User Stories Applied: For Agile Software Development. Boston, MA: Addison-

Wesley. 

Martin, Robert. 2009. Clean Code: A Handbook of Agile Software Craftsmanship. Boston: MA: Pearson 

Education. 

Poppendieck, Mary, and Tom Poppendieck. 2007. Implementing Lean Software Development: From 

Concept to Cash. Boston, MA: Addison-Wesley.  

Jeffries, Ron. 2001, August. “Essential XP: Card, Conversation, and Confirmation.” XP Magazine. 


