
Paper 12-27

- 1 -

Hashing Rehashed

Paul M. Dorfman, Independent Consultant

Gregg P. Snell, Data Savant Consulting

ABSTRACT

You know hashing works—and fast! You’ve been to
the presentations, even read the papers. But you
still have not tried any hashing techniques. Why? Is
it because you had a hard time understanding all
those hkeys, collisions, and prime modulo thingies?
Well, you’re not alone. Fortunately, just as you do
not need to be an auto mechanic to learn how to
drive, you do not need to be a mathematician to
learn how to use hashing.

This paper is a re-packaging of the direct
addressing, key-indexing and hashing concepts
presented by one of the authors at previous SUGIs.
The proofs of the algorithms and rational for the logic
are accepted as previously presented, and we now
focus, instead, on how to apply the methods, not why
they work. Simple examples are presented with
code and graphics. (There is a reason why picture
books are easier to read!) Our goal is to help you
understand how these concepts work and show you
how to use them yourself. Once learned, you too will
be able to leap tall databases in a single bound!

INTRODUCTION

What we are commonly referring to as “Hashing” is
actually a number of searching techniques, based on
one central concept, that complement each other in
producing the fastest table-lookup, period! And while
some of the techniques might be difficult to grasp at
first, once understood, they can be incredible tools in
your SAS

®
 Software arsenal. It is our hope that this

rehash of the SUGI 26 Paper “Table Look-Up by
Direct Addressing: Key-Indexing – Bitmapping –
Hashing” (hereinafter referred to as “Last Year’s
Paper”) will cause a few more light bulbs to come on
such that you will actually try to use these methods.
Amaze your friends! Impress your boss! You’ll be a
Hashing Superman!

As part of our explanation, we will be tackling a
common problem with very large SAS data sets.
Primarily, there are millions of records each with
hundreds of variables, in a data set called
CUSTOMER, which is already sorted by the primary
key variable SSN (9-digit numeric). But we need to
add fields linked to our data by secondary keys,
other than this SSN.

Our first problem is that we want to add some new
demographic data we just purchased, the number of
Sport Utility Vehicles (SUV) licensed, that is keyed to
zip code. Unfortunately, CUSTOMER is too large to
re-sort by zip code because we do not have enough
disk space. Besides, your boss wants to include this
new demographic data in his presentation tomorrow
so we have got to figure out a way to do it now!

Our second problem is very similar, but this time the
variable we want to add is SPOUSE_AGE, which is
keyed to SPOUSE_SSN. Again, sorting is out due to
disk and time limitations, but (you guessed it) the
boss wants this new data on the same report due
tomorrow!

Key-Indexing and hashing techniques can ideally
solve both of these problems. Shall we?

DIRECT ADDRESSING

The central concept, which is the basis for organizing
table lookups faster than a speeding bullet, is direct
addressing. Understanding direct addressing is
fundamental to understanding how you can make
use of key-indexing, bit-mapping and hashing. The
key concept here is that of accessing key values
“directly” by their location (address, node) in a table,
as opposed to searching for them by comparing the
search key to all or some table values. And it is
quite easy to understand how direct addressing is far
superior to comparison-based searching in the
following simple example.

Let us assume we have a small (array) table with 10
elements:

array var_array (0:9) _temporary_

(1 2 2 3 0 4 5 6 9 7);

and we want to know if the value of VAR_ARRAY is
ever equal to 7. You might notice that the values of
the table are not sorted and contain duplicates—a
rather common phenomenon in the real world. A
search for 7 might look like this:

SUGI 27 Advanced Tutorials

- 2 -

%let searchkey = 7;

data _null_;
 array var_array(0:9) _temporary_
 (1 2 2 3 0 4 5 6 9 7);
 do i=0 to 9;
 if var_array(i) = &searchkey then do;
 put 'hit';
 stop;
 end;
 end;
 put 'miss';
run;

While this example is absurdly small, it illustrates the
Achilles heel of a comparison search: Some (or even
all) values in the table are compared to our target
value of 7 until (or if) we find a match. But how can
we use direct addressing in this example by directly
referencing the array element that contains 7?

<whisper>

sppissst! This is where the magic happens…it’s
called key-indexing!

</whisper>

KEY-INDEXING

Key-indexing is the concept of using the value of a
table’s key variables as the index into that table.
This enables us to directly address the table, as we
know exactly what the addresses are for each value!
Consider the following:

data _null_;
 array var_array(0:9) _temporary_
 (0 1 2 3 4 5 6 7 . 9);
 if var_array(&searchkey) ne . then
 put 'hit';
 else put 'miss';
run;

It doesn’t take a rocket scientist to realize that this
code is simpler and will execute much faster as we
have eliminated all but one comparison! Now, at this
point, you may be saying to yourself “Hold on there!
You guys changed the order of the table!” Yes,
we did and thank you for noticing. By definition, the
values in a key-indexed table must be stored such

that the key is the index. However, this is extremely

easy to do programmatically and there are some
fringe benefits as well!

So with that in mind, let us do it for our zip code
problem, shall we? To use key-indexing, we want an
array (table) large enough to hold all of the SUV

counts for all possible zip codes

(ARRAY SUV(0:99999) _TEMPORARY_). Then we
want to load the array from the demographic file
such that the value of SUV(zip) is either missing (.)
or contains the SUV count for that customer’s zip
code. For example…

SUV(0)=.

SUV(1)=.

…

SUV(27513)=214

SUV(32258)=88

SUV(66216)=67

…

SUV(99999)=.

So our code might look something like this:

data TESTLIB.CUSTOMER;
 ** load suv counts into the array;
 array suv(0:99999) _temporary_;
 do until(eof1); /* source not sorted */
 set MYLIB.SUVBYZIP(keep=zipcode
 suv_count)
 end=eof1;
 if suv(zipcode) = . then

 suv(zipcode) = suv_count;
 end;

That’s it! Now we have an array, called SUV, which
contains either missing values (no zip or the count is
missing) or the number of SUVs for that zip. Did you
notice some of the fringe benefits of loading a key-

indexed array? The source data did not require

sorting because, by definition, we always know
exactly where the values will be stored in the array.

Also, our table is naturally de-duped because we
only set the array value once. The rest of our
program is now very simple and straight-forward:

 ** add suv_count to master data set;
 do until(eof2);
 set PRODLIB.CUSTOMER end=eof2;
 /* assign count by directly
 addressing the array*/
 suv_count=suv(zip5);
 /* be sure to drop unwanted fields
 introduced during table load */
 drop zipcode;
 output;
 end;
run;

We used the key variable ZIPCODE as the index to
the table and were able to assign the SUV counts
without any comparisons by directly addressing the
key-indexed table. Neither data set required sorting
and had there been duplicates in our demographic

SUGI 27 Advanced Tutorials

- 3 -

data, they would not have presented a problem!
Pretty slick, eh?

Unfortunately, there are two primary limitations to
using key-indexing—memory and index size. For
this example, we only needed enough memory to
hold a temporary array that was 8-byte numeric by
100,000 rows, or 800K. But as the size of the data
to be added gets larger, so does the memory
requirement.

The second primary limitation to using key-indexing
is how large the range of the key variable can
become before exceeding memory (not to mention it
must always be integer). 100,000 zips may not be a
problem, but what about 9-digit Social Security
Numbers (SSN)? That would require 8 GB, which is
not chump change even with contemporary
memories. And adding just one digit to the key
range would increase memory usage ten-fold! How
can one possibly use key-indexing when SSN (or
any other large or non-integer value) is the key?

Since memory and index size represent our primary
limitations, our solution must address one or both of
these issues.

<whisper>

sppissst! This is where the REAL magic
happens… actually, there are several pieces of
magic but we won’t try to explain them all, just
enough to get you going…

</whisper>

BITMAPPING

Bitmapping dramatically improves memory utilization
by using a single bit (1 bit) rather than 8 bytes (64
bits) of memory to the presence of absence of a
numeric lookup key. Given the same memory
resource, bitmapping has the addressable key range
53 to 56 times that of key-indexing alone. While
using bitmapping for adding satellite data to a master
file can be challenging, it is a champion when we
only need to rapidly find out if the record with a given
key should be selected, and if memory resources are
sufficient for mapping the entire key range into
memory bits.

In this paper, we have chosen to not expand on the
bitmapping technique. A full and detailed
explanation can be found in “Last Year’s Paper”.

HASHING

Hashing actually addresses both the memory and

index size issues. Now, before we go any farther,
does everybody know what hashing means?
Hashing is the process of converting a long-range
key (numeric or character) to a smaller-range integer
number with a mathematical algorithm or function:

LONG-RANGE KEY HASH SMALLER-RANGE

INTEGER

Here, let us explain it to you with a simple example
before we attempt to use it on our CUSTOMER
database. Let us presume our database has only 10
rows and the key is 3-digits like this:

data small;
 input key;
 cards;
 185
 971
 400
 260
 922
 970
 543
 532
 050
 067
 ;
run;

Now, on such a small key, we could use key-
indexing with a simple array of 1,000 elements
(ARRAY KEY(0:999)) but only 10 cells out of 1,000
would be occupied while the rest is wasted memory.
But what if we could “hash” these ten 3-digit keys to
fit in a smaller array, take up less memory, and still
make use of direct addressing?

Ideally, if we had a hash function that would map
each of the ten 3-digit values to its own hash
address from 0 to 9 we would have the perfect hash
function. However, it would take a great deal of time
to develop such a function, which might turn out to
be quite slow to compute and would also fail as soon
as the keys changed or if you have more than 10
records. In reality, we will use a less-than-perfect
function. It will not guarantee a one-to-one mapping
between the keys and their hash addresses, i.e. it
will allow some keys to map to the same hash
address – a phenomenon called a collision.
However, the function will be able to not pile too
many keys on one address, it will be fast to
calculate, and good for any input set of keys, not just
one. Any collisions that ensue will be dealt with
separately by invoking a collision resolution policy.

A fairly fast, simple, and uniform hash function can
be obtained by dividing the key (or its numeric
representation if the key is character) by a prime

SUGI 27 Advanced Tutorials

- 4 -

number and using the remainder as a hash address.
A detailed discussion of such a division method can
be found in “Last Year’s Paper”. Essentially, there

are only three things you will need to know in order
to effectively use this method.

First, what is the load factor of the hashing array? In
other words, after all the keys have been hashed and
loaded into the array, how full do you want it to be?
The sparser the array is populated (i.e. smaller load
factor) the faster searching will be but at the expense
of using more memory for the larger array. A more
densely populated array is somewhat slower (due to
more collisions) but requires less memory. For
many applications of this technique, a load factor of
0.8 yields a good balance of performance and
memory requirements. Let us assign that to a macro
variable:

%let load = 0.8;

Secondly, you need to know what the optimal array
size should be for the given load factor. This is one
of those “magic” things we won’t spend much time
on since it requires some knowledge of number
theory to really understand. Fortunately, the author
of this function has already provided us with a short
and extremely fast SAS program to dynamically
calculate and store the optimal value in a macro
variable called HASH_SIZE. Let us use this program
on the SMALL data set we used previously:

data _null_;
 do p=ceil(p/&load) by 1 until(j=up+1);
 up = ceil(sqrt(p));
 do j=2 to up until(not mod(p,j)); end;
 end;
 call symput('hash_size',left(put(p,best.)));
 stop;
 set small nobs=p;
run;

%put hash_size=&hash_size;

hash_size=13

So, if we use the load factor of 0.8, our optimal array
size would be 13. Now, let us see what effect this
has on the hashed values in our example:

data _null_;
 set small;
 hash_addr = mod(key,&hash_size)+1;
 if _n_=1 then put 'KEY HASH_ADDR';
 put key Z3. ' ===> ' hash_addr Z2.;
run;

KEY HASH_ADDR
185 ===> 04

971 ===> 10

400 ===> 11

260 ===> 01

922 ===> 13

970 ===> 09

543 ===> 11

532 ===> 13

050 ===> 12

067 ===> 03

From this example you can see that our hash
function has produced two collisions: 400 and 543
both hashed into 11 and 922 and 532 hashed into
13.

That brings up the third thing you need to know
about this method: how to resolve collisions. But
before we go any farther, you need to be aware that
we will be deviating from pure direct addressing
because of the potential collisions.

For with each collision, we will be altering the original
hashed number in order to move our index to an
empty node (un-collided address) in the array.
Consequently, we can no longer rely upon the simple
fact that ARRAY(HASH_ADDR) is not missing to
identify a match. We will have to store the KEY in
each node to enable further confirmation that
ARRAY(HASH_ADDR)=KEY. And should this initial
comparison fail, we will not yet know if KEY is
missing or simply stored elsewhere due to a
collision, until we follow our chosen resolution policy
to its logical end. This makes hashing a hybrid
algorithm because it combines direct addressing with
short, and hence very fast, bursts of sequential
searching.

Now, hang with us folks! We know this part is a little
tougher to follow but it is the key to understanding
how to use hashing and we are only going to discuss
two methods: linear probing and coalesced chaining.

COLLISION RESOLUTION POLICY:

LINEAR PROBING

Collision resolution with Linear Probing is, perhaps,
the simplest method of all. As the name implies,
when a collision occurs, the remaining cells in the
table are simply probed in a linear fashion
(decrementing the index by 1) until the next empty
address is found. If our index becomes less than 0
then we have stepped off the bottom of the table and
need to reset the index to the top, and continue until
encountering either a duplicate key or empty
address. The simplicity of this method becomes

SUGI 27 Advanced Tutorials

- 5 -

quite evident when you realize this entire wrap-
around cycle can be coded in a single DO loop.

A program using SMALL might look like this:

data _null_;
array hash_table(0:&hash_size)
 temporary;
 ** load and link the hash table;
 do until(eof1);
 set small end=eof1;

 /* hash the key */
 do hash_addr=mod(key,&hash_size)+1

/* decrement loop */
 by -1 until

 /* missing found */
(hash_table(hash_addr)=. or
/* duplicate found */

 hash_table(hash_addr)=key);
 /* stepped off table, start over */
if hash_addr < 0 then

 hash_addr=&hash_size-1;
 end;
 /* store the key */
 hash_table(hash_addr) = key;
 end;
 /* all done, write results to the log */
 put 'hash_table';
 do i=0 to &hash_size;
 put '(' i z2.')=' hash_table(i) z3.;
 end;
run;

hash_table

(00)=.

(01)=260

(02)=.

(03)=067

(04)=185

(05)=.

(06)=.

(07)=050

(08)=543

(09)=970

(10)=971

(11)=400

(12)=532

(13)=922

Our first collision occurred when 543 hashed into 11
because HASH_TABLE(11) was greater then
missing. Visualizing our code at that point might look
like this:

KEYKEYKEYKEY HASH_ADDR HASH_TABLEHASH_ADDR HASH_TABLEHASH_ADDR HASH_TABLEHASH_ADDR HASH_TABLE

185 04 (00)=.

971 10 (01)=260

400 11 (02)=.

260 01 (03)=.

922 13 (04)=185

970 09 (05)=.

543 11 (06)=.

 (07)=.

 (08)=543

 (09)=970

 (10)=971

 (11)=400

 (12)=.

 (13)=922

The main advantage of linear probing is its utter
simplicity. And, if the table is sparse enough, it
performs quite well! As a rule of thumb, linear
probing performs best if about half of all nodes in the
table are left empty, i.e. with the load factor of about
0.5. However, this represents a significant problem
when you consider that a smaller load factor
corresponds to a larger array and dramatically larger
memory requirements. Also, linear probing
performance rapidly deteriorates, as the table gets
fuller.

Which leads us naturally to what might be
considered the best collision resolution scheme:

COLLISION RESOLUTION POLICY:

COALESCED CHAINING

Coa-what? Coalesce simply means to unite into a
whole. Earlier, we have seen that the key(s) hashing
to the same address form a “chain”, which we need
to traverse sequentially. We can create one array for
each chain and write very simple code to implement
such separate chaining. But since each array must
be allocated to its maximum possible size, the
simplicity comes at the expense of a huge memory
cost. In coalesced chaining, we avoid this by
coalescing all the chains together into a “whole”
array. The idea is fairly simple in that we will
maintain a parallel array, called LINK_TO_NEXT that
will contain one of 3 distinct values:

• missing if the corresponding node of
HASH_TABLE is empty,

• 0 if the corresponding node of
HASH_TABLE contains a hashed value and
no other keys have “collided” with it, or

• a number that points to the next cell with a
hashed number.

HASH

LOOP

COLLISION

FOUND MISSING, STORE IT

SUGI 27 Advanced Tutorials

- 6 -

Let us go back to our SMALL example. The first six
values hash without collisions, so stepping through
our process:

1. hash KEY into HASH_ADDR

2. check to see if
LINK_TO_NEXT(HASH_ADDR) is missing

3. found a missing LINK_TO_NEXT cell so the
corresponding HASH_TABLE cell is also
missing; store 0 in LINK_TO_NEXT to mark
it as filled

4. store KEY in HASH_TABLE(HASH_ADDR)

and our arrays would look like this:

KEYKEYKEYKEY HASH_ADDRHASH_ADDRHASH_ADDRHASH_ADDR LINK_TO_NEXTLINK_TO_NEXTLINK_TO_NEXTLINK_TO_NEXT HASH_TABLEHASH_TABLEHASH_TABLEHASH_TABLE

185 04 (00)=. (00)=.

971 10 (01)=0 (01)=260

400 11 (02)=. (02)=.

260 01 (03)=. (03)=.

922 13 (04)=0 (04)=185

970 09 (05)=. (05)=.

 (06)=. (06)=.

 (07)=. (07)=.

 (08)=. (08)=.

 (09)=0 (09)=970

 (10)=0 (10)=971

 (11)=0 (11)=400

 (12)=. (12)=.

 (13)=0 (13)=922

The next KEY of 543 hashes into 11, but 11 is
already occupied because LINK_TO_NEXT(11) is
greater than missing. So our process now becomes:

1. hash KEY into HASH_ADDR

2. check to see if
LINK_TO_NEXT(HASH_ADDR) is missing

a. if not, see if the key already exists by
following the chained addresses in
LINK_TO_NEXT until we find it in
HASH_TABLE, or find a 0.

b. If not found, then beginning with the top
of LINK_TO_NEXT, search backward
until we find a missing value.

c. Store this index in the original
LINK_T0_NEXT(HASH_ADDR) (it was a
0) before changing HASH_ADDR to this
index

3. found a missing LINK_TO_NEXT cell so the
corresponding HASH_TABLE cell is also
missing; store 0 in LINK_TO_NEXT to mark
it as filled

4. store KEY in HASH_TABLE(HASH_ADDR)

SAS code for this process becomes thus:

data _null_;
 array hash_table(0:&hash_size)
 temporary;
 array link_to_next(0:&hash_size)
 temporary;
 ** load and link hash table using SMALL;
 do until(eof1);
 set small end=eof1;
 /* STEP 1 (hash the key) */
 hash_addr = mod(key,&hash_size)+1;
 found = 0;
 /* STEP 2 (collision?) */
 if link_to_next(hash_addr) >. then do;
 /* STEP 2.a (check for duplicates) */

link traverse;
if found then continue;
/* STEP 2.b (follow next_key to

 empty node) */
 do next_key = &hash_size by -1
 until(link_to_next(next_key)=.);
 end;
 /* STEP 2.c (change original link
 from 0 to next */
 link_to_next(hash_addr)=next_key;
 hash_addr = next_key;
 end;
 /* STEP 3 (mark link as occupied) */
 link_to_next(hash_addr) = 0;
 /* STEP 4 (store the key) */
 hash_table(hash_addr) = key;
 end;
 /* all done, write results to the log */
 put 'link_to_next hash_table';
 do i=0 to &hash_size;
 put '(' I z2. ')=' link_to_next(i) z2.
 @15 '(' i z2. ')=' hash_table(i) z3.;
 end;
 stop;
 /* see if key already exists */
 traverse:
 if key = hash_table(hash_addr)
 then found=1;
 else if link_to_next(hash_addr) ne 0
 then do;
 hash_addr=link_to_next(hash_addr);
 goto traverse;
 end;
run;

link_to_next hash_table

(00)= . (00)= .

(01)=00 (01)=260

(02)= . (02)= .

(03)=00 (03)=067

(04)=00 (04)=185

(05)= . (05)= .

(06)= . (06)= .

(07)=00 (07)=050

(08)=00 (08)=532

(09)=00 (09)=970

(10)=00 (10)=971

(11)=12 (11)=400

(12)=07 (12)=543

(13)=08 (13)=922

STEP 1

STEP 2

STEP 3

STEP 4

SUGI 27 Advanced Tutorials

- 7 -

Visualizing the process during the first collision might
look like this:

KEYKEYKEYKEY HASH_ADDRHASH_ADDRHASH_ADDRHASH_ADDR LINK_TO_NEXTLINK_TO_NEXTLINK_TO_NEXTLINK_TO_NEXT HASH_TABLEHASH_TABLEHASH_TABLEHASH_TABLE

185 04 (00)=. (00)=.

971 10 (01)=0 (01)=260

400 11 (02)=. (02)=.

260 01 (03)=. (03)=.

922 13 (04)=0 (04)=185

970 09 (05)=. (05)=.

543 11 (06)=. (06)=.

 (07)=. (07)=.

 (08)=. (08)=.

 (09)=0 (09)=970

 (10)=0 (10)=971

 (11)=12 (11)=400

 (12)=0 (12)=543

 (13)=0 (13)=922

And during the subsequent collision of 532:

KEYKEYKEYKEY HASH_ADDRHASH_ADDRHASH_ADDRHASH_ADDR LINK_TO_NEXTLINK_TO_NEXTLINK_TO_NEXTLINK_TO_NEXT HASH_TABLEHASH_TABLEHASH_TABLEHASH_TABLE

185 04 (00)=. (00)=.

971 10 (01)=0 (01)=260

400 11 (02)=. (02)=.

260 01 (03)=. (03)=.

922 13 (04)=0 (04)=185

970 09 (05)=. (05)=.

543 11 (06)=. (06)=.

532 13 (07)=. (07)=.

 (08)=0 (08)=532

 (09)=0 (09)=970

 (10)=0 (10)=971

 (11)=12 (11)=400

 (12)=0 (12)=543

 (13)=8 (13)=922

A piece of cake, right? Come on now, it’s not that
bad. Besides, you have to get those spouse ages
added to CUSTOMER by this afternoon and hashing
is the only way you can pull-off such a super-human
feat! Recalling the three things we need to know
about hashing, let us apply them to our problem:

1. The load factor (how full do you want the
array to be?)

The spouse age file is pretty big so we better
start with the recommended factor of 0.8 and
if we run out of memory, up it to 0.9 or higher
(we may also have to invoke SAS with
MEMSIZE= option greater than the default of
64M)

2. The optimal array size given our load factor

This part is very easy because we just run
the magic code provided in “Last Year’s
Paper”.

3. Collision resolution policy

Big keys (SSN) and a big table point us to
using coalesced chaining.

Here we go…UP, UP and AWAY! <screeeech>
Nope. Wait. Hold everything! We forgot something
very necessary for this particular problem. The
SPOUSE_AGE, remember? How are we going to
add this field if we have to store SSN in the
HASH_TABLE because of collisions? Simple! Just
add another array that will hold the ages, but we only
have to load or unload it after the collision stuff is all
over and we are ready to work with the key.

Ok, now we are ready…

%let load = 0.8;

data _null_;
 do p=ceil(p/&load) by 1 until(j=up+1);
 up = ceil(sqrt(p));
 do j=2 to up until(not mod(p,j));
 end;
 end;
 call symput('hash_size',left(put(p,best.)));
 stop;
 set MYLIB.SPOUSE_AGE nobs=p;
run;

data TESTLIB.CUSTOMER;
 array hash_table(0:&hash_size)
 temporary;
 array link_to_next(0:&hash_size)
 temporary;
 ARRAY AGES(0:&hash_size) _temporary_;
 ** load and link hash table using SSN
 from spouses, then add ages;
 do until(eof1);
 set MYLIB.SPOUSE_AGE(keep=ssn age

 rename=(ssn=SPOUSE_SSN
 age=AGE_TO_ADD)) end=eof1;
 /* STEP 1 (hash the key) */
 hash_addr=mod(SPOUSE_SSN,&hash_size)+1;
 found = 0;
 /* STEP 2 (collision?) */
 if link_to_next(hash_addr) > . then do;
 /* STEP 2.a (check for duplicates) */
 link traverse;
 if found then continue;
 /* STEP 2.b (follow next_key to

 empty node) */
 do next_key = &hash_size by -1
 until(link_to_next(next_key)=.);
 end;
 /* STEP 2.c (change original link

 from 0 to next) */
 link_to_next(hash_addr) = next_key;
 /* (set new hash_addr) */
 hash_addr = next_key;
 end;

STEP 1

STEP 2

STEP 2.c

STEP 4

STEP 1

STEP 2

STEP 2.a

STEP 2.b STEP 3

STEP 2.a

STEP 2.b

STEP 2.c

STEP 3

STEP 4

SUGI 27 Advanced Tutorials

- 8 -

 /* STEP 3 (mark link as occupied) */
 link_to_next(hash_addr) = 0;
 /* STEP 4 (store the key) */
 hash_table(hash_addr) = SPOUSE_SSN;
 AGES(HASH_ADDR) = AGE_TO_ADD;
 /* be sure to drop unwanted fields
 introduced during table load */
 drop AGE_TO_ADD;
 end;
 ** now add the values in hash_table to
 CUSTOMER;
 do until(eof2);
 set PRODLIB.CUSTOMER end=eof2;
 found = 0;
 hash_addr=mod(SPOUSE_SSN,&hash_size)+1;
 if link_to_next(hash_addr) > . then
 link traverse;
 if found then do;
 SPOUSE_AGE=AGES(hash_addr);
 end;
 /* remember to output each record */
 output;
 end;
 stop;
 /* see if key already exists */
 traverse:
 if SPOUSE_SSN=hash_table(hash_addr)
 then found=1;
 else if link_to_next(hash_addr) ne 0
 then do;
 hash_addr=link_to_next(hash_addr);
 goto traverse;
 end;
run;

Now, wasn’t that easy? Outside of comments, we
only had to change about 12 lines of code (see
upper-case).

CONCLUSION

Hopefully we have been able to remove at least
some of the confusion that may have prevented you
from using key-indexing and hashing in the past.
Most of the code is extremely straight-forward and
requires but a few minor changes to address most
problems. And, at the sake of sounding like a
broken record, we strongly encourage you to reread
the SUGI 26 Paper “Table Look-Up by Direct
Addressing: Key-Indexing – Bitmapping – Hashing”.
We have re-addressed some of the original
concepts, but there are many more we did not cover
and certainly not in as much detail.

Now that you have a better understanding of what
“hashing” is all about, we hope you will try it. But,
how do you decide when to use key-indexing or
hashing over the more traditional approaches?
Under certain conditions, as in the examples we
presented, the decision is made for you. But
assuming you could choose between a traditional
SORT and MERGE or Hashing, what other criteria

should you consider? Speed!

Nothing is faster (not even a speeding bullet)!
Whether your problem is a one time hurry-up-and-
get-it-done job for the boss, or a web-deployed
database application that requires sub second
response time, hashing will save the day and you too
could become a hero!

SUGI 27 Advanced Tutorials

- 9 -

REFERENCES

1. D. E. Knuth, The Art of Computer Programming,
2.

2. D. D. Knuth, The Art of Computer Programming,
3.

3. R. Sedgewick, Algorithms in C, Parts 1-4.

4. T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

5. P.M. Dorfman. Table Look-Up by Direct
Addressing: Key-Indexing– Bitmapping–Hashing.
SUGI 26.

6. J. Morris, Data Structures and Algorithms, Hash
Tables(http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210

/hash_tables.html)

ACKNOWLEDGMENTS

P.M.D.: Special thanks to Karsten M. Self, Ian
Whitlock, F. Joseph Kelley, Sigurd Hermansen, and
Base SAS R&D team for their support of direct-
addressing methods in SAS, valuable discussions
full of ideas, wit, and vigor, and giving the author an
opportunity to apply the techniques to solve practical
problems. The author gratefully acknowledges the
contribution of all individuals who have, directly or
indirectly, encouraged the author and supported his
efforts of making direct addressing an accepted and
practically used DATA step philosophy.

G.P.S.: A very special thanks to Paul Dorfman,
author of “the” paper and a very gracious and
forgiving coauthor as well a consummate expatiator
of the English language ;-) You are my Hashing
hero!

CONTACT INFORMATION

Paul M. Dorfman
4437 Summer Walk Ct.
Jacksonville, FL 32258
(904) 260-6509 (h)
(904) 905-5428 (o)
pdorfman@bellsouth.net
paul_dorfman@hotmail.com
paul.dorfman@bcbsfl.com

Gregg P. Snell
Data Savant Consulting
5632 Noland Road
Shawnee, KS 66216
(913) 638-4640 (o)
(208) 977-1943 (f)
gsnell@datasavantconsulting.com
www.datasavantconsulting.com

TRADEMARK CITATION

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries. ® Indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

SUGI 27 Advanced Tutorials

