
RC24015 (W0608-015) August 3, 2006

Computer Science

IBM Research Report

WISE: a Wizard Interface Supporting Enhanced Usability

Joshua Hailpern

IBM Research Division

Thomas J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

Research Division

Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

 .

WISE: a Wizard Interface Supporting Enhanced usability

Joshua Hailpern
IBM T.J. Watson Research

joshua@hailpern.com

ABSTRACT
As computers become ubiquitous, the task of making them usable

becomes increasingly important. Repeated failures by

implementation experts to build usable systems have motivated

the creation of successful design approaches by interaction

designers. However, there are still many end user groups that

have not successfully overcome the difficulties they perceive in

computer use. Such groups include individuals with unique

needs, such as physical or mental disabilities, and those with age-

related challenges. As a larger percentage of Americans are

considered “old” (60+), the lack of a system tailored to the needs

of this age demographic has resulted in a part of the population

that is disconnected from the rest of the world. The current state of

software which targets older adults’ ability to use computers

focuses on physical issues while largely ignoring the volumes of

gerontological cognitive research that could make computers not

only usable but also intuitive for older adults.

This paper describes WISE, an alternative OS and application UI

that specifically targets the cognitive deficits of older adults.

WISE leverages both the existing body of research and the

exciting Apple Cocoa API (Application Program Interface) for

Objective-C and AppleScript to build a user interface layer

tailored to the needs of older users. The focus was placed on a

quality design by using an API and scripting language closely

coupled to an operating system (OS), in this case Macintosh OS

X. Further, WISE respects the guiding principles of linear

interaction, effective cognitive strategy prompting, uniform

limited scope, and accessibility as we explore simplified

interaction methods to support older adults.

This paper is an expanded version of the extended abstract, by the

same name and author, accepted to ASSETS 2006’s student

research competition. ASSETS is the international ACM

SIGACCESS Conference.

Author Keywords
Gerontology, User-Centered Design, Linear Interaction, Effective

Cognitive Strategy Prompting, Accessibility, Age-Related

Challenges

ACM Classification Keywords
H5.2. User Interfaces

K4.2 Assistive technologies for persons with disabilities

1. INTRODUCTION
Accessibility is a major concern for most mass-produced

computer systems in today’s world. As a group, the number of

people aged over 60 is growing at a record pace [3]. As commonly

framed, accessibility/usability deals primarily with physical and

sensory issues (e.g. changing colors or font sizes) but

comparatively few systems make adequate use of gerontological

cognitive research [3,10]. For older adults, smooth and productive

computer usage requires a system that supports their objectives

and works with knowledge of their possible cognitive challenges

[10]. Thus the problem was framed as having two major aspects:

• Design an alternative to the OS and other applications’

UI targeting older adults (65+).

• Use current gerontological cognitive research as guiding

principles when making design decisions about the

system.

To the end of making the system work, the decision was made to

use the Cocoa environment to tie the interface to OS X in as

seamless a fashion as possible. This decision was helpful in

building a system with diverse functionality, but it also caused

problems that we did not foresee at the start of the project. Some

of these implementation issues will be addressed below.

The design aspect of the project was interesting. It grew in a more

fluid fashion than the implementation itself. In the beginning, a

system was envisioned encapsulating a simple word processor and

web browser with some accessibility affordances (large text with

serifs, large buttons, a single-click oriented interface, and

vernacular terms for applications). However, during the process

of researching cognitive functioning in older adults, a set of

guiding principles emerged. These major ideas were:

• Linear Interaction: research by Craik and others

indicates that memory retention for older adults is

correlated closely to depth of processing. Split attention

penalizes this depth and as such reduces retention for

the aged [1,6]. The hypothesis is that a more linear

interaction method might assuage some of these

problems.

• Effective Cognitive Strategy Prompting: work by

Hultsch suggests that older adults are less likely than

young people to spontaneously use effective cognitive

memory strategies such as imagery [5]. By providing

prompting to use such strategies, he was able to raise the

performance of older users. To further that line of

thinking, similar strategy prompting (e.g. global

metaphors) was considered while constructing the

system.

• Uniform, Limited Scope: an overarching HCI design

principle is that of uniformity in an interface. In this

new system, the goal was to build an interface that

would be uniformly limited to a simplified interaction

method requiring less cognitive burden to operate. This

principle was where the least amount of research

existed, allowing the most room for creativity in

interface design.

• Accessibility: it would be a shame to lose accessibility

features of OS X because there was to heavy a focus on

redesigning and simplifying the workflow of interaction

between older adults and the computer. As such,

contextual affordances were built in that might help

those users with reduced sensory function navigate our

interface [7].

The interface of these design principles with the power of the

Cocoa environment resulted in a system that called W.I.S.E., the

Wizard Interface Supporting Enhanced usability. WISE already is

an easily extensible system that creates an interface tailored to the

needs of older users based on gerontological research. Because

the API and scripting language are closely coupled to the OS X

operating system, the focus could be placed on quality of design

by leveraging existing protocols and widgets

2. SOLUTION AND DESIGN RATIONALE
The body of existing gerontological cognitive research made it

apparent to that an effective design must support an interaction

with less cognitive stress than that presented by a traditional OS

user interface. Thus, this solution is a linear, goal-oriented

workflow described in more detail in the ensuing paragraphs.

2.1 Linear Interaction
Note that there are essentially two issues facing an older adult

who wishes to use a computer. First, there is the walk-up-and-use

aspect facing a novice computer user who needs to be able to find

information without much background knowledge about the

system itself. The second is the situation in which one uses a

computer repeatedly for the same task. Older adult users can

experience problems associated with ‘walk-up-and-use’ even in

situations involving repeat use. It is hypothesized that this is due

to memory limitations and age-related forgetting. Thus the

solution needs to support both novice interaction and provide

affordances to improve remembering or at least substitute

recognition for recall [3,10].

A linear style of interaction seemed to provide a solution to both

issues. Knäuper suggests that working memory declines

somewhat with age and that parallel processing provides the most

stress on the working memory system [8]. His research centers on

the ordering of questions in a survey, but it is hypothesized that

the ideas behind it extend to the ordering of tasks in a user

interface. By limiting the required parallel processing to a

minimum, we were able to build an inherent ordering to all of the

processes allowable in WISE.

Accepted cognitive psychological research indicates that a high

level of parallel processing reduces the depth of processing for

any individual task in the parallel array. Craik’s work extends this

finding, noting that such division of attention affects older adults

to a greater extent than it does younger people [1,3]. WISE

attempts to abate this division by never requiring a user to attend

to multiple windows at any one time. Further, there is a persistent

history bar that tracks all of the user’s choices from start screen to

destination with both icons and text. Back navigation is thus also

made easy: a user can see all of his or her choices and trace the

path backwards to a previous location, and return to that state with

a single mouse click.

Further research indicates that episodic memory, the ability to

remember autobiographical information that occurred recently, is

the most grossly impaired form of memory in late adulthood [2].

This deficiency can manifest itself in an inability to remember

faces or other images, making the history bar support of linear

interaction even more crucial. It may be difficult for an older user

to remember the recent screens associated with a path from the

start of an application to some goal—the persistent history bar

removes the need to remember, providing constant cues to

reinforce the correct interaction. A novice user can get from point

A to point B simply by making choices. Hopefully, the history bar

will reinforce this user’s episodic memory of decisions until the

action set becomes second nature.

There are problems with linear interaction: it can limit the number

of actions that a person can do at one time. However, reducing the

cognitive burden on the user is of primary importance. To

alleviate this, WISE will save the user’s place inside of a given

task (e.g. typing a document), to allow the user to resume said

task. Without divided attention, older adults novice can more

quickly achieve his or her goals when using a computer.

2.2 Effective Cognitive Strategy Prompting
Linear interaction methods are simply an extension of accepted

cognitive psychology principles for older adults. As such, they

are effective, but were not surprise as the research was. Effective

cognitive strategy prompting, however, was more unexpected.

Research by Hultsch looked into the differences in organization of

free recall by people of different age groups. His first result was

expected: young people have a tendency to perform better at such

tasks than older adults. It is his second result that is more

exciting: when prompted with better cognitive strategies for

remembering (such as mnemonics and imagery), older people

improved at a much greater rate than young people, almost

catching up their performance level to that of the young [5]

What this finding indicated to Hultsch was that older adults were

less likely to spontaneously use effective cognitive strategies than

young people. This would account for the increased benefit of

providing such prompting to older subjects. Having seen this

research, the idea of providing older adults with imagery,

mnemonics, and metaphors for the tasks that they are attempting

to accomplish was explored.

The first insight was to provide a goal metaphor for completing

tasks in WISE. This provides several advantages. First, it avoids

making possibly false assumptions about cross-generational

computer views by abstracting away from technical applications

towards goals that do not necessarily have to be accomplished

with a computer [9]. Second, it allows an older user to consider

their task verbally as a set of sub-goals. Since verbal memory

tends to persist better than visual memory, this is a plus for the

older user. The final and perhaps most important aspect of the

goal metaphor is that by dividing a task up into a set of subtasks

with discrete choices. WISE therefore provides an inherent

organizational and effective cognitive strategy for common

computational tasks. That is, WISE abstracts away from the

application-centered view of modern operating systems, and

“hides” the end process (thinking about “looking up a movie time”

rather than remembering to use a web browser and the URL of a

website, even though the end application/task is the same).

A major concern when using prompts is that there is a body of

research that indicates that visual memory is the most problematic

form of memory in older individuals. Extensive research by

Winograd and Simon indicates, however, that while there is a real

reduction in spontaneous pictorial encoding of information in

memory, images can help older individuals to remember things

more effectively. They conclude that most of this result comes

from increased prompting for organization rather than the pictures

themselves, so one would be wise to try multiple organizational

prompts when building memory training for late adulthood

[Error! Reference source not found.].

To this end, WISE uses redundant cues for improved organization

in an attempt to leverage both the possibly failing visual memory

and the more stable verbal memory; each task is identified by both

by an icon and by a consistent naming scheme that is always

visible in multiple locations (e.g. the history bar) following the

suggestions of Czaja [3]. By abstracting away from the

application-centered view of OS X, we are able to build temporal

organization where there was none before. WISE then repeatedly

prompt the user to follow this organization.

There is an even greater hope afforded by WISE and its

commitment to providing effective cognitive strategies. Research

by Poon et al. on the effectiveness of mnemonics for older adults

concurs with Hultsch’s work by showing that young people are

more apt to use spontaneous effective encoding strategies [5,7].

However, this work goes one step further by demonstrating that

repeated exposure to effective cognitive strategies can eventually

allow older subjects to generate spontaneous effective

organizational strategies [7]. Such a result is the ultimate end goal

of WISE: by reinforcing simple interaction, it may eventually

facilitate more complex and effective interaction between

computers and older adult subjects.

2.3 Uniform, Limited Scope
It is essential that any project be scoped to a proper focus in order

to make it tractable. It was realized early that the same principle

could be applied to WISE in order to make using it a tractable

problem for an older adult novice user. Thus it was decided to use

paradigms already existing on the Mac as a starting point, then to

simplify the interaction as much as was feasible. The final

product managed to leverage the single button MAC mouse, and

create an interface based exclusively on button selections, single

clicks and text entry There is no concept of right clicking or

double clicking for the standard navigation actions available in

WISE. By reducing the palette of interaction methods, the

cognitive load resulting from multiple equivalent navigating

methods, is reduced. This was in this area of limitation and

scoping that the least amount of gerontological cognitive research

was available, so this hypothesis was based more heavily on

standard user interface practices and intuition.

In the spirit of walk-up-and-use systems, the depth of interaction

with the system and the methods necessary to successfully use

WISE were reduced. There are no standard navigation paths with

a depth of more than five screens (e.g. depth of 4: MainWindow

⇒ Information ⇒ News ⇒ CNN). Further, the information

theoretic entropy of the system was reduced, because there are

fewer choices to make in the course of any given interaction.

The second intent of limiting the scope was to limit and unify the

look of the interface. This is a common heuristic leveraged

against any justified user interface. The interface was built in

such a way as to allow the ‘method of loci’ to be an effective way

to navigate and get information from the interface. Kausler

indicates that location-based memory can be an effective way to

associate and encode memory for older adults, so this idea was

added to the look of WISE’s interface [7].

As discussed above, there is a persistent history bar that tracks all

of the user’s choices from start screen to destination allowing easy

backtracking. Each page has a consistently placed title bar

describing the current step in the task path from start to goal.

Further, there is an extensive set of tutorial pages accessible from

the same location of every screen in the WISE interface. Once

one learns the location of help, it is possible to access assistance

from every screen directly. There are no drop menus. Everything

relevant is visible at all times, foregoing recall in favor of the

cognitive simplicity of simple recognition.

This uniformity was not trivial to achieve— a variety of widgets

were used to build the interface. Unfortunately, they often had

differing looks and feels. As the implementation section will

discuss, much time was spent trying to understand and integrate

widgets written in different languages and with different

functional intents. Nevertheless, the hassle was worth it: WISE’s

uniformity is what makes it immediately usable. Without that

ability, WISE would fail at its focus of supporting a group of users

that are may perform like novices (even when they are repeat

users).

2.4 Accessibility
The final design concern was accessibility, an aspect already

covered by many interfaces and one that WISE cannot afford to

lose, as usability is the primary focus. There is a great deal of

anecdotal evidence that older adults often face sensory

impairments. The interesting observation is that they can often

compensate for these limitations by relying on the context of

information [7]. This interface conforms both to standard

accessibility principles, as well as the extended context concerns.

Technical terms were removed from WISE, favoring instead a

goal-oriented vernacular. Instead of media player, the term

“Compact Disc Player” was used. Similarly, focusing on task,

instead of “use a text editor”, the user was prompted with “Type a

Document”. Further, menus and button titles were phrased as

questions or tasks to perform rather than as one-word phrases

whenever possible.

Some of the more straightforward aspects of WISE’s accessibility

design were the coloration and sizing decisions contained with the

system. WISE was built on a desaturated set of beige and yellow

hues. This was designed to reduce eyestrain and fatigue, as well

as to focus on colors that are highly visible even to users with

reduced visual acuity. Yellow and green are the two colors that

human retinal cones are most able to distinguish [4]. Combining

this with the concept of a lens that yellows with age, it was

apparent that a yellow coloration would be the best choice for

visibility. As a result, there is little red. What red is used, was

softened. Overall, the desire was to have WISE have a soft effect

on the eye, to help ease any trepidation against using a computer.

Other affordances include our use of large, high-contrast fonts

with serifs and the reinforcement of text with icons and vice versa.

Further, the use of large buttons not only makes them more

visible, but it also reduces Fitt’s Law limitations by increasing

target size. This will help not only users with reduced vision but

also those who may have lost some motor ability.

Past obvious accessibility affordances, context also plays a large

part in the usability of the WISE system. The aforementioned

history bar constantly reinforces the task metaphor, providing a

goal context for every navigation action in the interface. It is this

context that will hopefully blur the boundary between

accessibility concerns and the actual cognitive strategies that will

turn novice users into experienced users.

In context, all four of the above listed design concerns: linear

interaction, effective cognitive strategy prompting, uniform and

limited scope, and accessibility can interact to form one fully

integrated design. It was the Cocoa API that allowed this system

to be bult, but it was also Cocoa that forced a true integration of

all the desired actions. Thus, implementation issues became an

integral part of the design progress, warranting inclusion in any

discussion of WISE’s motivations.

3. DESIGN AND IMPLEMENTATION

DETAILS

3.1 The History Bar
A defining aspect of WISE’s design is the history bar. This tool

allows the user to visually understand and recognize the choices

that the user made (menu/application selections) to get to the

current window/task displayed on the screen. The history bar

consists of a clearly visible title, an icon and textual list of

choices, and a button that executes the ‘go back’ function. This

button is labeled as “Go back to:” followed by the name of the

menu/program the user will return to if the button is pressed. In

addition, if, for whatever reason, pressing the button would have

no effect (i.e., only the main menu item is in the history bar) the

button is hidden from the user. This prevents the user from

clicking a button and having no effect occur.

Figure 1: The History bar showing a depth of 4

Every time the user makes a choice, the menu’s name and icon are

placed on the bottom of the History list. The layout of the list is

done vertically to help convey a ‘zooming’ linear perspective. As

more and more options are placed on the History bar, the user will

have the feeling of zooming deeper and deeper into the program

without ever loosing perspective of their current menu or how to

get back up the chain. Due to the simplified design of menus and

choices we present the user, the depth of the bar never exceeds

five. An alternative design would be to have the history bar run

along the bottom of the window to present a linear concept from a

horizontal perspective. However, due to limitations with the

Cocoa environment, that was not possible in the current iteration

of WISE. This decision will be discussed in greater detail in

subsequent sections.

To conform to the limited-scope design heuristic, the history bar

functions under the single click design. Without selecting a

specific item from the history bar, pressing the ‘go back’ button

moves the user back one ‘step’ in the history. This design choice

was made to enable the user to traverse their history, even if they

have no concept of selecting items in their history bar. If a

menu/function is selected in the history bar, then the “go back”

button displays that menu/function’s name, and pressing it, will

jump the user back to that step, thus allowing faster traversal of

their history.

3.2 CD Player Functionality and Features

Figure 2: The CD player screen of WISE.

The goal of the Compact Disc Player’s design was to allow the

user to have a simple, easy-to-read view of their current CD.

Modern media players tend to have large play list features,

visualization options, and relatively small text and buttons. In

addition, they often combine the play and pause buttons, as well

as the scan and skip buttons. This button overloading can lead to

confusion. As a result, our CD player’s functionality is limited to

six separate buttons:

• Previous Track

• Play

• Next Track

• Pause

• Stop

• Eject

Noticeably absent are the scan features. These features, though

nice, are only useful when the current track’s run time, and

position could be displayed. Since this state information is not

displayed, corresponding functionality was not included. All

these functions are achieved by using AppleScript to control

iTunes, the default Apple audio media player, and an application

that we hide from the user.

In addition to the functionality, it was important that all

information displayed to the user be clear (both in size and

description). The WISE CD application displays the current

song’s name, the artist’s name, and the album’s name. In

addition, the current state of the player (playing, paused, stopped)

and the button functionality are clearly displayed in plain text, so

that the user can easily read the state and effect of a given button,

without having to know the common icons. Also adhering to the

limited scoping, all buttons are single click based.

3.3 Document Creator: Functionality and

Features
The goal of the Document Creator was to provide a simple way

for the user to do basic word processing. Many common features

associated with word processors are not made available (font, font

size, color etc). These features are not present so as to focus on

the typing of the text, rather then confusing the user with a

multitude of options. One unique notion was to provide a

document title text field so as to provide the user with a term or

phrase that they can constantly associate with their work. This

title is constantly displayed on the left side of the Document

Creator, and is used as the file name when the document is saved.

The Document Creator does not use icons to represent the

functionality available. All functions available (Bold, Underline,

Save, etc) are written out in large plain text, so that any literate

user can understand what functions are available and what buttons

perform what task.

3.4 Dictionary and Thesaurus
The initial plan was to provide these options to the user by using

the built in dictionary and thesaurus provided with OS X 10.4.

However, AppleScript currently cannot retrieve the content of the

dictionary/thesaurus application. As a result, the decision was

made to pursue other options; the two options were a

dictionary/thesaurus website or an online protocol called dict.

Dict is a simple protocol that handles requests for word

information from a server. The text received is dependent on the

server queried. In this case, a dictionary and thesaurus server.

Other servers were available, which might provide enhanced

functionality in the future, such as translation.

3.5 Web Based Applications
Following the design rationale of cognitive strategy prompting

and limited scope, a WISE user never needs to understand the

concept that they are browsing the World Wide Web, though the

Web is used as a source of information in many aspects of WISE.

By using a goal-based architecture and having ‘browsing’ be

controlled by goal-oriented input rather than by entering URLs or

invoking a browser, we achieve this application transparency.

Consider an example in which a user wants to find current movie

times. The old paradigm is as follows:

1. Realize you need a web browser.

2. Remember that Firefox is a web browser

3. Locate and invoke Firefox

4. Remember that there is a movie site

5. Remember that site’s URL

6. Type in that URL correctly

7. Finally, search for your movie

In contrast, WISE presents the user with the choice of looking up

information and then looking up movie times. The only input the

user must provide once he or she decides to look up movie times

is a zip code. Then, with a single button press, the browser in

WISE displays the movie times. Another example of goal-

directed browsing is reading the news: the user is not even

prompted for input in the form of text. Rather through a series of

simple menus, the user travels to the webpage of their favorite

news source. WISE never prompts the user for a URL or instructs

them to ‘go online.’ It is theorize that this decision will reduce the

novice user’s computer learning curve and will greatly increase

the user’s computer usage speed.

In addition to goal-oriented design to hide the concept of Web

browsing, a Wikipedia Web page parsing algorithm designed by

Sean Timothy Billig for his Wikipedia widget

(http://www.whatsinthehouse.com/widgets/) was incorporated.

His algorithm eliminated the general layout of the Wikipedia Web

page and presented a simplified HTML layout containing text and

images only (though sill properly formatted). This allowed

modify the text size and color scheme to make Wikipedia articles

easier to read. In time, a similar algorithm could be developed to

parse other Web-based parts of WISE to make browsing the web

even easier and more uniform.

A final issue pertaining to the WISE browsers is the idea of

navigation scoping. To prevent confusion with going back in the

history of WISE and going back in the history of the browser, a

bounding box is provided around the actual Web browsing

windows and the back/forward buttons associated with browser.

This particular decision after some informal, non-older-adult user

testing when it was noticed that users would try going backwards

in the browser when they really wanted to go back in the

application’s history.

3.6 Tutorials
If at any point the user wishes to better understand how to use

WISE or any sub feature or menu, a whole tutorial application. Is

made available. Unlike most help functions in applications,

WISE’s tutorials use large text in tandem with images to help the

user figure out how to achieve their goals. Goal-based

terminology was used as well, so as to parallel the user’s WISE

experience to date. Tutorials can be accessed from the main page,

as well as from each sub menu/application. In addition to each

menu and function having a tutorial, there is also a general usage

tutorial and history bar tutorial.

3.7 Uniform Window Layout

Figure 3: The start screen of WISE, displaying the basic layout of

the program.

As shown in research, uniform layout not only looks visually

pleasing, but also reduces the cognitive strain on older adults

when determining WISE’s functionality. The following common

visually layout cues exist in almost every aspect of WISE.

• Title Bar: The top of every page in WISE has a large yellow

bar with the word “WISE” as well as the task that can or

should be performed at the user’s current view. In case of

disorientation, or loss of context, this large bar will allow the

user to refocus on where they are and what task they are

currently performing

• History Bar: The history bar is always present on the right

side of the WISE window. Without needing to repetitively

use WISE, the novice user can quickly grow accustomed to

the position of the history bar and its vital nature for WISE

functionality.

• Icons: Every menu and function has a unique and distinct

icon associated with it. We use this same icon to activate the

given feature, to place it in the history bar, and to identify the

task in the top left of the given application’s screen. This

presents another form of repeated context to help keep the

user aware of his or her current task and location in WISE.

• Icon as Tutorial Button: The icon, located in the top left of

every window, can also be used at any point to activate a

tutorial for the given task screen. WISE adds this tutorial

screen to the end of the history, and the user can return to

their menu or function at any point by using the “Go Back

To:” button on the history bar. One can select the tutorial by

pressing the button on the tutorial page remotely from the

current menu or application, then telling the tutorial page to

display itself.

• Left/Right Sides of the Window: Every menu and application

of WISE is visually divided into a left side and right side.

The left side of every window, in addition to having the icon,

contains any general functionality for the given application

or menu. The left side takes up about 1/6th of the window’s

space on every application or menu. The right side of the

window is used for the application or menu itself. When

presenting information (movie times, news, a document’s

text, etc.), the right side of the window is used, while any

command functionality (main page, bold, print, etc) appears

on the left.

3.8 Accessibility
All text and buttons were enlarged, using a minimum of an 18-

point font when at all possible. WISE’s default font has support

for varying weights and serifs. Serifs make text more readable

and varying weights allow for better visual hierarchy. By using

larger buttons, we reduce time disadvantages predicted by of Fitt’s

law as stated above.

3.9 Modularity/WISE Architecture
Not only a good general programming practice, modularity

provided architectural support for much of WISE’s most

important functionality. The following is a brief description of the

architecture of WISE, first in text, then graphically.

WISE exists as three main parts:

1. The Main Window

2. History

3. All menus and applications

The main window controls the container that displays WISE. This

includes the buttons, text, and images that are displayed, as well

as connecting with the history part of the application. The main

window has no knowledge of any of the menus and applications

that WISE contains with the exception of the main option menu.

To change its display, a menu or application contacts the main

window controller and provides it with a bundle of information

(the content to be laid out, the position of said content, the logo

for the content, and a pointer to the menu or application itself).

The pointer to the menu or application is only used to inform the

destination if it is re-activated due to the user going backward in

history.

The history part of WISE maintains what menus or applications

the user has visited, the icon and name associated with each menu

or application, and a reference to the menu or application. These

pieces of information are provided to the history by the main

window controller. The history displays the icon and name on the

history bar. If the user ‘steps back’ in the history, the main

window retrieves the pointer to the given menu or application

from the history, and re-requests the layout and content to be

displayed.

All applications and menus exist as separate entities from the

history and all other menus or applications. Each menu or

application has two parts:

1. The View

2. The Controller

The view contains all layout information; buttons, images, text,

text fields, and web browsers. In addition, the views contain

references to any function that a button calls. If a given button on

a view activates a menu or application (e.g. the tutorial), the view

knows what function to call be it in the current menu or

application’s controller or another menu or application’s

controller. The receiving function does not need to know the

origin of the function call.

Figure 4: This is a view of the WISE architecture with one path

(Reference Books). Of note, is that all of the menus/applications’

controllers know about the main window, and the tutorial’s

controller. Each menu/application knows about the sub menus

and its own controller as described by the colored arrows.

The controller contains the functionality of the given menu or

application. For menus, this is just the menu’s name, reference to

the menu’s view, the menu’s name, a reference to the main

window, and a function to tell the main window to display the

menu itself. Applications contain everything a menu does, plus

any unique functionality associated with that application. This

includes any string parsing, input from the user in the form of text,

or file I/O.

As a result of the architecture show in Figure 4, the

implementation of the history and interconnection of the different

components is directly related and made possible by our early

design decisions. Without this modularity, it would become

exponentially harder to add new features and applications to

WISE. The modularity allows the content of the history bar to be

dynamically created. A prime example of this is with the tutorial.

Every menu and application references the tutorial, so at any

point, the one can call the tutorial. It then is dynamically added to

the history wherever in the hierarchy it should be. Yet the tutorial

does not know about any of the calling pages, only when its

functions are called, including its own display.

3.10 The Easy Part of using Cocoa and

AppleScript
One aspect of building WISE in Cocoa was the ease of web page

retrieval. A wonderful aspect of Cocoa and OS X to a large extent

is its built-in support for Web pages and Web browsing. As a

result, web browsing is an integral part of Cocoa, and thus doing

many aspects of web browsing are extremely simple.

In addition, Xcode (the primary development tool for Cocoa)

makes it simple to create the connection between our views and

controllers by literally drawing many of the arrows displayed in

the figure above.

Lastly, referencing many of the programs and system commands

of OS X was made relatively simple though the flexible

architecture of the Cocoa development language and the

AppleScript scripting language.

3.11 The Hard Part of using Cocoa and

AppleScript
Unfortunately, though Cocoa was a great environment to code and

design in, it was difficult to make the final product have a look

and feel diverging from Aqua. Cocoa and the Xcode design

environment limits the placement of many objects such as the

History Bar drawer, and it provides no simple support to easily

place text on top of images.

Also, though web browsing was made easy by Cocoa, there

appears to be a problem using AJAX, or viewing AJAX

applications on web pages. As a result, we were not able to use

Google’s yellow pages search, which uses AJAX to display maps.

A few roadblocks were reached while attempting to retrieving

some aspects of state from Cocoa objects. As of the writing of

this paper, the current state of fonts surrounding the cursor in the

document creator, as well as the length of the history (for

backward and forward) in a web browser are unable to be

retrieved. Therefore WISE is unable to display

bold/italics/underline feedback for the user, and to disable forward

and backward buttons for the web browser when no content exists

in the given direction.

Unrelated to Cocoa, though relevant to programming, was the use

of the Dict protocol. Unfortunately, the protocol does not support

concatenated words such as ‘picture frame.’ As a result, the

implementation does not provide support for concatenated

definitions.

4. Conclusions
Although it was a 4-week project, WISE was designed as a

launching pad for future work in the area of gerontological user

interface design. The base program went beyond the original

design goals, and due to the commitment to modular design it is

easily extensible for future additions. The question of balancing

novice performance against full expert functionality is left

partially unanswered. In the scope of the stated problem, novice

performance was paramount, but this does not have to be so.

There are no compelling reasons to believe that some expert short

cuts could be added without adversely affecting the novice senior

citizen.

WISE provided quite a few unique interaction techniques, which

though directly pertinent to older adults, may prove useful in other

situations. Of mention is the history bar, and the goal-based

architecture. Beyond the scope of WISE, it was concluded that

software designers are not limited to the standard drop menu

layout schemes. Rather, in WISE a simplified layout and control

scheme was developed, which still provides the same functionality

as the drop down menu paradigm, but which avoids the

complexities inherent in that system. Such simplification may be

possible in systems existing in other domains; designers would be

well-served to remember this point.

4.1 Future work
As a result of the limited time frame of the WISE project, testing

was unable to be conduced. Through the design process, some

informal, non-older-adult, user testing was conduced. Though this

provided valuable design feedback, the full implications of the

design on actual older adult users, the target audience, is still

unknown..

In order to test the design, the effectiveness of the task-based

architecture, and the usability of the history, a three-phase battery

of end-user testing is proposed. . Phase one would consist of a set

of focus groups with older adults who have limited or no

computer usage. This would provide initial feedback from true

novice users. After this testing, we could adjust WISE based upon

the results. Phase two, would be a experimental study looking at

the ease of use. Again, modification to WISE would be made to

reflect the findings. In addition to modifications to the system,

further features would be added to the architecture. Phase three

would consist of a larger 6 month to 1 year beta-test sampling of

older adults having a variety of prior experience with computers.

Ideally WISE would be installed in the house or living center of

older adults, so as to determine the benefits of long-term use.

Phase one is currently (Summer 2006) being conducted at IBM

Research, NY.

WISE is currently a fairly robust system. As with most initial

system designs, there are a number of points that would be

beneficial to pursue given more time. The following a short list of

short-term revisions that we would recommend making:

• Dictionary and thesaurus support of concatenated words

• AJAX support for such features as Google maps and Google

yellow pages

• Web browser state support, so as to hide forward/back

buttons from view when those options are not available

• State support for the Bold/Italics/Underline buttons, and the

current state of the cursor

• Bold/Italics/Underline buttons whose text reflects the

function they perform.

• Improved CSS support for web browser to blur the line

between the visual design of WISE and the web pages.

Beyond these point fixes, there are many longer term that re-

designs that would better immerse the user in the WISE

experience. These features range from simply improved layout to

brand new functionally. The following a list of possible re-design

directions for WISE:

• Support for a full screen mode at various screen resolutions

• Utilization of OS X’s Voiceover Utility to synthesize text to

speech

• Better and more consistent parsing of Web pages and other

external sources, possibly based on current work by Billig on

parsing Wikipedia

• Reinforcement of linear interaction via screen transitions,

possibly in the form of a page turn/flip in the direction of the

change in scope

• Support for more applications such as a mailer,

health/medicine information/search, chat client , weather

reporter, and calendar while still respecting the design

decisions already present in WISE

• Better exploitation of Cocoa and OS X’s graphical

capabilities to make our system both more attractive and

more accessible

• True integration of WISE into OS X as a non-application

interface layer.

Clearly not all of these goals are feasible in the near future.

However, only by setting the bar high now, can our society move

closer to a future where a system is available commercially and

can bring the older adult community into the 21st century.

4.2 Chat Client
One of the most exciting future extensions to WISE is the Chat

Client. Maintaining the “one task at a time” philosophy of WISE,

places the notion of online chatting in a new territory. Online

chatting is intended to have multiple conversations at a time., as

currently phrased However, this design in and of itself flies in the

face of accepted gerentilogical usability research.

Having given this problem some limited attention a queue based

chat system could conceivably be implemented. Consider the

model where a user can see a list of individuals who whish to

speak with them, in the order they have requested conversation.

At which point, the user can choose whom they wish to speak to,

one at a time. When a conversation is concluded, a new one can

be started. Thus, chatting becomes more like a phone call,

involving only two people, though having the “call waiting” beep

occurring, letting one know others would like to speak with you.

Other solutions could be conceived with more thought, and

extensive user testing. Such a concept is hoped to be explored in

further iterations of WISE.

5. ACKNOWLEDGMENTS
I want to thank William Haines, Assistant Professor Jason Hong,

Vicki Hanson, Mark Laff, Shari Trewin, John Richards and Chin

Chin Lee for their assistance. The author would also like to thank

Sean Billig for his open-source Wikipedia Widget, which helped

us enormously with parsing the Wikipedia data. It is available

online at http://www.whatsinthehouse.com/widgets/.

6. REFERENCES
1. Craik, F. I. M. Age Differences in Memory: The Roles of

Attention and Depth of Processing. New Directions in

Memory and Aging. Ed. L. W. Poon, J. L. Fozard, et al.

Lawrence Erlbaum Associates, Inc. (1980): 95-112.

2. Craik, F. I. M. Memory, Aging, and Survey Measurement.

Cognition, Aging, and Self-Report. Ed. N. Schwartz, D. Park,

et al. Edwards Brothers (1998): 95-115.

3. Czaja, Sara J. Computer Technology and the Older Adult.

Handbook of Human-Computer Interaction Second Edition.

M. Helander, T.K. Landauer, P. Prabhu. Science B.V. (1997):

797-812.

4. Hong, Jason. Private Communication. Software Architecture

User Interfaces – 05431. Carnegie Mellon University (Fall

2005).

5. Hultsch, D. F. Adult Age Differences in the Organization of

Free Recall. From Developmental Psychology, Vol. 1, No. 6

(1969): 673-678.

6. Hultsch, D. F and C. A. Pentz. Encoding, Storage, and

Retrieval in Adult Memory: The Role of Model Assumptions.

New Directions in Memory and Aging. Ed. L. W. Poon, J. L.

Fozard, et al. Lawrence Erlbaum Associates, Inc. (1980): 73-

94.

7. Kausler, D. H. Learning and Memory in Normal Aging.

Academic Press, Inc. (1994).

8. Knäuper, B. Age Differences in Question and Response Order

Effects. Cognition, Aging, and Self-Report. Ed. N. Schwartz,

D. Park, et al. Edwards Brothers (1998): 341-364.

9. Kwong See, S. T. and E. B. Ryan. Intergenerational

Communication: The Survey Interview as a Social Exchange.

Cognition, Aging, and Self-Report. Ed. N. Schwartz, D. Park,

et al. Edwards Brothers (1998): 245-263.

10. Newell, A. F. and Gregor, P. Human Computer Interfaces for

People with Disabilities. Handbook of Human-Computer

Interaction Second Edition. M. Helander, T.K. Landauer, P.

Prabhu. Science B.V. (1997): 813-824

11. Poon, L. W., L. Walsh-Sweeney, and J. L. Fozard. Memory

Skill Training for the Elderly: Salient Issues on the Use of

Imagery Mnemonics. New Directions in Memory and Aging.

Ed. L. W. Poon, J. L. Fozard, et al. Lawrence Erlbaum

Associates, Inc. (1980): 461-484.

12. Winograd, E. and E. W. Simon. Visual Memory and Imagery

in the Aged. New Directions in Memory and Aging. Ed. L.

W. Poon, J. L. Fozard, et al. Lawrence Erlbaum Associates,

Inc. (1980): 485-506.

