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Abstract

This tutorial demonstrates how character recognition can be done with a backpropagation
network and shows how to implement this using the Matlab Neural Network toolbox. This
is a slightly modified version of the character recognition application of the Matlab Neural
Network toolbox (chapter 11).

Usage

This tutorial is also available as printable PDF file.
The matlab code for this tutorial is part of the Neural Network Toolbox which is installed

at all PCs in the student PC rooms. To start the tutorial just type appcr1 at the matlab
prompt. To get the offline HTML version of this tutorial and the matlab code as presented
in the exercise course you have

1. to download the file nn-ocr.zip1.

2. Unzip nn-ocr.zip which will generate a subdirectory named nn-ocr.

3. Add the path nn-ocr to the matlab search path with a command like
addpath(’C:\Work\nn-ocr’)

if you are using a Windows machine or

addpath(’/home/jack/nn-ocr’)

if you are using a Unix/Linux machine.

1 Optical Character Recognition

It is often useful to have a machine perform pattern recognition. In particular, machines that
can read symbols are very cost effective. A machine that reads banking checks can process
many more checks than a human being in the same time. This kind of application saves time
and money, and eliminates the requirement that a human perform such a repetitive task.

1http://www.igi.tugraz.at/lehre/CI/tutorials/nn-ocr.zip
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1.1 Problem Statement

A device is to be designed and trained to recognize the 26 letters of the alphabet. We assume
that some imaging system digitizes each letter centered in the system’s field of vision. The
result is that each letter is represented as a 5 by 7 grid of real values.

The following figure shows the “perfect” pictures of all 26 letters.

Figure 1: The 26 letters of the alphabet with a resolution of 5× 7.

However, the imaging system is not perfect and the letters may suffer from noise:

Figure 2: A “perfect” picture of the lettar “A” and 4 noisy versions (stabdard devistion of
0.2).

Perfect classification of ideal input vectors is required, and more important reasonably
accurate classification of noisy vectors.

2 Using a Neural Network to sovle the problem

The script appcr1.m which is part of the Neural Network Toolbox demonstrates how character
recognition can be done with a backpropagation network.

The twenty-six 35-element input vectors are defined in the function prprob as a matrix of
input vectors called alphabet. The target vectors are also defined in this file with a variable
called targets. Each target vector is a 26-element vector with a 1 in the position of the letter
it represents, and 0’s everywhere else. For example, the letter “C” is to be represented by a
1 in the third element (as “C” is the third letter of the alphabet), and 0’s everywhere else.

The network receives the 5×7 real values as a 35-element input vector. It is then required
to identify the letter by responding with a 26-element output vector. The 26 elements of the
output vector each represent a letter. To operate correctly, the network should respond with
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a 1 in the position of the letter being presented to the network. All other values in the output
vector should be 0.

In addition, the network should be able to handle noise. In practice, the network does
not receive a perfect letter (see Fig. 1) as input. Specifically, the network should make as few
mistakes as possible when classifying vectors with noise of mean 0 and standard deviation of
0.2 or less (see Fig. 2).

2.1 Network Architecture

The neural network needs 35 inputs and 26 neurons in its output layer to identify the letters.
The network is a two-layer network. The log-sigmoid transfer function at the output layer
was picked because its output range (0 to 1) is perfect for learning to output boolean values.

The hidden layer has 10 neurons. This number was picked by guesswork and experience.
If the network has trouble learning, then neurons can be added to this layer.

The network is trained to output a 1 in the correct position of the output vector and to fill
the rest of the output vector with 0’s. However, noisy input vectors may result in the network
not creating perfect 1’s and 0’s. After the network is trained the output is passed through
the competitive transfer function compet. This makes sure that the output corresponding to
the letter most like the noisy input vector takes on a value of 1, and all others have a value
of 0. The result of this post-processing is the output that is actually used.

2.2 Initialization

The two-layer network is created with newff.

S1 = 10;

[R,Q] = size(alphabet);

[S2,Q] = size(targets);

P = alphabet;

net = newff(minmax(P),[S1 S2],{’logsig’ ’logsig’},’traingdx’);

3 Network Training

To create a network that can handle noisy input vectors it is best to train the network on
both ideal and noisy vectors. To do this, the network is first trained on ideal vectors until it
has a low sum-squared error.

Then, the network is trained on 10 sets of ideal and noisy vectors. The network is trained
on two copies of the noise-free alphabet at the same time as it is trained on noisy vectors.
The two copies of the noise-free alphabet are used to maintain the network’s ability to classify
ideal input vectors.

Unfortunately, after the training described above the network may have learned to clas-
sify some difficult noisy vectors at the expense of properly classifying a noise-free vector.
Therefore, the network is again trained on just ideal vectors. This ensures that the network
responds perfectly when presented with an ideal letter.

All training is done using backpropagation with both adaptive learning rate and momen-
tum with the function traingdx.
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3.1 Training Without Noise

The network is initially trained without noise for a maximum of 5000 epochs or until the
network sum-squared error falls beneath 0.1.

P = alphabet;

T = targets;

net.performFcn = ’sse’;

net.trainParam.goal = 0.1;

net.trainParam.show = 20;

net.trainParam.epochs = 5000;

net.trainParam.mc = 0.95;

[net,tr] = train(net,P,T);

3.2 Training with Noise

To obtain a network not sensitive to noise, we trained with two ideal copies and two noisy
copies of the vectors in alphabet. The target vectors consist of four copies of the vectors in
target. The noisy vectors have noise of std 0.1 and 0.2 added to them. This forces the neuron
to learn how to properly identify noisy letters, while requiring that it can still respond well
to ideal vectors.

To train with noise, the maximum number of epochs is reduced to 300 and the error goal
is increased to 0.6, reflecting that higher error is expected because more vectors (including
some with noise), are being presented.

netn = net;

netn.trainParam.goal = 0.6;

netn.trainParam.epochs = 300;

T = [targets targets targets targets];

for pass = 1:10

P = [alphabet, alphabet, ...

(alphabet + randn(R,Q)*0.1), ...

(alphabet + randn(R,Q)*0.2)];

[netn,tr] = train(netn,P,T);

end

3.3 Training Without Noise Again

Once the network is trained with noise, it makes sense to train it without noise once more to
ensure that ideal input vectors are always classified correctly. Therefore, the network is again
trained with code identical to the Training Without Noise section.

4 Estimating the System Performance

The reliability of the neural network pattern recognition system is measured by testing the
network with hundreds of input vectors with varying quantities of noise.

For example we create a noisy version (SD 0.2) of the letter “J” and query the network:
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noisyJ = alphabet(:,10)+randn(35,1) * 0.2;

plotchar(noisyJ);

A2 = sim(net,noisyJ);

A2 = compet(A2);

answer = find(compet(A2) == 1);

plotchar(alphabet(:,answer));

Here is the noisy letter and the letter the network picked (correctly).

Figure 3: The network is tested with a noisy version of the letter “J”.

The script file appcr1 tests the network at various noise levels, and then graphs the
percentage of network errors versus noise. Noise with a mean of 0 and a standard deviation
from 0 to 0.5 is added to input vectors. At each noise level, 100 presentations of different
noisy versions of each letter are made and the network’s output is calculated. The output
is then passed through the competitive transfer function so that only one of the 26 outputs
(representing the letters of the alphabet), has a value of 1.

The number of erroneous classifications is then added and percentages are obtained.
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Figure 4: Performance for the network trained with and without noise.

The solid line on the graph shows the reliability for the network trained with and without
noise. The reliability of the same network when it had only been trained without noise is
shown with a dashed line. Thus, training the network on noisy input vectors greatly reduces
its errors when it has to classify noisy vectors.

The network did not make any errors for vectors with noise of std 0.00 or 0.05. When
noise of std 0.2 was added to the vectors both networks began making errors.
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If a higher accuracy is needed, the network can be trained for a longer time or retrained
with more neurons in its hidden layer. Also, the resolution of the input vectors can be
increased to a 10-by-14 grid. Finally, the network could be trained on input vectors with
greater amounts of noise if greater reliability were needed for higher levels of noise.

5 Summary

This problem demonstrates how a simple pattern recognition system can be designed. Note
that the training process did not consist of a single call to a training function. Instead, the
network was trained several times on various input vectors.

In this case, training a network on different sets of noisy vectors forced the network to
learn how to deal with noise, a common problem in the real world.
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