
Published in International Journal of Advanced Engineering & Application, Jan 2011 Issue 39

Transformation of Legacy System OODB Modeling into

AODB

1
Shivani A Trivedi,

2
Nalin. N. Jani,

3
Amal Kumar

1
KSV-SKPIMCS-MCA, India,

2
KSV-SKPIMCS-MCA, India,

3
MBA-Bhavnagar University, India

Abstract - This paper aims at modeling database management system to support for effective intelligent

decision making. The relational database (RDB) system has served for decades and provided relevant

information to the needs of information seekers. The need for decision making met to transform RDB to ODB.

This transformation could realize information for decision support. The dynamic situation is generating a need

of decision making system rather decision support system. This need has inspired authors to model agent

oriented databases (AODB). The paper has narrated the modeling and transformation from RDB model to

ODB model to AODB model.

Keywords — Data Modeling, Object Oriented data modeling, Agent, Agent Technology, Agent Oriented

Database Model

I. INTRODUCTION

The development of computerized application

system started with applications in smallest domain as a

FORTRAN, COBOL etc which was design and

development that time procedural programming, the

only procedural programming was available that span of

time.

The advantage of language „C‟ also supported
regularly procedural oriented programming paradigm

but added a domain of system software development.

Then the extension of „C‟ emerged as „C++‟ good gave
both object oriented paradigm.

The data were managed in the application systems

but not scientifically the way the data was managed in a

DBMS environment with availability of emerging

development and resource reach execution platform such

as J2EE and .NET framework based development. This

development could lead the developers through Client

Server architecture based application development with

scientifically managed data through DBMS server.

These applications could increase their domain from

database server to web server giving flexibility to the

clients to be connected to web database server on wider

scale. These systems could add the features of object

oriented programming in the development software for

better manageability of S/W product. These systems

classified under Object Oriented Database Management

System (OODBMS) could give as robust applications

but the object worked as they were predefined.

Today, the situation is that only organization using

such s/w system faces certain key issues for their

survival and growth of the organization with still better

management of data, information and optimized decision

in a chunk of time. Object Oriented Database

Management System (OODBMS) do not come up to the

mark to address these issues. The efforts was made to

address these issues by developing component based

database system, where intelligently objects were

grouped and as a result it could reduced the time to take

decision but the demand of organization still went high

in a competitive environment. System should act

intelligently and work for optimized decision, this lead

development environment to the Agent Oriented

Database Management System (AODBMS). These

systems are capable to address issues such as

reeducation time in decision making and making

decision more intelligent. Concept of object is needs a

transformation into the concept of Agent". An agent is a

computer system situated in some environment, and that

is capable of autonomous action in this environment in

order to meet its design objectives." An autonomous

agent should be able to act without the direct

intervention of humans (or other agents), and should

have control over its own actions and internal state. And

an "agent based system" means one in which the key

abstraction used is that of an agent [1]. “Agent” is
applied to diverse technologies and products.

II. RDBMS MODELING TO OODB MODELING

In RDB, the relationships among records are

specified by attributes with matching values. These can

be considered as value references and are specified via

foreign key(s), which has a domain of primary key.

These are limited to begin single-valued in each record

because multi-valued attributes are not permitted in the

basic relational model. Thus M:N relationships must be

represented not directly, but as a separate relation (table)

with application of 4th normal form as a part of

normalization process.

In ODB, the relationships are typically handled by

having relationship properties or reference attributes that

include Object Identifiers, OID(s) of the related data

objects. The role of primary key in RDB is played by

OID in ODB. The additional component of role is to

references functions/methods also. These can be

considered as OID references to the related objects. Both

single references, for individual instance of the objects

and collections of references for prototyping of objects

are facilitated. References for a binary relationship can

be declared in a single direction, or in both directions,

depending on the types of access expected. If declared in

both directions, they may be specified as inverses of one

Published in International Journal of Advanced Engineering & Application, Jan 2011 Issue 40

FACULTY

BELO

NGS ADVIS
OR

COMMI

GRAD_STUDENT
DEPARTMENT

m

1

1

n

m

n

another, thus enforcing the ODB equivalent of the

relational referential integrity constraint.

In RDB, the mapping of the relationships are

specified using 1:1, 1:M and M:N among the records.

And the degree of relationship can be specified using

unary, binary , ternary and n-ary. Where as when we are

trying to map relationship from RDB to ODB the

mapping of binary relationships that contain attributes is

not that simple and the designer is required to select the

direction of the attributes to be included. When the

attributes are included in both directions, then

redundancy in storage will occur and this may lead to

inconsistent data. In this situation it is more preferable to

use the relational approach of creating a separate table in

RDB and creating a separate class in ODB. This

approach can also be used for n-ary relationships, with

degree n>2.

The handling of inheritance in RDB is by way of

extended relationship and the same are represented

graphically by way of Extended Entity Relationship

Diagrams. The handling of inheritance in ODB, is by

way of building structures into the model and the

mapping is achieved by using the inheritance constructs,

such as derived (:) and EXTENDS. In RDB design, no

such built in constructs are facilitated for inheritance

handling.

In RDB design it is not requirement of specification

of operations during the design phase and they are

required in the implementation phase. In ODB design, it

is necessary to specify the operations during design

phase since they are the part of class specifications.

Here we are trying to justify the conversion of RDB

and ODB. Let us take the example to implement the

four different cases to convert the EER model to ODB

model. Here we have taken the EER diagram of standard

University database.

Fig. 1 Example of Extended ERD University Database in RDB

A. Case 1: Entity type or subclasses

Create an ODL class for each EER entity type or

subclass.

 Multivalued Attributes can be handled as follows

o List Constructor: attribute values are ordered

o Bag Constructor: duplicates are allowed

o Set Constructor: otherwise

 Composite Attributes can be handled using “Tuple
Constructors”.

 Key attributes can be specified as keys of extent

 Declare an extent for each class and specify any key

attributes

Let us take the entity “PERSON” as shown in figure 1

Fig 2 Entity representation for RDB data modeling

Let us draw a class diagram for the same as follow

PERSON

Key: Ssn

struct: Pname

 { string fname,

 string Mname,

 string Lname},

Struct: Address {short no,

 string street,

 short aptno,

 string city,

 string state,

 short zip},

 date birthdate;

enum Gender {M, F} sex;

short age();

Fig.3 Entity representation for ODB data modeling

B. Case 2: Relationship

I). Binary Relationship: We can add relationship

properties or reference attributes into ODL

classes that participate in the relationship,

which references in both direction relationship

properties that are inverses of one another or in

only one direction attribute in the referencing

class whose type is referenced class name

II). Cardinality Ratio: As discussed earlier in

RDB,1:1 or N:1 and 1:N or M:N directions the

relationship properties or reference attributes

are identified as single-valued and set-valued or

list-valued in ODB.

Fig. 3 An example of Binary relationship and cardinality ratio in data

model of RDB.

PERSON

S

e

N

S

s

B

D

Ad

dre

F

N

M

i

L

N
N

o

S

t

A

p

C

i

S

t

Z

i

Published in International Journal of Advanced Engineering & Application, Jan 2011 Issue 41

PERSON

Attributes

FACULTY

Attributes

DEPARTMENT

Attributes

GRAD_STUDENT

Attributes

Is a

advises
Works in has

committee

of

1..*

1..1

1..*

1..*

..

derived from

Fig.4 Transformation, an example of inheritance, single valued and set-

valued data model of ODB.

C. Case 3: Include appropriate operations for each

class.

I). Constructor method: check constraints that

must hold when a new object is created.

II). Destructor method: check any constraints that

may be violated when an object is deleted.

PERSON

Attributes

FACULTY

Attributes

DEPARTMENT

Attributes

GRAD_STUDENT

Attributes

Is a

advises
Works in has

committee

of

1..*

1..1

1..*

1..*

..

derived from

Fig. 5 PERSON is base class and FACULTY is derived class

D. Case 4: An ODL class that corresponds to a

subclass i.e faculty as shown in figure 5 can be

described as

class Faculty extends Person

(extent faculty)

{

 attribute string … ;
 relationship Department works_in

 inverse Department::has_faculty;

 relationship set<GradStudent> advises

 inverse GradStudent::advisor;

 relationship set<GradSection> on_committee_of

 inverse GradStudent::advisor;

void give_raise(in float raise);

void promote(in string new rank);

};

E. Case 5: A weak entity type can be mapped the same

way as regular entity type, if one: one relationship

composite multivalued attributes of the owner entity

type set<struct<…>> or list<struct<…>>

III. NEED OF ODB TO AODB

To properly design an effective ODB, the database

designer must have a clear understanding of the object-

oriented model and its effective implementation through

the model mapped prototype. Some data domains have

explicit objects and clearly defined relationships among

the objects. Such situations justify the application of

object oriented principles where local integrity of data is

guaranteed. Object-oriented Development is best suited

for dynamic, interactive environments, as evidenced by

its widespread acceptance in CAD/CAM and

engineering design systems. Such systems have not

proved their suitability to the same extent in case of

enterprise wide applications that are dynamic, interactive

and adaptive to changes in external environmental data.

An ODB data model do contain system related

definition/specification but needs in its extension the

external environmental information for the intelligent

decision support for dynamic decision driven business

system.

In current scenario of business environment,

practically it is not possible for decision makers to read

every document that crosses their desks, every relevant

data available in databases, every article in the magazine

and journals to which they subscribe, or all most all the

emails received in their mail boxes. This analysis is also

supported by the survey findings of the Gartner group

 The amount of data collected by large enterprise

doubles every year.

 Knowledge workers can analyze only 5% of this

data.

 Most of their efforts are spent in trying to discover

important patterns in the data i.e. more than 60%, a

much smaller time is spent to determine that what

these patterns mean, and very little time (10% or

less) is spent actually doing something about the

pattern.

 Tremendous of information reduces our decision

making capability by 50%.

In spite of all of this, managers are expected to take

account of key business information and make good

decisions. In this situation “Intelligent Agent” is
emerging as a suitable technical solution. A major value

of intelligent agent is that they are able to assist in

searching through large pool of data. They save time by

making decisions relevant to the user. Information

access and navigation are today‟s major applications of
intelligent agents. Agents can handle many routine

activities that need to be done quickly. In decision-

making, intelligent agents can fulfill the growing needs

for support for tasks performed by knowledge workers.

The success of business in the market place can be

achieved by the business professionals who can make

timely and knowledgeable decisions; they can greatly

increase their effectiveness by intelligently accessing

information from the business databases. Database

designers and developers are required to embed agent

technology in managing the business databases. The

embedded agent technology empowers the database

environment for the support of dynamic parameter based

intelligent decision making.

Published in International Journal of Advanced Engineering & Application, Jan 2011 Issue 42

IV. AGENT TECHNOLOGY AN OVERVIEW

Three view point of an agent [2] “An agent is
anything that can be viewed as perceiving its

environment through sensors and acting upon that

environment through effectors.”
"Autonomous agents are computational systems that

inhabit some complex dynamic environment, sense and

act autonomously in this environment, and by doing so

realize a set of goals or tasks for which they are

designed."

"Intelligent agents are software entities that carry

out some set of operations on behalf of a user or another

program with some degree of independence or autonomy,

and in so doing, employ some knowledge or

representation of the user's goals or desires."

In agent oriented paradigm agent can be defined like

objects with additional component in its definition which

is resources. The autonomy characteristic of agent is

referred as the freedom in the allocation of internal

resource. The pro-activeness is another characteristic of

an agent by which the agent is free to decide when to

become active, deactivate and reactive.

Fig. 6 Agent in Agent Oriented Paradigm

The following diagram depicts the categories of

agents.

Fig. 7 Categories of Agents

V. WORKING MECHANISM OF

INTELLIGENT AGENT

When an intelligent agent executes, it acquires input,

process and produces output. Agent processing is

domain-oriented. An agent “knows” about certain
concepts, data structures, rules, and interfaces but is not

necessarily capable of interpreting information outside

its domain. An agent is capable of reasoning by referring

encapsulated rules and transforms conditions into

decisions. And it operates autonomously by good aspect

of being persistent and capable of operating in a

changing environment.

VI. AGENT ARCHITECTURE

The architecture of an agent should propose a

methodology for building an autonomous agent. It

should specify how the overall problem can be

decomposed into interrelated sub-problems. It should

specify how the construction of the agent can be

decomposed into the construction of a set of component

modules. It should specify how these component

modules are made to interact. It specifies how these

modules with interactions provide an answer to the

question of how the sensor data and the current internal

state of the agent determine the actions and the then

internal state of the agent. Following figure shows the

hybrid agent architecture.

Fig.8 Hybrid Agent Architecture

VII. AGENT-OBJECT-RELATIONSHIP

MODELING LANGUAGE (AORML)

In [3], an agent-oriented modeling language was

proposed for the analysis and design of organizational

information systems, called Agent-Object-Relationship

modeling language (AORML). In the AORML, an entity

can be an agent, an event, an action, a claim, a

commitment, or an ordinary object. Special relationships

between agents and events, actions, claims and

commitments supplement the fundamental association,

generalization and aggregation relationships of UML

class models. AORML can be viewed as an extension of

the Unified Modeling Language (UML). They author

believes that AORML, by virtue of its agent-oriented

categorization of different classes, allows more adequate

models of organizations and organizational information

systems than natural UML.

In [4], Gerd Wagner presents a UML profile for an

agent-oriented modeling approach called an Agent-

Object-Relationship (AOR). Casting the AOR

metamodel as a UML profile allows AOR models to be

notated using standard UML notation.

VIII. AGENT BASED DATABASE

From a modern perspective, a more general

abstraction for a database is appropriate: a database is a

computer model that is a source of faithful views of the

external world. At any stage, the state of the computer

model corresponds to the actual or conceived state of an

external system. The user perceives the state of the

computer model via views that rely upon suitable

Published in International Journal of Advanced Engineering & Application, Jan 2011 Issue 43

.

.

Class Schedule

Information

about Session

Faculty

Unavailability

of faculty

FACULTY

Attributes

Time Table

In-charge

Attributes

Is a

External Environment (Resource) Time Table Management System’s Class

metaphors. The table metaphor that works well for a

traditional recordkeeping system isn't a good way to

describe a visual image. Modern computers have

unexplored potential for new metaphors. Each metaphor

involves different ways of presenting the state of the

computer model to the user, and different ways of

enabling the user to manipulate this state. In developing

a computer model that represents a real-world state, the

mode of presentation and manipulation is of the essence.

Modern database design requires very general

modes of real-world simulation to support for intelligent

decision making. This design to be effective the

principles, concepts and procedures learnt from

relational database theory alone cannot be suffice to

frame the design in terms of tabular representations and

relational operators. The ODB takes care of limitations

of RDB. The limitations of ODB lie in the fact that the

object does not take care of the prevailing changing

environment around the object. This unattended aspect

requires the empowerment of object to acquire the

information from the dynamically changing object

surrounding environment. The object having this

capability becomes resourceful and we can call it as an

agent.

IX. MODELLING ODB TO AODB

The discussed case of university database has set of

objects like person, employee, faculty; staff, student,

examination in-charge, timetable in-charge, stationary,

leave, class room, course, teaching plan etc. Let us

consider a scenario 1 and scenario 2.

A. Scenario 1

The examination in-charge as an object becomes

resourceful if it acquires the information from objects in

the surrounding environment such as stationary object

regarding availability status of stationary, as staff object

and its inherited class objects such as teaching staff, non-

teaching staff, technical staff regarding availability

status of staff, as class room object regarding availability

of class room, as faculty and course objects regarding

faculty wise course completion status, as student and

examination form regarding the number of students

appearing at the exam etc. The examination in-charge

object becomes an agent for the database.

Fig 9 Agent Modeling in AODB which interact with object

B. Scenario 2,

If time-table in-charge wants to manage daily time-

table, he requires information regarding daily class

schedule, unavailability of faculty/(ies), timeslots to be

manage, available faculties during that timeslot who has

minimum load on that day.

Fig 10 Agent Modeling in AODB which interact with object

X. CONCLUSION

The transformation of RDB to ODB is analyzed

with betterment in design to make the design nearer to

the real life situations. The transformation of ODB to

AODB takes an object to become more resourceful with

required environmental data for decision making.

Decision support system had utilized information from

RDB as well as ODB for the purpose of decision making

but AODB takes decision makers to a state further where

agents as an autonomous agent does to the job of

decision making and leads decision maker with

information for effective intelligent decision making.

The entire journey of effective decision making requires

modeling of agent oriented database management system.

This research can be extended in future to work on

architecture and prototyping AODB for decision making

systems, prototyping tracks and tool supports, analysis

of tracks.

REFERENCES

[1]. M. Wooldridge. Agents and software engineering. In AI*IA

Notizie XI(3), pages 31-37, September 1998.

[2]. Nicholas R. Jennings and Micheal J. Wooldridge, Agent

technology: foundations, applications, and markets ,Pages: 3 -

28 ,Year of Publication: 1998

[3]. Wagner, G., The Agent-Object-Relationship Metamodel:

Towards a Unified View of State and Behavior. May 2002, Technical

Report, Eindhoven Univ. of Technology, Fac. of Technology

Management. Available from http://AOR.rezearch.info.

[4]. Wagner, G., “A UML Profile for External AOR Models,” in A

UML Profile for External AOR Models, F. Giunchiglia, J. Odell, and

G. Weiss, Eds. 2003, Springer-Verlag, Berlin. Available at

http://www.auml.org/auml/working/Wagner-aose02-47.pdf.

.

.

Stationary

Availability of

stationary

Non-

teaching/Staff

Availability of

staff

FACULT

Y

Attributes

Exam-In-

charge

Attributes

Is

External Environment Exam System’s

http://aor.rezearch.info/
http://www.auml.org/auml/working/Wagner-aose02-47.pdf

