ANNEXES

ANNEXE A

Paramètres de rugosité (Doc. UBM)

ANNEXE B

Programme de simulation par éléments finis

Ce programme (ANSYS 5.0a) simule la réponse en pression d'une membrane de 3 mm de

côté, 20 µm d'épaisseur recouverte par 0,5 µm d'oxyde thermique (1130°C). A la fin du

programme les deformations en surface du corps d'épreuve sont triées en ligneskolonnes et

sorties sous forme de fichier texte.

! Fichier coupleans **!*** REPONSE EN **PRESSION D'UNE** MEMBRANE OXYDEE PRECONTRAINTE 1 * Christophe MALHAIRE 19% ! Programme flexible : on peut modifier le maillage sans se soucier ! des numéros de noeud. Les données (contraintes, & formations en ! surface de l'oxyde) sortent triées pour être exploitees ultérieurement. /FILNAM.essai /TITLE, Thermoelastical strain /UNITS.SI ! unites [kg], [m], [s] ****** /PREP7 !----- Paramètres géométriques du quart de la structure [m] ------! la membrane est dans le plan xy (x>0, y>0) A=1.5E-3 ! demi longueur en x de la membrane B=1.5E-3 ! demi longueur en y de la membrane EPAIS=20E-6 ! Cpaisseur de la membrane en silicium BASPILE=1.7E-3 ! longueur du bas de la pile WAFER=350E-6 ! Cpaisseur du wafer EPOX=0.5E-6 ! Cpaisseur de l'oxyde en surface ! ----- Maillage : divisions des lignes----divox=1' Cpaisseur de l'oxyde en surface divep=2 ! Cpaisseur de la membrane ! membrane en x divx = 18! membrane en y divy=18 divpz=3 ! hauteur des piles divpx=4 ! pile en x dessus et dessous divpy=4 ! pile en y dessus et dessous --- coefficients d'expension--! -expx=4 **!coeff** d'expension demi membrane x ! coeff d'expension demi membrane y expy=4

divpx=4	! pile en x dessus et dessous		
divpy=4	! pile en y dessus et dessous		
1 00	efficients d'avnens	ion	
expx-4	l coeff d'expension demi membrane x		
expx=4	l coeff d'expension demi membrane y		
expdx=3	! dessus	pile de gauche en x	
expdv=3	! dessus	pile en haut en v	
expint=4	! intérieur des pi	les	
expext=4	! extérieur des pi	les	
expbasx=3	! bas des piles en	l X	
expbasy=3	! bas des piles en	ту	
explongx=3	! long du bas de la pile en x		
explongy=3	! long du bas de	la pile en y	
! Pro	priétés du silicium	<110>	
S11=5.9187E-12		! complaisance à 25°C	
S12=-0.3698E-12		! [Pa]-1=[N/m2]-1	
S13=-2.14197E-12			
S33=7.69087E-12			
S44=12.577E-12			
S66=19.6657E-12			
TB,ANEL,1,1,			
TBTEMP,298.15,		! Sij à 25°C, soit 298.15 K	
TBDATA,1,S11,S12,S13	3,0,0,0	! Attention à l'ordre de ces coefficients	
TBDATA,7,S11,S13,0,0	,0,\$33		
TBDATA,13,0,0,0,866,0),0		
TBDATA,19,S44,0,S44			
MP ALPX 1 4 001e-6		coefficient de dilatation thermique moven	
		! obtenu à partir de l'intégrale entre 25 et 1130	
, ,			
! I	roprietes du SiO2		
YOUNGOX=72.8E9		! module d'Young moyen [N/m2] 72.8 GPa	
POIOX=0.165		! coeff de Poisson moyen	
CDOX=0.578E-6		! coeff dilatation th moyen entre 25°C et 1130°C	
MP,EX,2,YOUNGOX			
MP,NUXY,2,POIOX			
WII,ALI A,2,CDOA			
		! Variables supplémentaires calculées en tenant compte de ! l'angle de 54°74 entre les plans 111 et 100	
HAUTPILE=BASPILE+	(WAFER-EPAIS)	/1.41235	
X19=(WAFER-EPAIS)/	1.41235+A		
Y25=(WAFER-EPAIS)/	1.41235+B		

K, 10,0,0,-EPOX K, 11 ,A,0,-EPOX K, 12, A+HAUTPILE, 0,-EPOX K, 13, A+HAUTPILE, B, -EPOX K, 14, A+HAUTPILE, B+HAUTPILE, EPOX K, 15, A, B+HAUTPILE, -EPOX K, 16,0,B+HAUTPILE,-EPOX K, 17,0,B, -EPOX K,18,A,B,-EPOX K, 19,0,0,-EPOX-EPAIS K,20,A,0,-EPOX-EPAIS K,21,A+HAUTPILE,0,-EPOX-EPAIS K,22,A+HAUTPILE,B,-EPOX-EPAIS K,23,A+HAUTPILE,B+HAUTPILE,-EPOX-EPAIS K,24,A,B+HAUTPILE,-EPOX-EPAIS K,25,0,B+HAUTPILE,-EPOX-EPAIS K,26,0,B,-EPOX-EPAIS K,27,A,B,-EPOX-EPAIS K,28,X19,0,-WAFER-EPOX K,29,A+HAUTPILE,0,-WAFER-EPOX K,30,A+HAUTPILE,Y25,-WAFER-EPOX K,31,A+HAUTPILE,B+HAUTPILE,-WAFER-EPOX K,32,X19,B+HAUTPILE,-WAFER-EPOX K,33,0,B+HAUTPILE,-WAFER-EPOX K,34,0,Y 25,- WAFER-EPOX K,35,X19,Y25,-WAFER-EPOX ----- Définition des volumes--1 ! vol nº1 (oxyde) V,1,2,9,8,10,11,18,17 $! vol n^{\circ}2$ V,2,3,4,9,11,12,13,18 ! vol n°3 V,9,4,5,6,18,13,14,15 ! vol n°4 V,8,9,6,7,17,18,15,16 V,10,11,18,17,19,20,27,26 ! vol n°5 (membrane) V,11,12,13,18,20,21,22,27 ! vol n°6 (dessus pile x) ! vol n°7 (dessus pile xy) V,18,13,14,15,27,22,23,24 V,17,18,15,16,26,27,24,25 ! vol n°8 (dessus pile y) ! vol n°9 (pile x) V,20,21,22,27,28,29,30,35 V,27,22,23,24,35,30,31,32 ! vol nº10 (pile xy) V,26,27,24,25,34,35,32,33 **!** vol **n°1** 1 (pile y) ! ---------- Affichage --/ANGLE,,-90,XM ! orientation et effet de perspective /VCONE,, 10 /TRIAD,LTOP /PLOPTS,TITLE,0 /PLOPTS,MINM,0 /VIEW,,-1.5,1.2,2 LPLOT ! affiche les lignes ----- Maillage --1 _____

LSEL,S,LOC,Z,-(EPOX/2) LESIZE,ALL,,,divox

LSEL,ALL

LSEL,S,LOC,Z,-(EPOX+EPAIS/2) LESIZE, ALL, ,, divep LSEL,ALL LESIZE, 1 ",,divx,-expx LESIZE,3,,,divx,-expx LESIZE,29,,,divx,-expx LESIZE,6,,,divx,-expx LESIZE, 10,,,divx,-expx LESIZE,3 1 ,,,divx,-expx LESIZE,35,,,divx,-expx LESIZE,39,,,divx,-expx LESIZE,52,,,divx,-expx LESIZE,68,,,divx,-explongx LESIZE,70,,,divx,-explongx LESIZE,4,,,divy,-expy LESIZE,2,,,divy,-expy LESIZE, 14,,,divy,-expy LESIZE, 12,,,divy,-expy LESIZE,8,,,divy,-expy LESIZE, 18,,,divy,-expy LESIZE,41,,,divy,-expy LESIZE,37,,,divy,-expy LESIZE,44,,,divy,-expy LESIZE,62,,,divy,-explongy LESIZE,58,,,divy,-explongy LESIZE, 13,,,divpx,expdx LESIZE, 15,,,divpx, 1/expdx LESIZE,22,,,divpx, llexpdx LESIZE, 17,,,divpx,1/expdx LESIZE,20,,,divpx,1/expdx

LESIZE,43,,,divpx, 1 /expdx LESIZE,46,,,divpx, llexpdx LESIZE,49,,,divpx,1/expdx

LESIZE,26,,,divpx,1/expdx

LESIZE, 56, ,, divpx, 1/expbasx LESIZE,60,,,divpx, 1 /expbasx LESIZE,65,,,divpx,1/expbasx

LESIZE,21,,,divpy,expdy LESIZE,23,,,divpy,1/expdy LESIZE,30,,,divpy,1/expdy LESIZE,24,,,divpy,expdy LESIZE,28,,,divpy,1/expdy LESIZE,33,,,divpy, llexpdy LESIZE,47,,,divpy,expdy LESIZE,51,,,divpy, llexpdy LESIZE,54,,,divpy,1/expdy LESIZE,63,,,divpy,expbasy LESIZE,67,,,divpy, 1/expbasy LESIZE,72,,,divpy,1/expbasy LESIZE, 57,,, divpz, 1/expint LESIZE,61 ,,, divpz, 1/expint LESIZE,69,,,divpz, 1/expint LESIZE,55,,,divpz,expext LESIZE,59,,,divpz, 1/expext LESIZE,64,,,divpz, 1/expext LESIZE,66,,,divpz,1/expext LESIZE,7 1 ",divpz, 1/expext ! ----- Défi nition de l'élément type -ET,1,64,0,,,1,0,0,,, MAT,1 TYPE,1 VMESH.5, 11 ET,2,45,0 MAT,2 TY PE,2 VMESH, 1,4 EPLOT FINISH ******* ! ******* /SOLU ANTYPE,STATIC ! analyse statique ! inclure effet de contrainte initiale PSTRES,ON ! inclure grandes & formations NLGEOM,ON SSTIF,ON ! inclure stress stiffness effects ! quart de la structure DOFSEL,S,U ! définition des plans de symétrie NSEL,S,LOC,X,O DSY M,SYMM,X NSEL,S,LOC,Y ,0 DSY M,SY MM,Y NSEL,ALL D,NODE(0,0,0),ALL,0 ! bloque le noeud du **centre** (origine) ! toute la structure va se rétracter vers ce point !sélectionne tous les noeuds NSEL,ALL ! température de référence = température d'oxydation TREF, 1130+273.15 != température de départ uniforme pour toute TUNIF,1130+273.15 ! la structure

KBC,0 NSELALL	! rampe
BF,ALL,TEMP,25+273.15	! température finale = temperature ambiante
SOLVE FINISH	! premiere phase du calcul : état pré-contraint
! ************************************	 ! deuxième phase : application d'une pression ! on part de l'état pré-contraint ! inclure grandes & formations ! inclure stress stiffness effects ! même symétrie que précédemment
DSYM,SYMM,X NSEL,S,LOC,Y ,0 DSYM,SYMM,Y NSEL,ALL	
DDELE,NODE(0,0,0),ALL	!libère le noeud central
! nombre de noeuds dessous nbrbas=(divpx+1)*(divy+divpy+1)+(divpy+1)*divx
NSEL,S,LOC,Z,-(EPOX+WAFE	R)-1E-6,-(EPOX+WAFER)+1E-6 ! selectionne bas pile
! ces lignes de programme fixent l ! dans la position qu'ils ont après of	es noeuds de la base de la structure calcul de la &formation thermoélastique
*DO,I, 1 ,nbrbas *GET,NBRY ,NODE,,COU *IF,NBRY ,EQ,O,EXIT *GET,NUMERO,NODE,,N ! NUMERO contient le plus petit	NT IUM,MIN numéro de noeud dans la selection
*GET,DEPX,NODE,NUMI D,NUMERO,UX,DEPX *GET,DEPY ,NODE,NUM D,NUMERO,UY,DEPY *GET,DEPZ,NODE,NUME D,NUMERO,UZ,DEPZ	ERO,U,X ERO,U,Y ERO,U,Z
NSEL,U,NODE,,NUMERC *ENDDO NSEL,ALL) ! enlève de la selection ce noeud
! SFA, 1, ,PRES,20E3	<pre>! application d'une pression sur la membrane ! unite : [Pa] ! 100 kPa = 1 bar</pre>
SOLVE FINISH	! Calcul final
' ************************************	! Traitement des données ! Trace le &placement en z

! Création de 2 tableaux PX et PY contenant respectivement l'abscisse ! des noeuds sur l'axe x et l'ordonnée des noeuds sur l'axe y

*DIM,PX,ARRAY,DIVX+DIVPX+1 *DIM,PY,ARRAY,DIVY+DIVPY+1

NSEL,ALL NSEL,S,LOC,Z,1E-7,-1E-7 NSEL,R,LOC,X,O

!sélectionne les noeuds sur l'axe y

*DO,I,1,DIVY+DIVPY+1 *GET,NBRY ,NODE,,COUNT *IF,.NBRY,_EQ,0,EXIT *GET,POSY ,NODE,,MNLOC,Y PY(I)=POSY NSEL,U,NODE,,NODE(0,POSY ,0) *ENDDO

NSEL,ALL NSEL,S,LOC,Z,1E-7,-1E-7 NSEL,R,LOC,Y ,0

!sélectionne les noeuds sur l'axe x

*DO,I, 1, DIVX+DIVPX+1 *GET,NBRX,NODE,,COUNT *IF,.NBRX,EQ,O,EXIT *GET,POSX,NODE,,MNLOC,X PX(I)=POSX NSEL,U,NODE,,NODE(POSX,0,0) *ENDDO

! Sortie triée des données pour chaque noeud en surface de l'oxyde

/HEADER,OFF,OFF,OFF,OFF,OFF,OFF /PAGE,,,1000

NSEL,ALL /OUTPUT,EPS2520,DAT

! ----

*DO,J,1,DIVY+DIVPY+1 *DO,I,1,DIVX+DIVPX+1 NSEL,S,NODE,,NODE(PX(I),PY (J),O) /OUTPUT,EPS2520,DAT,,APPEND PRNSOL,EPEL NSEL,ALL *ENDDO *ENDDO /OUTPUT

! ------NSEL,ALL

/OUTPUT,STR2520,DAT

*DO,J,1,DIVY+DIVPY+1 *DO,I,1,DIVX+DIVPX+1 NSEL,S,NODE,,NODE(PX(I),PY(J),O) /OUTPUT,STR2520,DAT,,APPEND ! moins de commentaires

! nom du fichier de sortie

! & formations

PRNSOL,S ! contraintes NSEL,ALL *ENDDO *ENDDO /OUTPUT - - - - - -! - - - --! Sortie des fichiers d'abscisses et d'ordonnées liées au maillage NSEL.ALL /OUTPUT,ABSCISSE,DAT *DO,I,1,DIVX+DIVPX+1 NSEL,S,NODE,,NODE(PX(I),O,O) /OUTPUT, ABSCISSE, DAT, APPEND NLIST,ALL NSEL,ALL *ENDDO /OUTPUT 1 ---NSEL,ALL /OUTPUT, ORDONNEE, DAT *DO,I,1,DIVX+DIVPX+1 NSEL,S,NODE,,NODE(0,PY (I),O) /OUTPUT,ORDONNEE,DAT,,APPEND NLIST,ALL NSEL,ALL *ENDDO **/OUTPUT** !--Sortie de données selon des axes particuliers, demi médiane ou diagonale NSEL, ALL LPATH,NODE(0,0,0),NODE(A+HAUTPILE,B+HAUTPILE,0) ! diagonale PDEF.D2520.U.Z !définition du PATH /OUTPUT,D2520,DAT ! nom du fichier ! écriture fichier PRPATH, D2520 **/OUTPUT** ! fermeture LPATH,NODE(0,0,0),NODE(A+HAUTPILE,0,0) ! médiane PDEF,M2520,U,Z /OUTPUT,M2520,DAT PRPATH,M2520 /OUTPUT PDEF,MSX2520,S,X /OUTPUT,MSX2520,DAT PRPATH, MSX2520 /OUTPUT PDEF, MEX2520, EPEL, X /OUTPUT,MEX2520,DAT PRPATH, MEX2520 /OUTPUT

FINISH

Annexe C

Côtes des trois niveaux de masquage pour la réalisation des démonstrateurs

Présentation générale de la r&partition des puces sur une plaquette de silicium 2'

Les puces **T1à T10** sont des puces de test electrique, le silicium face arriere **n'est** pas **creusé**.

En face arriere, **sous** les puces **P1à** P16, le silicium est grave pour **définir** des membranes.

Les puces **P1 à P8** ont un conditionneur face avant de type A

Les puces **P9 à** P16 ont un conditionneur face avant de type B

Les traits de coupe entre les puces sont **matérialisés** par des pistes **d'aluminium**

Chaque puce est un carré de 7 mm de côté.

Jauges longitudinales et transversales pour les capteurs de type A

 : Poly-Si	
: Aluminium par dessus le pe	oly-Si

Jauges transversales

187

- - -

Annexe C : C&es des trois niveaux de masquage pour la réalisation des démonstrateurs

Layout de la couche de Poly-Si (type A) Niveau de masquage 1

3 marques d'alignement sont disposées aux 3 angles de chaque puce

189

Layout de la couche d'Aluminium (type A) Niveau de masquage 2 -

Toutes les liaisons Aluminium ont la **forme** de base suivante : **ou tournée** de **90°** ou **symétrique** par rapport **à** X ou Y

Aspect du masque niveau 1 (poly-Si) type A

Vu leurs dimensions réduites, les jauges longitudinales peuvent apparaître collées sw ce schéma.

Aspect du masque niveau 2 (Aluminium) type A

Aspect du masque niveau 3, face arrière (Membranes) types A et B

i

Layout de la couche de Poly-Si (type B) Niveau de masquage 1

Layout de la couche d'Aluminium (type B) Niveau de masquage 2

La membrane devant faire 3 mm **de côté**, 20 μ m d'épaisseur, l'épaisseur du wafer & ant de 350 μ m et du fait de l'anisotropie de la gravure **KOH** l'ouverture du masque face **arrière doit être** de 3,466 mm

Aspect du masque niveau 1 (type B) poly-Si

Layout de la couche d'Aluminium (type B) Niveau de masquage 2

Layout à l'échelle du motif de Hall face avant Niveaux de masquage 1 (poly-Si) et 2 (Aluminium)

Les plots d'Aluminium sont des carrés de 180 μ m de côté. Ils débordent de 15 μ m par dessus les plots de poly-Si

FOLIO ADMINISTRATIF

DOC'INS

THESE SOUTENUE DEVANT L'INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE L'YON

E	
NOM: MALHAIRE (avec précision du nom de jeune fille, le cas échéant)	DATE de SOUTENANCE
Prénoms: Christophe	26 janvier 1998
TTTRE: Caractérisation et modélisation de microtransducteurs de pre à hautes performances intégrés sur silicium	ession
NATURE : Doctorat Numéro d'ordr	e:98ISAL00 14
Formation doctorale: Dispositifs de l'Electronique Intégrée	
Cote B.I.U Lyon: T 50/210/19 / et bis CLA	ASSE:
RESUME:	
L'objectif de ce travail était de modéliser le comportement thermomecanique de membranes comp développer des outils de caracterisation adaptés aux microstructures en silicium pour permettre 1 microcapteurs de pression piézorésistifs à membrane de type Polysilicium Sur Isolant à haute membranes SiO2/Si de 3 mm de côté et d'epaisseur inferieure à 40 microns, recouvertes par thermique de 0.5 à 2 microns, ont été réalisées par gravure chimique anisotrope du silicium sau des solutions KOH+H2O. Nous avons étudié le profil des membranes, la rugosité et l'uniforn profilométrie optique. Les Cpaisseurs moyennes des membranes ont été déterminées avec une inc par spectrométrie infrarouge à transformée de Fourier. L'origine de la contrainte dans les films épais a été établie et sa valeur determinie avec une incertitude de 4% par des mesures de courb avoir montré les limites des modèles analytiques, un modèle de calcul par elements finis, l physiques des materiaux, du comportement thermomecanique des membranes SiO2/Si ont été mo pression dans la gamme O-1 bar. L'influence de l'encastrement et les consequences de membranes SiO2/Si sur les derives thermiques du capteur et leur réponse en pression or architectures de conditionneur piézorésistif en pont de Wheatstone ont été développées et testéer faisabilité d'un conditionneur sans contact aluminium/polysilicium soumis aux deformations d éventuelles atmospheres corrosives.	posites SiO2/Siet de la conception de es performances. Des des couches d'oxyde ns couche d'arrêt dans nite de la gravure par certitude de 0.1 micron d'oxyde sur substrats ures moyennes. Apris basé sur les propriétés sinees a été développé. que et des mesures de odélisés et mesurés sous l'état précontraint des nt été analysées. Deux s. Nous avons montré la le la membrane et aux
MOTS-CLES: Capteur pression - Attaque chimique - Membrane - Simulat: fini - Profilométrie - Spectrométrie IR - Spectrometrie Raman	ion - Element
Laboratoire (s) de recherches: Laboratoire de Physique de la Matière -INSA	de Lyon
Directeur de thise: Professeur Daniel BARBIER	
Président de jury: Pierre PINARD Composition du jury: Daniel BARBIER, Bernard CHAMPAGNON, Yves BARRIOL, Nadine GUILLEMOT, Martine LE BERRE, Stéphane RENARD, Jean-Louis RO	BERT