

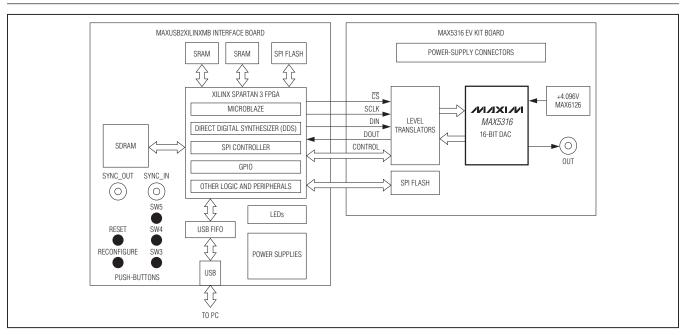
Evaluates: MAX5316

General Description

The MAX5316 evaluation kit (EV kit) provides a proven design to evaluate the MAX5316 16-bit high-accuracy voltage output DAC. The EV kit also includes Windows XP®-, Windows Vista®-, and Windows®7-compatible software that provides a simple graphical user interface (GUI) for exercising the features of the IC.

The MAX5316 evaluation system (EV system) consists of the EV kit and a companion MAXUSB2XILINXMB serial interface board. The MAXUSB2XILINXMB interface board allows a PC to control the SPI interface and GPIOs using its USB port. Order the EV system for a complete PC-based evaluation of the IC.

The EV system includes an on-board direct digital synthesizer (DDS) that generates precision waveforms (sine, triangle, rising ramp, falling ramp, square, and arbitrary). The DDS clock can be selected from 375kHz to 10kHz. Waveform amplitude and offset can be controlled by the DDS or the internal controls of the IC. Arbitrary waveforms are defined by a simple CSV file that can easily be created from Excel or many other software programs. A synchronization output is also provided to indicate when a new cycle starts. In addition, all waveforms can be synchronized to an external signal.


The EV kit comes with a 16-bit MAX5316GTG+ precision DAC installed.

Features

- ♦ On-Board Direct Digital Synthesis (Xilinx® Spartan®-3A FPGA)
- ♦ On-Board Waveform Memory (1M x 24-Bit SRAM)
- ♦ On-Board +4.096V Ultra-High-Precision Voltage Reference (MAX6126)
- **♦** SMA Connectors for Waveform Synchronization and DAC Output
- ♦ Proven High-Performance 16-Bit DAC PCB Layout
- **♦ Stand-Alone and GUI Operation Modes**
- ♦ Eight Diagnostic LEDs
- **♦** Five Pushbuttons for Functionality Tests
- ♦ High-Speed SPI Interface
- ♦ High-Speed USB 2.0 USB-PC Connection (Cable Included)
- ♦ Windows XP-, Windows Vista-, and Windows 7-Compatible Software
- **♦ RoHS Compliant**
- ♦ Fully Assembled and Tested

Ordering Information appears at end of data sheet.

System Diagram

Windows, Windows XP, and Windows Vista are registered trademarks of Microsoft Corp.

Xilinx and Spartan are registered trademarks of Xilinx Inc.

MIXIM

Maxim Integrated Products 1

Component Lists

MAX5316 EV System

PART	QTY	DESCRIPTION
MAX5316EVKIT#	1	MAX5316 EV kit
MAXUSB2XILINXMB#	1	Serial interface board

MAX5316 EV Kit

DESIGNATION	QTY	DESCRIPTION
C1, C5, C14, C15, C16, C19, C21, C23, C30–C37	16	0.1µF ±10%, 16V X7R ceramic capacitors (0402) Murata GRM155R71C104K
C2, C4, C6, C8, C17, C20, C27, C28, C29, C63	10	0.01µF ±10%, 16V X7R ceramic capacitors (0402) Murata GRM155R71C103K
C3, C9, C10, C11, C38, C39, C40	7	1μF ±10%, 16V X7R ceramic capacitors (0603) Murata GRM188R71C105K
C7, C60	2	100pF ±5%, 50V C0G ceramic capacitors (0402) Murata GRM1555C1H101J
C12, C22, C42, C44, C46, C48, C50, C52, C55, C56, C58, C62, C65	13	180pF ±5%, 50V C0G ceramic capacitors (0402) Murata GRM1555C1H181J
C13, C41, C43, C45, C47, C49, C51, C53, C54, C57, C59, C61, C64	13	1000pF ±5%, 50V C0G ceramic capacitors (0402) Murata GRM155R71H102J
C18	1	4.7µF ±10%, 6.3V X5R ceramic capacitor (0603) Murata GRM188R60J475K
C24, C25, C26	3	10μF ±10%, 10V X7R ceramic capacitors (0805) Murata GRM21BR71A106K
D1	1	30V, 500mA Schottky diode (SOD-123)
FB1-FB8	8	600Ω ±25% 500mA ferrite beads (0603) TDK MMZ1608B601C
J1	1	50Ω SMA connector, vertical mount
J2	1	Self-mating hermaphroditic strip (2x20)

DESIGNATION	QTY	DESCRIPTION
JU1, JU2	2	2-pin headers
JU3, JU4, JU6	3	3-pin headers
JU5	1	5-pin header
R1, R5, R9–R30	24	22Ω ±5% resistors (0402)
R2	1	100k Ω ±5% resistor (0603)
R3	1	100 k Ω ±5% resistor (0603)
R4	1	` '
R6	1	1kΩ ±5% resistor (0603)
	1	0Ω ±5% resistor (0603)
R7	<u> </u>	12.4kΩ ±1% resistor (0603)
R8	1	10kΩ ±1% resistor (0603)
TP1, TP2, TP3, TP8	4	Orange multipurpose test points
TP4, TP5, TP10	3	Red multipurpose test points
TP6, TP9, TP11, TP25, TP26, TP27	6	Black multipurpose test points
TP7	1	White multipurpose test point
TP12-TP24	13	Orange miniature test points
U1	1	16-bit DAC (24 TQFN-EP*) Maxim MAX5316GTG+
U2	1	+4.096V ultra-high-precision voltage reference (8 SO) Maxim MAX6126AASA41+
U4	1	SPI serial flash (8 SO8W)
U5	1	Negative output LDO (5 SOT23) Maxim MAX1735EUK30+
U6, U7, U8	3	2-bit level translators (8 SSOP)
U9	1	8-bit level translator (24 TSSOP)
U10	1	300mA LDO (6 SOT23) Maxim MAX1983EUT+
_	6	Shunts
_	1	PCB: MAX5316 EVALUATION KIT

^{*}EP = Exposed pad.

SUPPLIER	PHONE	WEBSITE
Murata Electronics North America Inc.	770-436-1300	www.murata-northamerica.com
TDK Corp.	847-803-6100	www.component.tdk.com

Note: Indicate that you are using the MAX5316 when contacting these component suppliers.

MAX5316 EV Kit Files

Component Suppliers

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX5316EVKIT.EXE	Application program
CDM20600.EXE	Installs the USB device driver
UNINSTALL.EXE	Uninstalls the EV kit software
USB_Driver_Help_200.PDF	USB driver installation help file

Quick Start

Required Equipment

- MAX5316 EV kit
- MAXUSB2XILINXMB interface board (USB cable included)
- Windows XP, Windows Vista, or Windows 7 PC with a spare USB port
- Power supply, +5V DC at 600mA
- Power supply, -5V DC at 100mA
- Oscilloscope

Note: The EV system has two operation modes: standalone mode and GUI mode. See the Detailed Description of Hardware section for operation mode details.

Stand-Alone Mode Procedure

- 1) Verify that the jumpers on the MAXUSB2XILINXMB interface board are in their default positions, as shown in Table 3.
- 2) Verify that the jumpers on the EV kit board are in their default positions, as shown in Table 4.
- 3) Connect the EV kit board to the MAXUSB2XILINXMB interface board.
- 4) Connect+5VDCpowersupplytoMAXUSB2XILINXMB between TP1 (+5V) and TP2 (GND). Keep power off.
- 5) Connect +5V DC power supply to EV kit between TP5 (+5V) and TP6 (AGND). Keep power off.

- 6) Connect -5V DC power supply to EV kit between TP7 (-5V) and TP6 (AGND). Keep power off.
- 7) Connect oscilloscope probe 1 to EV kit SMA connector J1 or test point TP1 (OUT).
- 8) Turn on the power supplies for the EV kit board first. Then turn on the power supply for the MAXUSB2XILINXMB board.
- 9) Observe that the DAC outputs a sine wave of 1kHz, amplitude range is 0 to 4.096V.
- 10) Press and release SW3 to select between 8 sine waveforms with different frequencies. A single LED from LED4-LED11 is turned on, indicating a different frequency as shown in Table 1.
- 11) Press and release SW4 to select between 8 sine waveforms with different frequencies. A single LED from LED4-LED11 is turned off, indicating a different frequency as shown in Table 2.
- 12) Press SW5 to toggle TC/SB logic level. By default, TC/\overline{SB} = high and the DDS output is set to two's complement format. If TC/SB = low, the sine waveform is distorted.
- 13) Press SW1 (RESET) to reset the MAXUSB2XILINXMB board and the EV kit board.

GUI Mode Procedure

Note 1: In the GUI mode operation, the stand-alone mode functions as described in the previous section. The user can exercise more features of the EV kit using

Evaluates: MAX5316

Table 1. LED4-LED11 Relationship With DAC Output Frequency Controlled by SW3

SINGLE LED TURNED ON	PINC VALUE	DAC OUTPUT SINE WAVEFORM FREQUENCY (Hz)
LED4	83,886	999.999046
LED5	83,968	1000.976563
LED6	38,858	463.223457
LED7	419	4.994869
LED8	838,861	10000.002384
LED9	838,912	10000.610351
LED10	65,536	781.250000
LED11	256	3.051758

Table 2. LED4-LED11 Relationship With DAC Output Frequency Controlled by SW4

SINGLE LED TURNED OFF	PINC VALUE	DAC OUTPUT SINE WAVEFORM FREQUENCY (Hz)
LED4	1,048,576	12500.000000
LED5	262144	3125.000000
LED6	65,536	781.250000
LED7	16,384	195.312500
LED8	4096	48.828125
LED9	1024	12.207031
LED10	256	3.051758
LED11	64	0.762939

the GUI mode. Each time when the operation mode is to be changed, a user needs to press and release SW1 (RESET) on the MAXUSB2XILINXMB board to reset the EV system and then follow the procedures for each operation mode.

Note 2: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

- 1) Visit www.maxim-ic.com/evkitsoftware to download the latest version of the EV kit software. 5316Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- 2) Install the EV kit software and USB driver on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied to your PC and icons are created in the Windows Start I Programs menu. During software installation, some versions of Windows may show a warning message indicating that this software is from an unknown publisher. This is not an error condition and it is safe to proceed with installation. Administrator privileges are required to install the USB device driver on Windows.

- 3) Verify that the jumpers on the MAXUSB2XILINXMB interface board are in their default positions, as shown in Table 3.
- 4) Verify that the jumpers on the EV kit board are in their default positions, as shown in Table 4.
- 5) Connect the EV kit board to the MAXUSB2XILINXMB interface board.
- 6) Connect +5V DC power supply to the MAXUSB2XILINXMB interface board between TP1 (+5V) and TP2 (GND). Keep power off.
- 7) Connect +5V DC power supply to EV kit between TP5 (+5V) and TP6 (AGND). Keep power off.
- 8) Connect -5V DC power supply to EV kit between TP7 (-5V) and TP6 (AGND). Keep power off.
- 9) Connect oscilloscope probe 1 to EV kit SMA connector J1 or test point TP1 (OUT).
- 10) Connect the oscilloscope probe 2 to EV kit test point TP20 (\overline{CS}).
- 11) Connect the oscilloscope probe 3 to EV kit test point TP19 (SCLK).
- 12) Connect the oscilloscope probe 4 to EV kit test point TP18 (DIN).

Evaluates: MAX5316

- 13) Turn on the power supplies for the EV kit board first. Then turn on the power supply for the MAXUSB2XILINXMB interface board.
- 14) Observe that the DAC outputs a sine wave of 1kHz. amplitude range is 0 to 4.096V.
- 15) Connect the USB cable from the PC to the MAXUSB2XILINX interface board. A Windows message appears when connecting the MAXUSB2XILINX board to the PC for the first time. Each version of Windows has a slightly different message. If you see a Windows message stating ready to use, then proceed to the next step. Otherwise, open the USB_Driver_Help_200.PDF document in the Windows Start I Programs menu to verify the USB driver was installed successfully.
- 16) Start the EV kit software by opening its icon in the Windows Start I Programs menu. The EV kit software main window appears, as shown in Figure 2. Within 5s, the software should automatically connect to the hardware; verify that MAX5316EVKIT Hardware Connected appears in the bottom-left status bar.
- 17) Observe the IC OUT waveform is a 1kHz sine wave.

18) Drag the Frequency track bar up and observe the output Frequency increases.

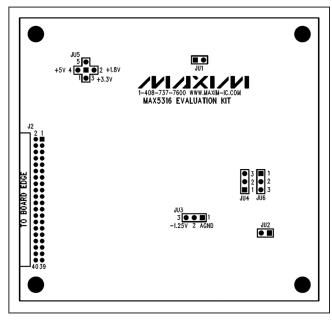


Figure 1. MAX5316 EV Kit Jumper Locations

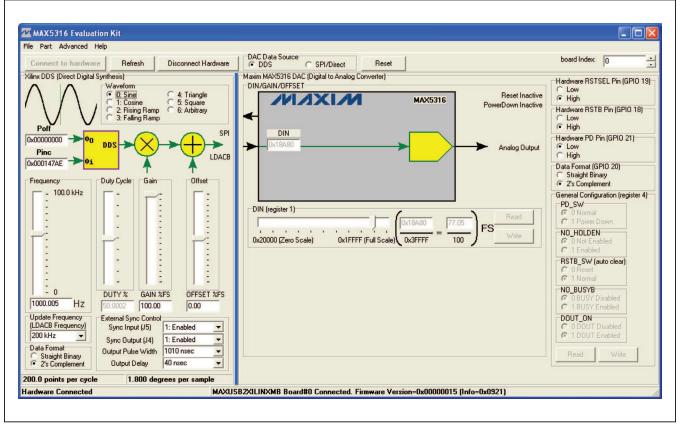


Figure 2. MAX5316 EV Kit Software Main Window (Block Diagram Tab)

Detailed Description of Software

The main window of the evaluation software (shown in Figure 1) displays the MAXUSB2XILINXMB DDS signal generator on the left side of the window, and the MAX5316 DAC on the right side.

When DAC Data Source is set to DDS, the IC's DIN register is driven by the DDS signal generator. The output frequency is controlled by the Frequency track bar, or by typing the output frequency value into its edit field and pressing enter. The sample update rate is controlled by the **Update Frequency** drop-down list.

The DDS output waveform frequency is calculated as follows:

$$f_{OUT} = \frac{f_{UPDATE} \times P_{INC}}{2^{24}}$$

where fuppate is the DDS update frequency, PINC is the DDS phase increment. The DDS is implemented with a 24-bit phase accumulator.

The gain and offset of the DDS output waveform can be adjusted by the Gain and Offset track bars in the DDS section of the GUI.

The shape of the **waveform** is selected by the **Waveform** group box. The SPI clock frequency is selectable under the **Advanced** menu. Selecting a slower SPI clock frequency may limit the available update frequency.

When DAC Data Source is set to SPI/Direct, the IC's DIN register is driven by the controls on the right side of the window. Write the **DIN** register by dragging its track bar, or by typing numbers into the **DIN** edit field.

When the MAXUSB2XILINXMB is powered up and connected to the computer's USB port, the software automatically connects and configures the IC to enable data output. This can be prevented by unchecking the Advanced menu item's Connect Automatically and **Enable DOUT After Connecting.**

Arbitrary Waveform Generation

The DDS can accept user-defined arbitrary waveform data stored in a comma-separated values (CSV) file. There are 1,048,576 samples stored in the file, representing one cycle of the arbitrary waveform. The sample data are 18-bit decimal values with 0 representing zero scale and 262,143 representing full scale. Click the File menu item's Load Arbitrary Waveform... to download the waveform to the DDS and stream to the DAC.

A staircase waveform is stored in the system at power-up.

Detailed Description of Hardware

The MAX5316 EV kit can operate in two modes: standalone and GUI.

The stand-alone mode is for quick IC functionality demonstration purpose only. In this mode, the MAXUSB2XILINXMB interface board generates one of 16 predefined digital signals using the DDS implemented on the FPGA.

Press and release SW3 to select between eight sine waveforms with different frequencies. A single LED from LED4-LED11 is turned on, indicating a different frequency as shown in Table 1.

Press and release SW4 to select between eight sine waveforms with different frequencies. A single LED from LED4-LED11 is turned off, indicating a different frequency, as shown in Table 2.

In the stand-alone mode, the DAC is updated at 200kHz, the SPI clock speed is set at 10MHz.

The GUI mode is for a complete feature exercise of the IC through a PC. The user can explore many different application cases (e.g., DAC update frequencies, DAC output waveforms, DAC register settings, and DAC interface speed selections, etc).

The EV kit provides a proven layout for the 16-bit highprecision voltage output DAC. An on-board +4.096V voltage reference (MAX6126) is provided. Contact Maxim for other high-precision voltage references if reference voltages other than +4.096V are required.

SYNC IN and SYNC OUT Signals

There is an SMA connector (J5) labeled INPUT and another SMA connector (J4) labeled OUTPUT on the MAXUSB2XILINXMB interface board. The INPUT signal is called SYNC IN and the OUTPUT signal is called SYNC_OUT, respectively.

The SYNC IN signal is applied to the Schmitt-trigger input and the Schmitt-trigger output is applied to the FPGA DDS module. SYNC_IN is used to implement a simple "crash lock" for the DDS signal generator. At the rising edge of the SYNC_IN clock, the DDS resets itself and the DDS phase accumulator is reset to the POFF value written by the GUI (default to 0).

The SYNC OUT signal shows when the generated waveform starts a new cycle.

Set the SYNC_In_Out_Width register bit 31 to 1 to enable the SYNC_IN signal. Set the bit to 0 to disable the SYNC_IN signal.

Set the SYNC_In_Out_Width register bit 30 to 1 to enable the SYNC_OUT signal. Set the bit to 0 to disable the SYNC OUT signal.

Set the SYNC_In_Out_Width register bit 29 to bit 0 to control the SYNC_OUT pulse width:

SYNC_OUT pulse width = SYNC_In_Out_Width[29:0] x 10ns

When SYNC_In_Out_Width[29:0] = 0, SYNC_OUT, pulse width = 10ns.

Pushbuttons on the MAXUSB2XILINXMB Interface Board

There are five pushbuttons (SW1-SW5) on the MAXUSB2XILINXMB interface board. Their functions are described as follows:

FPGA Reconfigure Button (SW1): Press and release this button to reconfigure the FPGA and the whole interface board.

CPU Reset Button (SW2): Press and release this button to reset the embedded Microblaze microcontroller and the interface board.

Sinusoid Frequency-Select Button (SW3): Press and release this button to select between eight sine waveforms with different frequencies. A single LED from LED4-LED11 is turned on, indicating a different frequency as shown in Table 1.

Sinusoid Frequency-Select Button (SW4): Press and release this button to select between eight sine waveforms with different frequencies. A single LED from LED4-LED11 is turned off, indicating a different frequency as shown in Table 2.

TC/SB IC Pin Logic-Level Select Button (SW5): Press and release this button to toggle the TC/SB pin logic. After the FPGA reconfiguration or the embedded MicroBlaze microcontroller reset, the TC/SB pin is logic-high and the DDS output is set to two's-complement format. If TC/SB = low, the sine waveform is distorted.

Table 3. MAXUSB2XILINXMB Interface Board Jumper Descriptions (JU1–JU13)

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2	IOVDD = 1.8V from U9. Do not use.
	1-3*	IOVDD = 3.3V from U7.
JU1	1-4	IOVDD = external user-supplied IOVDD from test point TPEXTIOVDD. Note restriction 1.1V < IOVDD < 3.6V. Do not use.
	Pin 1 only*	FPGA mode signal M0 = 1.
JU2	1-2	FPGA mode signal M0 = 0. Do not use.
JU3	Pin 1 only	FPGA mode signal M1 = 1. Do not use.
	1-2*	FPGA mode signal M1 = 0.
JU4	Pin 1 only	FPGA mode signal M2 = 1. Do not use.
	1-2*	FPGA mode signal M2 = 0.
	Pin 1 only*	FPGA VS2 = 1.
JU5	1-2	FPGA VS2 = 0. Do not use.
	Pin 1 only*	FPGA VS1 = 1.
JU6	1-2	FPGA VS1 = 0. Do not use.

JUMPER	SHUNT POSITION	DESCRIPTION
	Pin 1 only*	FPGA VS0 = 1.
JU7	1-2	FPGA VS0 = 0. Do not use.
11.10	1-2*	HOLD1 is connected to ground.
JU8	2-3	HOLD2 is connected to ground.
	1-2*	U7 powers the 3.3V supply rail.
JU9	Open	Measure the MAXUSB2XILINXMB 3.3V supply current by putting a current meter in series with the jumper.
	1-2*	U8 powers the 0.9V supply rail.
JU10	Open	Measure the MAXUSB2XILINXMB 0.9V supply current by putting a current meter in series with the jumper.
	1-2*	U10 powers the 1.2V supply rail.
JU11	Open	Measure the MAXUSB2XILINXMB 1.2V supply current by putting a current meter in series with the jumper.
	1-2*	U9 powers the 1.8V supply rail.
JU12	Open	Measure the MAXUSB2XILINXMB 1.8V supply current by putting a current meter in series with the jumper.

Evaluates: MAX5316

Table 3. MAXUSB2XILINXMB Interface Board Jumper Descriptions (JU1-JU13) (continued)

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2*	Power U7–U10 from external user- supplied +5V DC supply (from test point TP1).
JU13	2-3	Power U7–U10 from the USB (for FPGA configurations with sufficiently low power). Do not use.
	1-2	Do not use.
JUTCK	2-3	Do not use.
	Pin 1 only*	USB bridge does not drive J2 or J3.

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2	Do not use.
JUTDI	2-3	Do not use.
	Pin 1 only*	USB bridge does not drive J2 or J3.
	1-2	Do not use.
JUTDO	2-3	Do not use.
	Pin 1 only*	USB bridge does not drive J2 or J3.
	1-2	Do not use.
JUTMS	2-3	Do not use.
	Pin 1 only*	USB bridge does not drive J2 or J3.

^{*}Default position.

Table 4. EV Kit Jumper Descriptions (JU1-JU6)

JUMPER	SHUNT POSITION	DESCRIPTION
JU1	1-2*	AVDD is connected to TP5 (+5V).
301	Pin 1 only	AVDD is connected to external supply on TP4.
11.10	1-2*	RFB is connected to OUT.
JU2	Pin 1 only	RFB is disconnected from OUT.
	1-2	AVSS is connected to analog ground.
JU3	2-3*	AVSS is connected to on-board -1.25V reference.
JU4, JU6	1-2*	REF is connected to on-board +4.096V reference.
	2-3	REF is connected to external reference on TP8.

JUMPER	SHUNT POSITION	DESCRIPTION	
JU5	1-2	VDDIO is connected to 1.8V power supply.	
	1-3*	VDDIO is connected to 3.3V power supply.	
	1-4	VDDIO is connected to 5V power supply.	
	1-5	VDDIO is connected to external supply on TP10.	

^{*}Default position.

Evaluates: MAX5316

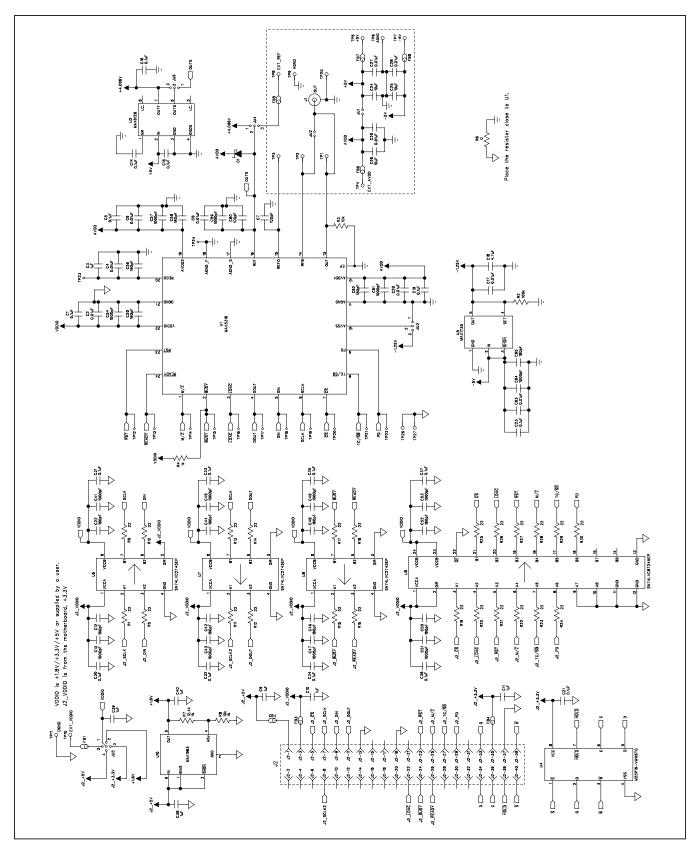


Figure 3. MAX5316 EV Kit Schematic

Evaluates: MAX5316

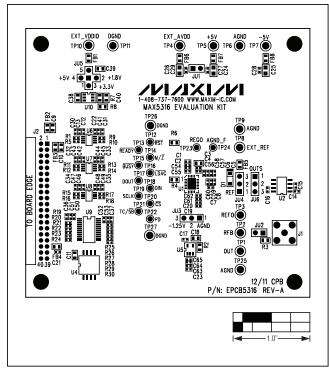


Figure 4. MAX5316 EV Kit Component Placement Guide-Component Side

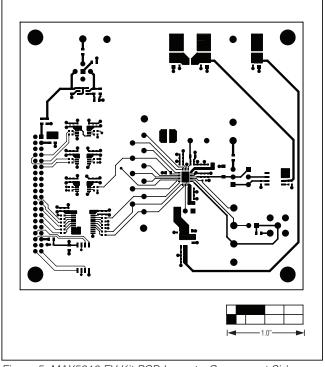


Figure 5. MAX5316 EV Kit PCB Layout—Component Side

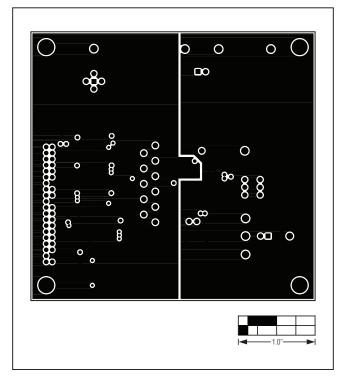


Figure 6. MAX5316 EV Kit PCB Layout—Ground Layer 2

Evaluates: MAX5316

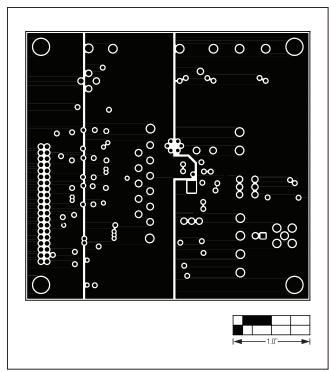


Figure 7. MAX5316 EV Kit PCB Layout—Power Layer 3

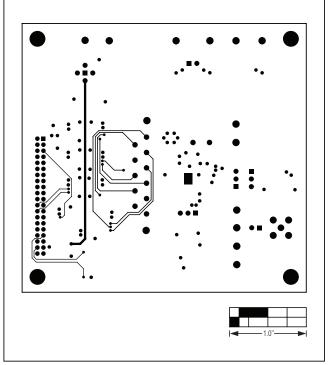


Figure 8. MAX5316 EV Kit PCB Layout—Solder Side

Evaluates: MAX5316

Ordering Information

PART	TYPE
MAX5316EVSYS#	EV System

#Denotes RoHS compliant.

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	3/12	Initial release	_

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.