
20124221: Introduction to Statistical Machine Learning
Winter 2012

Problem Set #3

Out: January 31, 2012

Due: Tuesday February 21, 2012, 23:59

Instructions

Please read these instructions carefully and follow them precisely. Feel free
to ask the instructor if anything is unclear!

How and what to submit? Please submit your solutions electronically
by e-mail to greg@ttic.edu, using the procedure below.

1. Create a directory 〈your last name〉-ps3) in which you will work on
your solutions. All files mentioned below are assumed to reside in that
directory (we will refer to it as the pset directory).

2. Generate the written parts of your solution in PDF. You can do this
any way you want: typeset the solution in LATEX(recommended), type
it in Word or a similar program and convert/export to PDF, or even
hand write the solution (legibly!) and scan it to PDF. Please name this
document 〈your last name〉-sol3.pdf.

3. Create Matlab code (extension .m), data (.mat), image (.png, .pdf
etc.) files needed in the pset directory. If file names are not specified
explicitly in the assignment, please include a file README with brief
description of the files.

4. When done, create an archive of the entire pset directory (please make
sure it contains the directory node itself, not just the files) as .zip or
.tar.gz file, and e-mail it to greg@ttic.edu.

Late submissions: there will be a penalty of 25 points for any so-
lution submitted within 24 hours past the deadlne. No submissions
will be accepted past then.
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What is the required level of detail? When asked to derive something,
please clearly state the assumptions, if any, and strive for balance: justify any
non-obvious steps, but try to avoid superfluous explanations. When asked
to plot something, please include the figure as well as the code used to plot
it (and clearly explain in the README what the relevant files are). If multiple
entities appear on a plot, make sure that they are clearly distinguishable
(by color or style of lines and markers). When asked to provide a brief
explanation or description, try to make your answers concise, but do not
omit anything you believe is important.

When submitting code, please make sure it’s reasonably documented, and
describe succinctly in the README what is done in each m-file.

1 EM and generative models

In this part of the problem set we will derive and implement the EM algo-
rithm for a discrete space, in which the observations are d-dimensional binary
vectors (containing either 0 or 1). We will model distributions in this space
as mixture of multivariate Bernoulli distributions. That is,

p (x | θ,p) =
k

∑

l=1

plp (x | θl) , (1)

where θ = [θ1, . . . , θl] are the parameters of the k components, and the mixing
probabilities p = [p1, . . . , pk]

T are subject to
∑

l pl = 1.
The l-th component of the mixture is parametrized by a d-dimensional

vector θl = [θl1, . . . , θld]
T . The value of θlj is the probability of 1 in the j-th

coordinate in a vector drawn from this distribution. Since the dimensions
are assumed to be independent, given θl, the conditional distribution of x
under this component is

p (x | θl) =
d

∏

j=1

p (xj | θlj) =
d

∏

j=1

θ
xj

lj (1 − θlj)
1−xj . (2)

The hidden variables here are, just in the Gaussian mixture case, the iden-
tities of the component that generated each observation. We will denote the
hidden variable associated with xi by zi. The EM with the model proceeds
as follows. The E-step consists of computing the posterior of p (zi |xi; θ,p).
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In the M-step, we need to update the estimates of θ and p. These updates
can be derived in a way similar to the derivation for the Gaussian mixture.
They are1:

θ(t+1)
c =

1

N
(t)
c

N
∑

i=1

xip
(

zi = c |xi; θ
(t),p(t)

)

, (3)

p(t+1)
c =

N
(t)
c

N
. (4)

where N t
c is the weighted “mass” of the c-th component,

N (t)
c =

N
∑

i=1

p
(

zi = c |xi; θ
(t),p(t)

)

,

and the notation θ
(t)
c , p

(t)
c stands for the values of the relevant parameters in

the end of iteration t.
This model could be applicable, for instance, in modeling distributions

of documents using binary features. Here, however, we will apply it to
another domain–images of handwritten digits. We will use the data in
mnistData20x20; it contains images of digits 0 through 9, that have been
cropped to 20×20 pixels and pixel values normalized to be 0 or 1 (by thresh-
olding the original pixels). The data are organized in X, Xtest and Y, Ytest
in the same way as the MNIST data in PS2.

We have provided a skeleton for an implementation of EM with this
model; you will need to complete this code. It consists of the following
functions; you will find all of them useful. The relevant files are available on
the course website:

runem.m the function that runs the EM iterations.

estep.m, mstep.m the E-step and the M-step implementation.

conditional.m computes p (xi | θl) for each i, l.

logLikelihood.m computes the conditional probabilities and the log-likelihood
of the data under a given values of mixture parameters.

1See PRML Section 9.3.3 for the derivation.
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Problem 1 [30 points]
Write the exact expression for the posterior probability p (zi = c |xi; θ,p) in
terms of xi and the elements of θ and p. Implement it in estep.m. Also, fill
in the missing code for the component parameter updates in mstep.m.

Run your code on X, applying EM separately to each digit, with k = 5
components, using the call

[theta,p,logL]=runem(X(:,Y==y),5,1,100);

This will set stopping criterion to min. change of 1 in log-likelihood (and no
more than 100 iterations). Once the EM has converged, we can visualize the
parameters θ:

figure;colormap gray;

for k=1:5

subplot(1,5,k); imagesc(reshape(theta(:,k),20,20)’);axis image;

end

Turn in the plot obtained by the code above (for each digit class), and your
interpretation of the components; what properties of the data do they cap-
ture?

End of problem 1

Advice: Running EM will take a while, even with an efficient implementation; typically,

it should converge before 100 iterations. In practice, since the model found by EM

depends on random initialization (first guess of θ), we would run EM a number of

times, and take the results of the run that lead to the highest log-likelihood. You are

welcome to do that, but it is OK to just run EM once and report the results of that

single run.

We can use the mixture model learned for each digit class for classification.
While above we arbitrarily decided to use five components in the mixture, a
more principled way is to select the model based on an information criterion
that balances the likelihood and model complexity. Here we will use the
Bayesian Information Criterion (BIC). BIC for a model parametrized by θ
on a data set XN

BIC(θ,XN) = log p(XN ; θ) −
π(θ)

2
logN,
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where π(θ) is the number of free parameters in the model. For instance, as
discussed in class, mixture of two unconstrained Gaussians in d-dimensional
space has d(d + 1) + 2d + 1 parameters: d(d + 1)/2 for each covariance
matrix, d for each mean, and 1 for the priors (only one and not two since
p(1) = 1 − p(2)). This criterion can be seen as a form of regularization; we
will select the model with the highest value of BIC, instead of the model with
the highest likelihood.

Problem 2 [30 points]
Write a Matlab function that performs BIC model selection with Bernoulli
mixture EM. Using this function, apply the EM algorithm separately to the
training data for each digit class from 0 to 9. Let θc = {θc1, . . . , θck} and
pc = {pc1, . . . , pck} be the estimated mixture parameters for class c, where
k is the number of mixture components selected based on BIC. Turn in the
plot of θs (similar to the plot in the previous problem) for each class-specific
mixture.

Now write down the expression of the Bayes optimal classifier, under the
assumption that the estimated mixture model is accurate (and assuming
equal prior 1/10 for each digit class), in terms of a test input x and θc, pc.
Implement this classifier in Matlab. In addition, construct a “baseline” Naive
Bayes classifier, that models class-conditional distribution of each pixel as a
Bernoulli distribution, independent of other pixels; estimate its parameters
for this classifier using the closed-form ML solution for Bernoulli. Report the
test error obtained with these two classifiers on Xtest, and briefly explain
the results.

End of problem 2

2 Conditional mixture models

Here we will consider a two-level mixture model for a conditional distribution
of output y for input x:

p (y |x) =
C

∑

c=1

πcρc (y |x; θc) (5)
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where each ρc is itself a conditional mixture of Lc local conditional distribu-
tions,

ρc (y |x) =
Lc
∑

j=1

λcjψcj (y |x; θcj) . (6)

We assume that
∑

c

πc = 1, πc ≥ 0 ∀c = 1, . . . , C (7)

∑

j

λcj = 1, λcj ≥ 0 ∀c = 1, . . . , C, j = 1, . . . , Lc (8)

It is not relevant for the purpose of this section whether the task underlying
this model is regression or classification.

First, we will show that in general, this increased level of sophistication
may not accomplish much.

Problem 3 [10 points]
Prove that the hierarchical model described by (5) and (6) is equivalent to a
conventional (single-level) mixture model.

End of problem 3

Next we will consider an even more sophisticated model: the one in which
each of the mixing coefficients at both levels is allowed to be an arbitray
function of the input x, that is, the model is

p (y |x) =
C

∑

c=1

πc(x)ρc (y |x; θc) (9)

and

ρc (y |x) =
Lc
∑

j=1

λcj(x)ψcj (y |x; θcj) , (10)

and the conditions in (7) are satisfied for every x.

Problem 4 [10 points]
Show that the model described by (9) and (10) is still equivalent to a single-
level model, of course with mixing coefficients that are allowed to be arbitrary
functions of x.

End of problem 4
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Finally, consider a more specific model family: the one in which mixing
coefficients at both levels are softmax functions, for instance,

πc(x) =
ew

T
c x

∑

l e
w

T
l
x

and similarly for λs.

Problem 5 [20 points]
Show that the two-level model with softmax mixing probabilities is not in
general equivalent to a single-level model with softmax mixing probabilities.

End of problem 5

Advice: It is sufficient to construct a single counterexample. For instance, if you

can show that a mixture of two components, one of which is itself a mixture of two

components, can not be represented by a single level mixture with softmax mixing,

you are done.
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