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ABSTRACT In its ground state representation, the infinite
spin 1/2 Heisenberg chain provides a model for spin wave
scattering that entails many features of the quantum mechanical
N-body problem. Here, we give a complete eigenfunction ex-
pansion or the Hamiltonian of the chain in this representation,
for all numbers of spin waves. Our results resolve the questions
of completeness and orthogonality of the eigenfunctions given
by Bethe for finite chains, in the infinite volume limit.

Introduction

Let H be the self-adjoint Hamiltonian for the ground state
representation of the spin 1/2 infinite one-dimensional
Heisenberg ferromagnet with nearest-neighbor interactions
(1, 2). This operator provides a model for spin-wave scattering
(3). Restricted to its N-spin sector, H is unitarily equivalent in
a natural way to a second difference operator -AN with
"sticky" boundary conditions, acting on an 12-space. In this
announcement we give an explicit unitary equivalence of -AN
with a multiplication operator EN = 9,6e 6NE( on @SoeJL 2(rL3;
By dzo) in which SBN is the collection of N-bindings, r6 is es-
sentially a torus with dimension varying with 13, and t,6(z,8)dz#
is the Plancherel measure on rfy It is important to point out that
,E and g(z)dza are given explicitly.

Notation and eigenfunctions

Let zN = fm = (mm2,.. . ,mN) E ZNgmi < M2 < ... <mNA
Then -AN, acting in 12(2N) is defined as follows:

-ANf(ml,.. .,MN)= - E: [f(mi .. ij + 1,...,MN)
2 j=1

+ f(m,.. . ,m -1,... ,MN) -2f(ml,... ,mN)], [la]

provided the mis are not neighboring. If two of the mis are
neighboring-e.g., mk+l = mk + 1-then

iN

-/ANf(M1,- * *-,MN) =-- E
2 i kk+ 1

X Vf(mi,... .,mi + 1,... ,MN) + f(ml,... .,Mi - 1,..* ,MN)

-2f(mb,.. -,mN)]- -f(ml,. .. ,mk - 1,... ,nMN)
2

-f(ml,. .. ,mk,mk + 2,... ,mN) + f(ml,... ,mN). [lb]
2

Analogous expressions hold for the case in which more than two
of the mjs are neighboring. This is the "sticky" boundary con-
dition.
To describe the eigenfunctions we introduce some additional

816

notation. Let 13 = (nfn2,.. .,nN) in which the njs are non-
negative integers such that 2Nj=l jn1 = N. The quantity 13,
which we call an N-binding, describes the manner in which the
N spin waves combine into bound state "complexes"; nj is the
number of j-spin wave complexes. Given 13, partition 1,. . . N
into a disjoint set of intervals Ijk = JNjk + 1,... ,Njk + ji with
Njk ='}' Ini + (k- 1)j for k = .n1,j= 1,. . . X Let
SN be the permutation group of {1,... ,NI and let P = IP e
SN IP(NJk + 1) < P(Nik + 2) < ... < P(Njk + j) for each j,kJ.
Set z (Z1,z2,. .. ,ZN) E CN, Za =(Zll,Z12,* *ZlniZ21,.*. ,ZNnN)
in which zjk = ZNjk + i (the variable Zjk is suppressed in z,6 if nj
= 0), and ZmP - ZlmP(1Z2mP(2ZNmP(N). Next, define the sets rj
= eze Cl liz - (j - 1)1 = 1iand f,6 = tzlzjk e rj withO <
arg[jzjk- (- 1)] < arg[ zjk' - ( - 1)] < 2r if k <k'. Define
the fractional linear transformation

tl(z) =(I+ I1)z E C,le Z

and the function

e-t'P(z) = HI
i<j with

P(i)>P(j)

zizj- 2zi + 1

ZjZj - 2zt + 1/

[3]

for N 2 2. For each fixed zp, 4I,l(zf,m) is a generalized eigen-
function of -AN in which

3(z,,m) = a, zmPee"PP, z,3 e r1
PeP3

[4]

and it is understood that, if i e Ijk with i = Njk + j - 1, then zi
= tl(zjk). The eigenvalue corresponding to tP,6(z,6,m) is given

by

[5]
j=1 k=l 2(jZjk - j + 1)' Z.: E

The eigenvalue E,(z13) is non-negative for zo Ere. The eigen-
functions are the infinite volume limit of the finite volume ei-
genfunctions described by Bethe (1), rewritten in a form in
which they are rational functions (cf. 2).

Associated with each binding there is a Plancherel measure

8(z,6)dz# on r, in which:

,O(Z)= [I ft ( 1) [(j -1)-]2
jkk=i+2ir+

Zjkl- )2

(j~jk+1) 1=1lZjk 1 +1

[2]
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One may verify that, under the substitution of variables z3 --

K1 with eiKik = jZjk - j + 1, the quantity Izg) Iz&,6/OK# I is real
and positive.

Results

Let yiN = 9d8s L2( r;,#gdz#) and (N, the multiplication
operator on yiN, be defined by A[I -3NEf. Our main result is
summarized as follows:
THEOREM. The mapping f - 2mw(z#,m)f(m) defines a

unitary mapping Ufrom 12(ZN) ontoWN such that U(-AN)-
U-l = EN.

Remark: This theorem thus resolves the questions of com-
pleteness and orthogonality for Bethe's eigenfunctions, in the
infinite volume limit.
The basic idea in proving that U is an isometry is to show

that

a!gr P(zs6m)s#(z,6,m')u3(z#) dz( = bm m' [7]

in the special case when m2 < m'2, and fl! = nI!n2! . nN! and

ro = iz/6Izjk e rTj. The path of integration is written in the
more symmetrical form to exploit contour integration.

6P6(Z,%~M) can be written in terms of zg in such a way as to ex-

tend off r, to a rational function in z,6.) Let K(fl) = fP e

#,IP(N1l + 1) = iforsomek = 1,...,nlandL(fl)=P,,-
K(fl). Set

lK)(flZ,m) = EzmPe-fP,
PeK,6

PL(,6)(z,3,m) = E zmPe-'P. [8]
PeL(f)

We show that

A! 0rd{K()(z:,3, 8(ZOM')A)(zo)dz1

= A!Or EzmPe i<OP41(zo,m')A,3(z,3)dz,3 [9]
P(l)= 1

and that the zI integration may be performed in the integral
on the right-hand side to give

-A'-Jbr {IL((Z m)~q)\d(z,, m' )ta,(z,3 )dz,3

+ 6mlmzf
,

4 M (zM)A (zs)dz, [10]

in which #j, j 2 2, is the N-binding (n L-1. n 1l,nj-+ 1
+ L,...,nN),#flu =(nu-2,n2+ l,n2,.. .),,is the (N - 1)-
binding (n- l,n2,... ,MN), m = (in2,... ,MN), m' = (m2',
... ,mN), Iand the sum extends over all j 2 2 and j = 1 if nj
2 2. We remark that the j term in the sum corresponds to poles
in 4V,8 regarded as a function of zi at zi = tj(zjk), k = 1,.. ,nj.
The resulting relationship from Eq. 9 and Eq. 10 and a modest
induction argument on N give Eq. 7.
A major part of our proof involves describing the singularities

of 6M(z#,m) regarded as a function of zip. This task is complicated
by the fact that individual terms in the sum for A/s,, Eq. 4, have
poles on F'3. But, by considering terms in the sum collectively,
we show that V1,(z#,m) is bounded and therefore integrable.
Similarly, we show that 4tK(#), 4tL(#) are bounded, so that each
term in Eq. 9 and Eq. 10 is well defined. The proof of boun-
dedness for these functions utilizes an elementary Sobolev in-
equality and the fact that the functions are quotients of poly-
nomials. Details of the proof will be published elsewhere.
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