Backus-Naur Form (BNF)

Backus-Naur Form (BNF) is a notation technique used to describe the syntax of

- programming languages
- document formats
- communication protocols

- efc.
(digify == 0| 1| 2| 3| 4|5]| 6| 7| 8] 09
(unsigned infeger) == (digit) | (unsigned integer)(digif)
(infteger) == (unsigned integer) | + (unsigned integer) |

— (unsigned integer)
(leftery == a | b | ¢ |...
(identifiery == (letter) | (identifier)(lefter) | (identifier)(digit)

designed in the 1950-60s to define the syntax of the programmming language ALGOL

in fact, this is an example of a context-free grammar, Chomsky (1956)

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 1

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Compilers

convert a high-level language info a machine-executable language

Forexample, ((8 +4) * (6 + 7)) = | OAD 3 in register 1

Language 1 source code = = Language 2 source code

Compiler front-end for language 2

Compiler front-end for language 1
Lexical Analyzer (Scanner)

Lexical Analyzer (Scanner)

Syntax/Semantic

Syntax/semantic
Analyzer (Parser)

Analyzer (Parser)

Intermediate-code Intermediate-code
Generator Generator
Non-optimized intermediate code Non-optimized intermediate code

I Intermediate code mptim\zerl
Optimized intermediate code

Target-1 Target-2
Code Generator Code Generator

lTarget—l machine code lTarget-E machine code
-

—II“ ! _I . !
o . o

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

LOAD 4 in register 2

ADD contents of register 2 into register 1
LOAD 6 in register 3

LOAD 7 in register 4

ADD contents of register 3 into register 4
MULTIPLY register 1 by register 4

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Defining languages recursively

Example 1. L = {a™b™ | n > 0}

Basis: € € L (the empty word isin L) L —e¢ (r1)
Induction: if wis awordin L, then sois awb L — aLb (r2)
BNF notation: L ::= € | aLb

(r1), (r2) are understood as (substitution) rules (or productions) that generate
all words in L

For example, the word aabb is generated (or derived) as follows:

L = aLb replace L with aLb by rule (r2)
aLb = aaLbb replace L with aLb by rule (r2)
aaLbb = aasbb replace L with by rule (r1)

Thus we obtain the derivation L = aLb = aaLbb = aacbb = aabb

a word w can be derived using (r1) and (r2) if, and only if, w € L

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 3

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Palindromes

Example 2. Define the language P of palindromes over {0, 1}

(a palindrome is a string that reads the same forward and backward, e.g., ‘'madamimadam’
or ‘Damn. I, Agassi, miss again. Mad”)

Basis: e€¢ P, 0 P, 1€ P P—e (r)
P—o0 (r2)
P—1 (r3)
Induction: if wis a wordin P, then so is 0w0 and 1wl P — 0P0 (r4)
P — 1P1 (r5)

BNF notation: P =:=¢ | 0| 1| OPO | 1P1

Construct a derivation of 01010

Exercise. Use the Pumping Lemma to show that P is not regular

Fundamentals of Computfing 2014-15(7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 4

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Context-free grammars

A context-free grammar (CFG) consists of 4 components G = (V, X, R, S)

V is a finite set of symbols called variables (or nonterminals)
each variable represents a language (such as L and P in Examples 1, 2)

S € V is a start variable
other variables in V' represent auxiliary languages we need to define S

Y is a finite set of symbols called terminals (V NX = 0)
terminals give alphabets of languages (such as {a, b} and {0, 1} in Examples 1, 2)

R is a finite set of rules (or productions) of the form A — w

where A is a variable and w is a string of variables and ferminals
rules give a recursive definition of the language

Informally: to generate a string of terminal symbols from G, we:

- Begin with the start variable.
- Apply one of the productions with the start symbol on the left-hand side,
replacing the start symbol with the right-hand side of the production
- Repeat selecting variables and replacing them with the right-hand side of some
corresponding production, unfil all variables have been replaced by tferminal symbols

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 5

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

CFGs: derivations and languages

letG = (V,%, R, S) be a CFG
For strings w and v of variables and terminals, we say that:

v is derivable from w in one step in G and write u = v if
v can be obtained from w by replacing some occurrence of A in u with w

where A — wisarulein R

v is derivable from v in G and write u =¢ v if there are uy, uq, ..., uy
such that

U =5 U G U =G =>4 U =5 v (derivation of v from w in G)

The language of the grammar G consists of all words over ¥ that are derivable
from the start variable S
L(G)={we X" | S =¢ w}

L(G) is a context-free language

Fundamentals of Computfing 2014-15(7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 6

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Nonpalindromes

Example 3. Define the language N of nonpalindromes over {0, 1}

Basis: 0wl € N and 1w0 € N, forany w € {0,1}*
have to define the language A = {0, 1}* (of all binary words) as well

Induction: if wisin IN, then so is 0w0 and 1wl

This language can be defined by the following grammar G:

N — 0A1
N — 1A0 A — ¢
N — 0ONO A — 0A
N — 1N1 A—1A
BNF. N = 041 | 140 | ONO | 1N1 Aux=¢ | 0A | 1A

Test: is 0010 derivable in G from N?
N =L 0N0 =L 00410 = 0010 = 0010

More tests: NN =5 10117 ONAO =g 001407 N =g A?

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 7

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Regular languages are context-free

Example 4: show that the language of the regular expression 0*1(0 U 1)*
is context-free

This language can be defined by the following grammar:

S — Al1B

A—e¢

A — 0A

B — ¢ BNF: § ::= Al1B

B — 0B A =€ | 0A

B — 1B B :=¢ | OB | 1B

Every regular longuage is also a context-free language

it is also easy to encode DFAs as CFGs

(states as variables, tfransitions as rules)

Fundamentals of Computfing 2014-15(7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 8

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Applications of CFGs

Consider the language of the CFG S = ¢ | (S) | SS

can you describe it in English?

The language of this CFG consists of all strings of "(" and %)’
with balanced parentheses

CFGs are used to

describe natural languages in linguistics (N. Chomsky)

describe programming languages and markup languages (HTML)
(and other recursive concepts in Computer Science)

syntactic analysis in compilers
before a compiler can do anything, it scans the input program (a string of ASCIl characters)
and determines the syntactic structure of the program. This process is called parsing.

give document type definitions in XML

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 9

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Problem

How to modify NFAs so that they could recognise context-free languages?

Fundamentals of Computfing 2014-15(7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

10

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Pushdown automata

A (nondeterministic) pushdown automaton (PDA) is like an NFA,
except that it has a stack that can be used to record a potentially unbounded
amount of information (in some special way)

Finite control Pushdown stack
- can push symbols

onto the top of the stack
— or pop them off

the top of the stack

(last-in-first—-out)

D>

push/pop

R ERAR

Reading head
(left to right,
read only)

A stack is a last in, first out abstract data type and data structure

Fundamentals of Computfing 2014-15(7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 11

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

PDA for {a"b" | n > 0}

- Read symbols from the input; as each a is read, push it onto the stack
- Assoon as b’s are seen, pop an a off the stack for each b read

- If reading the input is finished exactly when the stack becomes empty,
accept the input

- Oftherwise reject the input

- How to test for an empty stack? oo
Push initially some special symbol, say _L , on the stack

a, €/a b, a/e p
@ ’ - (aastring) means:
if PDA is in state q,
£, 5/_]_ b, a/g £, L/E reads a from input and
symbol zx is on top of stack
qz qs 44 .
U U then PDA replaces x with «
and moves to state r
as before, a and x can be e

what is the language of this automaton if we ignore the stack?

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 12

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Exercise

For ¥ = {a, b}. design a PDA and a CFG for the language

L = {w € ¥* | w contains an equal number of a’s and b's}

- The strategy will be to keep the excess symbols, either a’s or b’s, on the stack
- One state will represent an excess of a’s
- Another state will represent an excess of b’s

- We can tell when the excess switches from one symbol to the other because
at that point the stack will be empty

- In fact, when the stack is empty, we may return to the start state

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 13

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

a, L/e

Fundamentals of Computing 2014-15 (7)

Exercise (cont.)

a, €/a

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

S = ¢e|aSb|bSa|SS

14

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

A formal definition of PDAs
APDAisao6-tuple A = (Q,%,T,4,s,F) where (cf. the definition of NFASs)

- Q@ is afinite set of states

- XY is afinite set, the input alphabet

- Tis afinite set, the stack alphabet
- s € Q@ is the initial state

- F C Q is the set of accepting states

- disatransition relation consisting of ‘instructions’ of the form ((q, a,), (r, @))
where q, r are states, a a symbol from X (input), a symbol from I" (stack),
and a a word over I' (stack), meaning intuifively that

if (1) Aisin state g reading input symbol a on the input tape and
(2) symbol z is on the top of the stack,

then the PDA can (nondeterminism!)
(a) pop z off stack and push a onto stack (the first symbol in « is on the top),
(b) move its head right one cell past the a and enter state »

Fundamentals of Computfing 2014-15(7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 15

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Computations of PDAs

Configuration of PDA A: (state, word_on_tape, stack)

Computation of PDA A on input w: (can be many computations!)
(s,au,e) s is the initial state, w = aw and the stack is empty
1 if A contains an instruction ((s, a,€), (r,zy)) then

(ryu, zy) r is the next state, head scans first symbol in u, stack is xy

1 if A contains an instruction ((r,e,x), (g,€)) then
(g,u,y) q is the next state, head scans first symbol in u, stack is y
(t,e,) if ¢ is accepting (t € F), then the computation is accepting

(similar to computations of NFAS)
Computations can also get stuck, end with non-accepting states, or even loop

Exercise: design PDA recognising the language over {(,)} with balanced parentheses

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 16

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Using nondeterminism
Design a PDA recognising the language L = {a‘b’c* | i = j ori = k}
L contains strings such as aabbc, aabec, but not abbec

Idea: start by reading and pushing the a’s. When the a’s are done, the PDA can match
them with either the b’s or the ¢’s. Here we use nondeterminism !

a, €/a b, a/e c, €/e
>@ g, e/l g e, €/e @ e, L/e @
g/e
g, €/e g, L/e

ds @ @
this language cannot be recognised &

by a deterministic PDA b, /¢ c, aje
) ’

Fundamentals of Computfing 2014-15(7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 17

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

CFGs and PDAs

Context-free languages are precisely the languages recognised by
pushdown automata

- There is an algorithm that, given any CFG G,
constructs a PDA A such that L(A) = L(G)

- There is an algorithm that, given any PDA A,
constructs a CFG G such that L(G) = L(A)

The following languages are context free:
- {ww|we{0,1}"}
- {a™b"c” | n > 0}
- {a®" |n >0}
can be shown using an analogue of the pumping lemma for PDASs

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 18

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Unrestricted grammars

An unrestricted grammar consists of 4 components G = (V, X, R, S)

- V is afinite set of variables

- S € V is astart variable

- Yis afinite set of terminals (VN X = 0) in CFGs, « is a variable!

- Ris afinite set of rules (or productions) of the form | &« — 3

where a and 3 are strings of variables and terminals

For strings « and v of variables and terminals, we say that

v is derivable from w in one step in G and write uw =4 v if

v Can be obtained from wu by replacing some substring « in w with 3
where a — gisarulein R

Example. The grammar G: S — aBSc¢, S — abc, Ba — aB, Bb — bb
generates (non-context-free) {a™b™c™ | n > 0}

S =, aBSc = aBabce =, aaBbce =, aabbce
http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 19

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Testing membership in languages

Problem: given a string w and a language L, decide whether wisin L

for L given by a DFA: simulate the DFA processing of w.

test takes time proportional to |w|

for L given by a NFA with k states:

test can be done in time proportional to |w| x k2
each input symbol can be processed by taking the previous set of (at most k) states and

looking at the successors of each of these states

for L given by a CFG of size k. test can be done in time proportional to
|lw|? x k2

for L given by an unrestricted grammair:

e solved by mechanical procedures
(such as computer programs)

Is it possible to design a formal model of computation that would
capture capabilities of any computer program ?

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

20

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

