
Backus-Naur Form (BNF)

Backus-Naur Form (BNF) is a notation technique used to describe the syntax of

– programming languages

– document formats

– communication protocols

– etc.

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈unsigned integer〉 ::= 〈digit〉 | 〈unsigned integer〉〈digit〉

〈integer〉 ::= 〈unsigned integer〉 | + 〈unsigned integer〉 |
−〈unsigned integer〉

〈letter〉 ::= a | b | c | . . .

〈identifier〉 ::= 〈letter〉 | 〈identifier〉〈letter〉 | 〈identifier〉〈digit〉

designed in the 1950–60s to define the syntax of the programming language ALGOL

in fact, this is an example of a context-free grammar, Chomsky (1956)

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 1

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Compilers

convert a high-level language into a machine-executable language

For example, ((3 + 4) ∗ (6 + 7)) LOAD 3 in register 1

LOAD 4 in register 2

ADD contents of register 2 into register 1

LOAD 6 in register 3

LOAD 7 in register 4

ADD contents of register 3 into register 4

MULTIPLY register 1 by register 4

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 2

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Defining languages recursively

Example 1. L = {anbn | n ≥ 0}

Basis: ε ∈ L (the empty word is in L) L → ε (r1)

Induction: if w is a word in L, then so is awb L → aLb (r2)

BNF notation: L ::= ε | aLb

(r1), (r2) are understood as (substitution) rules (or productions) that generate

all words in L

For example, the word aabb is generated (or derived) as follows:

L ⇒ aLb replace L with aLb by rule (r2)

aLb ⇒ aaLbb replace L with aLb by rule (r2)

aaLbb ⇒ aaεbb replace L with ε by rule (r1)

Thus we obtain the derivation L ⇒ aLb ⇒ aaLbb ⇒ aaεbb = aabb

a word w can be derived using (r1) and (r2) if, and only if, w ∈ L

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 3

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Palindromes

Example 2. Define the language P of palindromes over {0, 1}

(a palindrome is a string that reads the same forward and backward, e.g., ‘madamimadam’

or ‘Damn. I, Agassi, miss again. Mad’)

Basis: ε ∈ P , 0 ∈ P , 1 ∈ P P → ε (r1)

P → 0 (r2)

P → 1 (r3)

Induction: if w is a word in P , then so is 0w0 and 1w1 P → 0P0 (r4)

P → 1P1 (r5)

BNF notation: P ::= ε | 0 | 1 | 0P0 | 1P1

Construct a derivation of 01010

Exercise. Use the Pumping Lemma to show that P is not regular

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 4

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Context-free grammars

A context-free grammar (CFG) consists of 4 components G = (V,Σ, R, S)

– V is a finite set of symbols called variables (or nonterminals)
each variable represents a language (such as L and P in Examples 1, 2)

– S ∈ V is a start variable
other variables in V represent auxiliary languages we need to define S

– Σ is a finite set of symbols called terminals (V ∩ Σ = ∅)
terminals give alphabets of languages (such as {a, b} and {0, 1} in Examples 1, 2)

– R is a finite set of rules (or productions) of the form A → w
where A is a variable and w is a string of variables and terminals

rules give a recursive definition of the language

Informally: to generate a string of terminal symbols from G, we:

– Begin with the start variable.

– Apply one of the productions with the start symbol on the left-hand side,

replacing the start symbol with the right-hand side of the production

– Repeat selecting variables and replacing them with the right-hand side of some

corresponding production, until all variables have been replaced by terminal symbols

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 5

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

CFGs: derivations and languages

Let G = (V,Σ, R, S) be a CFG

For strings u and v of variables and terminals, we say that:

v is derivable from u in one step in G and write u ⇒1

G
v if

v can be obtained from u by replacing some occurrence of A in u with w

where A → w is a rule in R

v is derivable from u in G and write u ⇒G v if there are u1, u2, . . . , uk

such that

u ⇒1

G
u1 ⇒1

G
u2 ⇒1

G
· · · ⇒1

G
uk ⇒1

G
v (derivation of v from u in G)

The language of the grammar G consists of all words over Σ that are derivable

from the start variable S

L(G) = {w ∈ Σ∗ | S ⇒G w}

L(G) is a context-free language

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 6

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Nonpalindromes

Example 3. Define the language N of nonpalindromes over {0, 1}

Basis: 0w1 ∈ N and 1w0 ∈ N , for any w ∈ {0, 1}∗

have to define the language A = {0, 1}∗ (of all binary words) as well

Induction: if w is in N , then so is 0w0 and 1w1

This language can be defined by the following grammar G:

N → 0A1

N → 1A0 A → ε

N → 0N0 A → 0A

N → 1N1 A → 1A

BNF: N ::= 0A1 | 1A0 | 0N0 | 1N1 A ::= ε | 0A | 1A

Test: is 0010 derivable in G from N?

N ⇒1

G
0N0 ⇒1

G
00A10 ⇒1

G
00ε10 = 0010

More tests: N ⇒G 1011 ? 0NA0 ⇒G 001A0 ? N ⇒G A ?

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 7

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Regular languages are context-free

Example 4: show that the language of the regular expression 0∗1(0 ∪ 1)∗

is context-free

This language can be defined by the following grammar:

S → A1B

A → ε

A → 0A

B → ε

B → 0B

B → 1B

BNF: S ::= A1B

A ::= ε | 0A

B ::= ε | 0B | 1B

Every regular language is also a context-free language

it is also easy to encode DFAs as CFGs

(states as variables, transitions as rules)

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 8

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Applications of CFGs

Consider the language of the CFG S ::= ε | (S) | SS

can you describe it in English?

The language of this CFG consists of all strings of ‘(’ and ‘)’

with balanced parentheses

CFGs are used to

– describe natural languages in linguistics (N. Chomsky)

– describe programming languages and markup languages (HTML)

(and other recursive concepts in Computer Science)

– syntactic analysis in compilers

before a compiler can do anything, it scans the input program (a string of ASCII characters)

and determines the syntactic structure of the program. This process is called parsing.

– give document type definitions in XML

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 9

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Problem

How to modify NFAs so that they could recognise context-free languages?

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 10

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Pushdown automata

A (nondeterministic) pushdown automaton (PDA) is like an NFA,

except that it has a stack that can be used to record a potentially unbounded

amount of information (in some special way)

✬

✫

✩

✪
s��✒✉ ✉
✉

✉
✉✉>

❞❣s ❞❣s
Finite control

✦✬

✄

push/pop

Pushdown stack

– can push symbols

onto the top of the stack

– or pop them off

the top of the stack

(last–in–first–out)

`
Reading head

(left to right,

read only)
a b a b b c . . .

x

y

z

⊥

A stack is a last in, first out abstract data type and data structure

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 11

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

PDA for {anbn | n ≥ 0}

– Read symbols from the input; as each a is read, push it onto the stack

– As soon as b’s are seen, pop an a off the stack for each b read

– If reading the input is finished exactly when the stack becomes empty,

accept the input

– Otherwise reject the input

– How to test for an empty stack?

Push initially some special symbol, say ⊥ , on the stack
(bottom)

> q1 q2 q3 q4

ε, ε/⊥ b, a/ε

a, ε/a b, a/ε

ε, ⊥/ε

(α a string) means:

if PDA is in state q,

reads a from input and

symbol x is on top of stack

then PDA replaces x with α

and moves to state r

q r

a, x/α

as before, a and x can be ε
what is the language of this automaton if we ignore the stack?

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 12

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Exercise

For Σ = {a, b}, design a PDA and a CFG for the language

L = {w ∈ Σ∗ | w contains an equal number of a’s and b’s}

– The strategy will be to keep the excess symbols, either a’s or b’s, on the stack

– One state will represent an excess of a’s

– Another state will represent an excess of b’s

– We can tell when the excess switches from one symbol to the other because

at that point the stack will be empty

– In fact, when the stack is empty, we may return to the start state

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 13

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Exercise (cont.)

>

a > b

b > a

a, ε/⊥

b, ⊥/ε

a, ε/a

b, a/ε

b, ε/b

a, b/ε

b, ε/⊥

a, ⊥/ε

S ::= ε | aSb | bSa | SS

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 14

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

A formal definition of PDAs

A PDA is a 6-tuple A = (Q,Σ,Γ, δ, s, F) where (cf. the definition of NFAs)

– Q is a finite set of states

– Σ is a finite set, the input alphabet

– Γ is a finite set, the stack alphabet

– s ∈ Q is the initial state

– F ⊆ Q is the set of accepting states

– δ is a transition relation consisting of ‘instructions’ of the form
(

(q, a, x), (r, α)
)

where q, r are states, a a symbol from Σ (input), x a symbol from Γ (stack),

and α a word over Γ (stack), meaning intuitively that

if (1) A is in state q reading input symbol a on the input tape and

(2) symbol x is on the top of the stack,

then the PDA can (nondeterminism!)

(a) pop x off stack and push α onto stack (the first symbol in α is on the top),

(b) move its head right one cell past the a and enter state r

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 15

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Computations of PDAs

Configuration of PDA A: (state,word on tape, stack)

Computation of PDA A on input w: (can be many computations!)

(s, au, ε) s is the initial state, w = au and the stack is empty

if A contains an instruction
(

(s, a, ε), (r, xy)
)

then↓
(r, u, xy) r is the next state, head scans first symbol in u, stack is xy

if A contains an instruction
(

(r, ε, x), (q, ε)
)

then↓
(q, u, y) q is the next state, head scans first symbol in u, stack is y

↓
. . .

(t, ε, α) if t is accepting (t ∈ F), then the computation is accepting

(similar to computations of NFAs)

Computations can also get stuck, end with non-accepting states, or even loop

Exercise: design PDA recognising the language over {(,)} with balanced parentheses

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 16

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Using nondeterminism

Design a PDA recognising the language L = {aibjck | i = j or i = k}

L contains strings such as aabbc , aabcc , but not abbcc

Idea: start by reading and pushing the a’s. When the a’s are done, the PDA can match

them with either the b’s or the c’s. Here we use nondeterminism !

> q1 q2 q3 q4

q5 q6 q7

ε, ε/⊥ ε, ε/ε

a, ε/a b, a/ε

ε, ⊥/ε

ε, ε/ε

ε, ε/ε ε, ⊥/ε

c, ε/ε

b, ε/ε c, a/ε

this language cannot be recognised

by a deterministic PDA

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 17

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

CFGs and PDAs

Context-free languages are precisely the languages recognised by

pushdown automata

– There is an algorithm that, given any CFG G,

constructs a PDA A such that L(A) = L(G)

– There is an algorithm that, given any PDA A,

constructs a CFG G such that L(G) = L(A)

The following languages are not context free:

– {ww | w ∈ {0, 1}∗}

– {anbncn | n ≥ 0}

– {a2
n
| n ≥ 0}

can be shown using an analogue of the pumping lemma for PDAs

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 18

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Unrestricted grammars

An unrestricted grammar consists of 4 components G = (V,Σ, R, S)

– V is a finite set of variables

– S ∈ V is a start variable

– Σ is a finite set of terminals (V ∩ Σ = ∅)

– R is a finite set of rules (or productions) of the form α → β

where α and β are strings of variables and terminals

in CFGs, α is a variable!

For strings u and v of variables and terminals, we say that

v is derivable from u in one step in G and write u ⇒1

G
v if

v can be obtained from u by replacing some substring α in u with β

where α → β is a rule in R

Example. The grammar G: S → aBSc, S → abc, Ba → aB, Bb → bb

generates (non-context-free) {anbncn | n ≥ 0}

S ⇒1

G
aBSc ⇒1

G
aBabcc ⇒1

G
aaBbcc ⇒1

G
aabbcc

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 19

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

Testing membership in languages

Problem: given a string w and a language L, decide whether w is in L

– for L given by a DFA: simulate the DFA processing of w.

test takes time proportional to |w|

– for L given by a NFA with k states:

test can be done in time proportional to |w| × k2

each input symbol can be processed by taking the previous set of (at most k) states and

looking at the successors of each of these states

– for L given by a CFG of size k: test can be done in time proportional to

|w|3 × k2

– for L given by an unrestricted grammar:

cannot be solved by any mechanical procedures

(such as computer programs)

Is it possible to design a formal model of computation that would

capture capabilities of any computer program ?

Fundamentals of Computing 2014–15 (7) http://www.dcs.bbk.ac.uk/~michael/foc/foc.html 20

http://www.dcs.bbk.ac.uk/~michael/foc/foc.html

