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SUMMARY

We extend in this paper results from packet-based control theory and present sufficient conditions on the rate of a packet
network to guarantee asymptotic stabilizability of unstable discrete LTI systems with less inputs than states. We use a
truncation-based encoder/decoder scheme and two types of network control systems are considered in the absence of
communication delays, then for one of the two types, the case of a constant time delay is discussed. For one of the network
types, we also propose a zoom-in-type dynamic quantizer scheme with lower data rate but a more complex encoding scheme
than the truncation-based one. The new dynamic quantizer requires a lower data rate to achieve stabilization, and while it
does not achieve the minimum data rate given by the Data Rate Theorem, it uses an encoding algorithm that is simpler than
others reported in the literature. Copyright q 2009 John Wiley & Sons, Ltd.
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Q1
1. INTRODUCTION

Feedback control systems wherein the control loops

are closed through a real-time network are called

networked control systems (NCS) [1, 2]. In 1999,

Wong and Brockett [3] considered a feedback system

communicating through a digital channel with finite

capacity, and since asymptotic stability was deemed

unrealistic, the concept of containability was intro-

duced. Mitter [4] and collaborators have contributed to

the development of a new theory of NCS that matches

∗Correspondence to: I. Lopez Hurtado, Department of Electrical
and Computer Engineering, Room 333, MSC01 1100, 1 Univer-
sity of New Mexico, Albuquerque, NM 87131-0001, U.S.A.

†E-mail: ilopez@nnmc.edu

Contract/grant sponsor: Conacyt; contract/grant number: CNS
0626380

Contract/grant sponsor: NSF

classical control theory with traditional information

theory, (see [5–8]). In [8], an efficient encoder–decoder
scheme is proposed to guarantee stabilization of a class

of discrete linear time-invariant (DLTI) system using

the minimum rate imposed by the Data Rate Theorem

[8]. Reference [9] described an encoder/decoder

scheme that also achieved the minimum data rate while

considering packet losses. Similarly, Reference [10]
presents an encoder–decoder scheme that deals with

uncertainty in the plant model. It is clear in all of these

schemes that the cost of reducing the data rate implies

an increase in the complexity of the stabilizability

algorithm and the computational power required for

the encoding/decoding operations. There may however

be situations where simpler algorithms are preferred, at

the expense of requiring a higher data rate. The purpose

of this paper is to provide such simple encoder/decoder

schemes that may require higher data rates in order to

guarantee asymptotic stability.

Copyright q 2009 John Wiley & Sons, Ltd.
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The first scheme presented is based on ideas

proposed in [11–13]. The authors of those papers

considered a general DLTI system x(k+1)= Ax(k)+
Bu(k) and found a sufficient rate for exponential

stabilization of an unstable plant of order n, under the

rather limiting assumption that the system has n inputs

(where n is the number of states) and an invertible

input matrix B. The work addressed finite rate issues,

packet dropping, as well as uncertainties in the plant

model. Moreover, the authors assumed the existence of

a truncation-based encoder/decoder without providing

its specific structure.

We extend the results of [11] to the case of DLTI

system with m inputs such that m�n, where n is the

order of the system. We also relax the condition of the

invertibility of the B matrix, and extend the stabiliz-

ability results to systems with a constant time-delay

induced by the sensor-to-controller network. Moreover,

we present an easily implementable encoder/decoder

structure. As was considered in [11], we discuss two

types of NCS: one that includes a network between

the sensors and the controller, and another that models

two networks in the loop, one between the sensors and

controller, and another between the controller and the

actuator. Section 4 of this work is an extension to the

preliminary results we presented in [14].
Finally, we also propose a zoom-in-type dynamic

quantizer scheme with lower data rate but a more

complex encoding scheme than the truncation-based

one. The new dynamic quantizer requires a lower

data rate to achieve stabilization, and while it does

not achieve the minimum data rate given by the Data

Rate Theorem, it uses an encoding algorithm that is

simpler than others reported in [8–10]. Examples and

simulations are provided in Section 8 to illustrate the

results.

2. PROBLEM SETUP

We consider the two configurations for the packet-based

NCS presented in [11]. The first system is referred to

as NCS Type I and has a rate of Rp1 packets/time-step.

This packet-based network accommodates a packet size

of DMax bits used for data (although the protocol infor-

mation requires extra bits in the packet, it is not needed

for this analysis). Let us consider the discrete LTI

system shown in Figure 1 and described by
F1

x(k+1)= Ax(k)+Bu(k) (1)

where A is n×n, B is n×m and u(k) is m×1.

The second type of packet-based network, referred

to as NCS Type II, consists of the same discrete LTI

system given by Equation (1), but with the addition

of a second network between the controller and the

actuator with rate Rp2 as shown in Figure 2. From
F2

here on, the following notations are adopted. The norm

symbol (‖.‖) denotes the Euclidean norm and ⌈.⌉ is

the ceil function. In addition, we use the variable � to

denote the controllability index, which for multivari-

able linear systems [15] is defined as the least integer k
such that

rank[B| AB| . . . | Ak−1B]=n (2)

We assume that the controller does not saturate, and

that the packet-network does not drop packets nor is it

subjected to disturbances (noise). For both NCS types,

we assume that the states may be measured. We also

assume that the decoder knows exactly the encoding

scheme used by the encoder at all times (equimemory

property), as described in Section 3. The last assump-

tion is that the encoder and decoder know a value

L0>0 such that ‖x(0)‖<L0 and that both have access

to the control signal or can compute it as represented

by a dotted line in Figures 1 and 2. The assumption of

knowing the value L0 does not constrain the applica-

tions of the scheme. It may be simply chosen as any

upper bound for x(0) that is logical from the physical

Encoder

Network

Decoder

Controller

x(k + 1) = Ax(k) + Bu(k)

Rate: Rp packets/time-step

y(k) = x(k)

Figure 1. Closed-loop NCS: Type I.
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Encoder

Network

Decoder

Controller

x(k + 1) = Ax(k) + Bu(k)

Rate: Rp1
packets/time-step

y(k) = x(k)

Encoder

Network

Decoder

2 1
Rate: Rp2

packets/time-step

Figure 2. Closed-loop NCS: Type II.

constraints of the plant (for example: if x(0) is the initial

position of a robot within a room, then the dimensions

of the room will be a suitable choose of L0).

3. ENCODER–DECODER DESIGN

Several approaches for the design of an encoder/

decoder scheme were presented in previous works.

Most of them are based on some type of predictor

that emulates the evolution of the plant state and the

difference between this prediction and the actual state

of the plant, i.e. the error. The quantized error is sent

through the channel, then decoded at the receiver and

used to obtain an approximation of the state, which

is used to generate the control signal. In our case

however, we send a quantized version of every state

component rather than the error using a modified

version of the encoder/decoder scheme proposed in

[16]. Figures 3 and 4 illustrate our scheme, which is
F3

F4
described next in detail. At the first instant, k=0, the

sensor measures the state exactly. Since we assume

that both the encoder and decoder know L0, each

component x j of the measured state is divided by

L0, which gives a number x j/L0 that is strictly less

than or equal to 1 in magnitude. We assume for now

that x j/L0 is positive (in Section 4 we describe on

how to proceed if x j/L0 is negative). The encoder

converts this x j/L0 to its binary representation and

keeps only the r j most significant bits (MSB). This

truncated version is labeled as (x j (0)/L0)Tr j
, where

the symbol ()Tr j
denotes the truncation operation

Figure 3. Encoder scheme.

Bits in a packet that arrive

from the channel

DECODER

Binary

to Decimal

Converter

Lk

x̄ j{b1, b2 , . . . , bn}x

Figure 4. Decoder scheme.

that retains the r j MSB. The quantity r j will be

calculated in Section 4. The decimal representation

of these r j bits is multiplied by L0 resulting in an

estimate x̄ j (0)= (x j(0)/L0)Tr j
L0, which is stored in

the encoder. By grouping into a vector the j truncated

state components, we obtain the state estimate x̄(0).

The bits in each truncated state component form a

packet (or packets depending on DMax) that is sent

through the channel. On the receiver side, the decoder

receives a packet (or packets) and separates the bits

that correspond to each state component. Assuming

perfect transmission, the decoder then converts the

binary representation of the bits received into a decimal

representation and multiplies by L0, which gives the

value x̄ j (0). This should result in the same value

stored in the encoder and, therefore, the equimemory

property between encoder and decoder is preserved.

Since the control signal at time k=1 only depends on

x̄(0), we can show that at time k=1, x j (1) is bounded

as follows. Using the triangle inequality and matrix

norm properties we have:

‖x(1)‖ � ‖Ax(0)+Bu(x̄(0))‖

� ‖A‖‖x(0)‖+‖Bu(x̄(0))‖

� ‖A‖L0+‖Bu(x̄(0))‖

= L1

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2009)
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Since the control algorithm is predefined, the encoder

and decoder can both calculate this value L1 right after

they have calculated the value x̄(0). The stored L1

will then be used at instant k=1 to keep the ratio

|x(1)/L1|�1. By carefully examining the above steps,

we obtain the following scalar difference equation to

bound the norm of each state component:

Lk =‖A‖Lk−1+‖Bu(x̄(k−1))‖ ∀k={1, . . .,�} (3)

Since Equation (3) only depends on the terms Lk−1 and

x̄(k−1), all signals needed to compute this equation are

available at the encoder and the decoder. In Section 4

we will see that Lk only evolves for � time-steps, before

it is reset to a new starting value for the next � time-

steps and this is the reason to limit k to a maximum of

� in Equation (3).

4. RESULTS FOR THE TRUNCATION-BASED

ENCODING SCHEME

4.1. Network control system: type I

In the case of NCS Type I, the state vector x(k) is given

by x(k)=[x1(k) x2(k) . . . xn(k)]′. We assume below

that x j (k)>0, ∀j since the sign of each state component

may later be accounted for by adding n extra bits to

the rate (one extra bit per each state component sign).

We then obtain the following binary representation of

x(0)/L0 at the encoder side:

x(0)

L0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(0)

L0

x2(0)

L0

...

xn(0)

L0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
i=1

�1i2
−i

∞∑
i=1

�2i2
−i

...

∞∑
i=1

�ni2
−i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where �i j ∈{0,1}. This binary representation is trun-

cated keeping only the r j MSB for state component x j .

The truncated representation is given by

(
x(0)

L0

)

Tr j

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
x1(0)

L0

)

Tr j(
x2(0)

L0

)

Tr j

...
(
xn(0)

L0

)

Tr j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1∑
i=1

�1i2
−i

r2∑
i=1

�2i2
−i

...

rn∑
i=1

�ni2
−i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where �i j ∈{0,1}. The r j bits per state component j are

sent through the channel and, at the receiver site, the

decoder transforms the bits back into decimal numbers,

and multiplies them by L0 in order to obtain x̄(0).

With this encoding/decoding process, we guarantee

that the error between the actual state component and

its encoded version, � j (0)= x j(0)− x̄ j (0), is limited by

‖� j (0)‖<2−r j L0, ∀j ∈{0,1, . . .,n}. Using the triangle

inequality, the norm of the total error is bounded by

‖�(0)‖�

√
n∑
j=1

2−2r j L0 (6)

Let us then consider the evolution of the system starting

at time k=0:

x(1) = Ax(0)+Bu(0)

x(2) = A2x(0)+ABu(0)+Bu(1)

...

x(l) = Alx(0)+
l∑

i=1

Al−i Bu(i−1) ∀l�3

Recalling that � represents the controllability index,

after � steps we have

x(�) = A�x(0)+A�−1Bu(0)+A�−2Bu(1)

+·· ·+Bu(�−1)

This equation may be re-arranged as x(�)= A�x(0)+
��U, where

�� = [B| AB| . . . | A�−1B]

= [�1| �2| . . . | � j | . . . | ��]

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2009)
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and

U=[u(�−1) . . . u(0)]′ =[u1 . . . u j . . . u�]′

noting that � j is the j th column in �� and u j is the

j th element in the vector U. Let us select the first n

independent columns of �� and build a new matrix,

called �n . Let us also select the elements of U corre-

sponding to the columns chosen from �� and form a

new vector, called Un . Recalling that x(0)= x̄(0)+�(0)

we have x(�)= A�x̄(0)+A��(0)+��U. If we choose

the control law

Un =−�−1
n A� x̄(0) (7)

we may reconstruct U by replacing u j with the corre-

sponding values of Un in the proper order and letting

u j =0 for the remaining elements. After � steps, and

by applying the control sequence U we obtain

x(�)= A��(0) (8)

Then, from Equations (6), (8), and the properties of

matrix norms, we obtain

‖x(�)‖=‖A��(0)‖�‖A�‖‖�(0)‖�‖A�‖
√

n∑
j=1

2−2r j L0

In order to force the state to decrease in the norm (after

� steps), we shrink the upper bound of the state x(�) by

forcing it to be less than a fraction of the upper bound

of the state x(0), i.e. ‖A�‖
√∑n

j=12
−2r j L0<L0/�, for

some �>1. At this point, we have to decide on the value

of each r j . This may be converted into an optimization

problem whose objective is to minimize the total rate

given by
∑n

j=1 r j . In other words, let us consider the

optimization problem:

min
r j

n∑
j=1

r j (9)

subject to

√
n∑
j=1

2−2r j <
1

�‖A�‖
=C∗ (10)

This problem may be solved by applying the Karush–

Kuhn–Tucker (KKT) conditions [17] to the Lagrangian

function L(r1,r2, . . .,rn, l) with Lagrange multiplier l

as given by

L = r1+r2+·· ·+rn

−l(C∗−
√
2−2r1 +2−2r2 +·· ·+2−2rn )

The KKT conditions are then:

�L

�ri
=1−l

2−2ri ln(2)
√
2−2r1 +2−2r2 +·· ·+2−2rn

=0

∀i ∈{1,2, . . .,n}

Solving this system of n equations, we obtain: r1=
r2=·· ·=r j =·· ·=rn . Therefore, an equal allocation

of bits per each state component actually guarantees

the minimum total rate. Using the constraint (10) we

obtain the optimal rate allocation rn>⌈log2(‖A�‖)+
1
2
log2(n)+ log2(�)⌉. We notice that � is a parameter

that determines the fraction by which the upper bound

of ‖x(0)‖ is shrinking. Therefore, it is sufficient

to consider the infimum of this quantity to obtain

rn>⌈log2((‖A�‖))+ 1
2
log2(n)⌉. Note that the ⌈.⌉

function was introduced since rn must be an integer

denoting the number of bits for each state component.

We can therefore define the total R bits in a packet (or

packets) as R=nrn+n where the second n term may

be used to code the sign of each state component.

For the next � steps, we repeat the same steps as

above but using x(�) as the initial condition. To stop the

growth of Lk , and noting that ‖x(�)‖<n‖A�‖2−rn L0,

we assign L� =n‖A�‖2−rn L0 as the new L0 for the

next � time steps in Equation (3). We repeat this

procedure every � steps. Using the same algorithm to

generate the control sequence and the same rate R,

the state x(2�) will be a shrunken version of x(�).

Proceeding in the same manner, x(t�) will tend to

zero as t ∈N grows and, therefore, the state x will

tend to zero and asymptotic stabilizability will be

achieved. Note that R is the sufficient number of

effective bits that we need to transmit for the whole

state to guarantee stabilization, but since a packet has

a maximum length DMax, if R�DMax, we need a

packet rate of Rp =1 packet/sample-time. If on the

other hand, R>DMax then, a minimum of ⌈R/DMax⌉
packets/time-step are needed. Note that the last expres-

sion actually covers both cases, since R/DMax<1

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2009)
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gives a 1 packet/sample-time when the ceil function

is applied.

This analysis may be summarized in the following

theorem.

Theorem 4.1

Assuming an equal allocation of bits per state compo-

nent, a network rate Rp packets/time-step, and

assuming that (A, B) is a controllable pair with control-

lability index �, a sufficient condition for system (1)

to be asymptotically stabilizable is Rp =⌈R/DMax⌉,
where R>n⌈log2(‖A�‖)+ 1

2
log2(n)⌉+n and every

state allocates R/n bits/time-step.

An immediate consequence of Theorem 4.1 in the

specific case of a single input system is given in the

following corollary.

Corollary 4.1

Assuming an equal allocation of bits per state compo-

nent, a network rate Rp packets/time-step, (A, B) is a

controllable pair, and B is n×1, a sufficient condition

for system (1) to be asymptotically stabilizable is Rp =
⌈R/DMax⌉, where R>n⌈log2(‖An‖)+ 1

2
log2(n)⌉+n

and every state allocates R/n bits/sample.

Proof

The proof is the same as that of Theorem 4.1. If B is

n×1 and u(k) is 1×1, then �=n. Substituting � in R

in the proof of Theorem 4.1, we obtain the rate given

by the corollary. �

Although the proof of Theorem 4.1 relies on a

specific control law, Reference [18] shows the data

rate condition using a truncation-based scheme with

the given control law u(k)=−K x̄(k). It is clear for

the simulations in [18] that the rates there are much

higher than the ones obtained using the control law in

Equation (7).

4.2. Network control system Type I with time delay

One of our motivations for extending the results of [11]
was to account for the effects of time delays that may be

present in the network. As mentioned earlier, even for

the scalar case, the invertibility requirement of B would

not allow the traditional augmentation of the state by

its delayed versions. Let us consider the modified NCS

Encoder

Network

Decoder

Controller

x(k + 1) = Ax(k) + Bu(k)

Rate: Rp packets/time-step

y(k) = x(k)

z p

Figure 5. Closed-loop NCS Type I with time-delay.

type I shown in Figure 5 and the DLTI system given
F5

by the following equation:

x(k+1)= Ax(k)+Bu(k− p) (11)

where A is n×n, B is n×1 and u(k) is 1×1. We

assume here that the control signal to actuator delay

is a constant equal to p∈N time-steps. Under such

conditions, we obtain the following theorem:

Theorem 4.2

Assuming an equal allocation of bits per state compo-

nent, a network rate of Rp =⌈R/DMax⌉ packets/time-

step, and

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0

1

0 0
... . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

such that (A,B) is a controllable pair. A suffi-

cient condition for system (11) to be asymptotically

stabilizable is Rp =⌈R/DMax⌉, where R>(n+ p)

⌈log2(‖A
n+p‖)+ 1

2
log2(n+ p)⌉+(n+ p), and each

state component of the augmented system allocates

R/(n+ p) bits/time-step.

Proof

Similar to works [19, 20], we start out by augmenting

the state vector, considering as new states the last p
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previous inputs. We then obtain

X(k+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k+1)

xn+1(k+1)

xn+2(k+1)

...

xn+p(k+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0

1

0 0
... . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k)

xn+1(k)

xn+2(k)

...

xn+p(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(k)

This may be written as X(k+1)=AX(k)+Bu(k).

We now have a system similar to the one treated in

Corollary 4.1 with a state dimension n+ p instead

of n. Therefore, in order to shrink the upper bound of

the state X(k+n+ p) we need a rate R given by

R/(n+ p)>⌈log2(‖A
n+p‖)+ 1

2
log2(n+ p)⌉+1

Similar to previous proofs, we find a minimum rate of

Rp =⌈R/DMax⌉ packets/time-step. �

4.3. Network control system: Type II

We now consider an NCS Type II and show the

following result.

Theorem 4.3

Assume an equal allocation of bits per state component,

network rates of Rp1 =⌈(R1+n)/DMax⌉ packets/time-

step and Rp2 =⌈(R2+1)/DMax⌉ packets/time-step

for network 1 and 2, respectively. Assuming also

that (A, B) is a controllable pair, where B is

n×1, the controllability matrix is given by �=
[B| AB| . . . | An−1B], a sufficient condition for

system (1) to be asymptotically stabilizable is

n‖An‖2−(R1/n+1)+‖�‖‖�−1A‖2−(R2+1)<1

Proof

Since there is now a rate constraint from the controller

to the plant actuators, we can no longer apply the

calculated control signal u(k) directly to the plant.

Instead, only the bits encoding u(k) according to

the available rate R2 may be used. This encoded

control signal ũ(k) is the one that is received by the

plant. We then have x(k+1)= Ax(k)+Bũ(k). Let us

assume that we have exactly the same encoding and

decoding schemes used in Theorem 4.1. The evolution

of the system in the first n time steps is given by

x(n)= Anx(0)+�Ũ, where Ũ=[̃u(n−1) . . . ũ(0)]′.
If we choose the control signal U=−�−1An x̄(0),

then ‖U‖�‖�−1AnL0‖�‖�−1An‖L0= L20. For other

time k, the normalization value that is kept in the

memory of the encoder/decoder of network II, i.e. L2k ,

is given by L2k =‖�−1An‖Lk . Since ũ(k) represents

the R2 MSB of u(k) we know that

‖U−Ũ‖�‖�−1An‖L02
−R2 (12)

From Equation (12) and recalling that x(0)= x̄(0)+
�(0) and ‖�(0)‖<

√
nL02

−R1/n , we have

‖x(n)‖ = ‖An x̄(0)+An�(0)+�Ũ‖

= ‖�(�−1An x̄(0)+Ũ)+An�(0)‖

� ‖�‖‖U−Ũ‖+‖An�(0)‖

� ‖�‖‖�−1A‖L02
−R2 +

√
n‖An‖L02

−R1/n

<
L0

�

To guarantee the decrease of x(n), we enforce

that ‖�‖‖�−1A‖L02
−R2+

√
nL0‖An‖2−R1/n<L0, i.e.√

n‖An‖2−R1/n+‖�‖‖�−1A‖2−R2<1. As in previous

proofs, we now select x(n) as the new initial condi-

tion and using the same control law and rates, R1

and R2, the state x(2n) will be a shrunken version

of x(n). Continuing in the same manner, x(tn) will
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tend to zero as t ∈N grows and, therefore, x(k) will

tend to zero and asymptotic stability is achieved. To

take into account the sign of the state, we add n

bits to R1, one per state component. We will need

a minimum of Rp1 =⌈R1/DMax⌉ packets/time-step

for the sensor-controller network and a minimum of

Rp2 =⌈R2/DMax⌉ packets/time-step in the controller–

actuator network. �

We remark that Theorem 4.3 can be easily extended

to the multidimensional if we assume equal allocation

of bits for every input (a slight modification of the

upper bound in Equation (12) will give the extension).

However, the equal allocation of bits cannot be assumed

as the optimal allocation before solving an optimization

problem similar to the one in Equations (9) and (10).

5. REMOVING THE RATE DEPENDENCY ON ‖A‖

The result of Theorem 4.1 (as well as Corollary

4.1 and Theorem 4.2) established a sufficient rate

in terms of the norm of A. For different matrices

A with the same eigenvalues, however, this may

lead to very different rates, some of which may also

be very large compared with the minimum rates

specified by the Data Rate Theorem. One way to

remove this disadvantage is to modify the control

law used in the proof of Theorem 4.1. Instead of

trying to asymptotically stabilize the state x , we

attempt to stabilize the state z=�
−1x , where � is a

linear transformation such that �
−1A� is the diag-

onal matrix equivalent to A (or more generally the

Jordan-block matrix). The error �z(0) in the z space is

given by �
−1(x j (0)− x̄ j(0)). For stabilization analysis

purposes, designing a control law to stabilize the state

z is equivalent to stabilizing x since z→0 implies

x→0. There will however be a difference in the

transient response as we will see later. The change of

variable implies that the control law in Equation (7) no

longer depends on the controllability matrix of the pair

(A, B), i.e. ��. But will instead depend on the control-

lability matrix of the pair (�−1A�,�B), denoted

by ���
. Therefore, the new control law is given by

Un =−�−1
��

(�−1A�)��−1x̄(0) (13)

and in the z space, after � time-steps, we will have

z(�)= (�−1A�)��z(0) (14)

Then, from Equations (6) and (14), and using the prop-

erties of matrix norms, we obtain

‖z(�)‖ = ‖(�−1A�)��z(0)‖�‖(�−1A�)�‖‖�z(0)‖

�
√
n2−rn‖(�−1A�)�‖‖�

−1‖L0

Similarly, in order to force the state z to decrease in the

norm (after � steps), we shrink the upper bound of the

state z(�) by forcing it to be less than the lower bound

of the state z(0), i.e. 2−Rn
√
n‖(�−1A�)�‖‖�

−1‖L0<‖
�

−1‖L0. However, if �
−1A� is a diagonal matrix

then ‖(�−1A�)�‖=|�(A)|�, where �(A) is the spec-

tral radius of A. We can then replace in Theorem 4.1 the

expression R>n⌈log2(‖A�‖)+1/2 log2(n)⌉+n with

R>n⌈log2(�(A)�)+ 1
2
log2(n)⌉+n (15)

If matrix �
−1A� is a Jordan-block matrix (for the

case of repeated eigenvalues of A), we also know that

‖(�−1A�)�‖≈|�(A)|�. This quantity, in general, is

less than ‖A�‖. We can consider as an approximation

that the rate is no longer a function of the norm of A

but rather a function of �(A). Therefore, this leads to

a lower sufficient rate for stabilizability, but with the

possible deterioration in the transient response.

6. A NEW ENCODER/DECODER DESIGN: A

ZOOM-IN-TYPE DYNAMIC QUANTIZER

In the previous sections we obtained sufficient

stabilization rates with an easily implementable

encoder/decoder scheme for Network Type I. Although

such rates are larger than the ones given by the Data

Rate Theorem, the implementation of the truncation-

based scheme requires less computational power than

other published schemes. Specifically, the evolution of

the quantizer in our scheme uses one scalar equation

(Equation (3)). On the other hand, encoder–decoder

schemes such as the ones proposed in [8, 9] or achieve
the minimum rate established by the Data Rate

Theorem at the expense of a higher computational

cost since they require state-space predictors, the use

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2009)

DOI: 10.1002/rnc

(J
W

U
K

 r
n
c 

1
4
1
5
.P

D
F

 2
4
-J

an
-0

9
 1

7
:2

0
 2

7
7
2
1
9
 B

y
te

s 
1
5
 P

A
G

E
S

 n
 o

p
er

at
o
r=

S
h
ar

m
il

a)



U
N
C
O
R
R
E
C
T
E
D
 P

R
O
O
F

RNC 1415

SUB-OPTIMAL ENCODER–DECODER SCHEMES 9

similarity transformation (to undo the rotations caused

by the A matrix), and the calculation of the centroid

of the region that traps the state-space variables. In

some scenarios, both the computational power and the

rate may be constrained. Our purpose in this section is

to design an encoder–decoder scheme that achieves a

rate close to that provided by the Data Rate Theorem,

while using less computational power. The following

builds upon ideas described in [8–10].

6.1. Encoder–decoder design

Let the initial state be bounded by some value L0, i.e.

‖x(0)‖�L0. This equal-length side n-cube region will

have 2n vertices. The set of 2n vertices is denoted by

V0, and each vertex is denoted by, v0. We introduce a

matrix QR :

QR =diag

{
1

2r1
,
1

2r2
, . . .,

1

2rn

}
(16)

Moreover, we will assume that r1,r2, . . .,rn are such

that the matrix AQ = AQR is a stable matrix (we

will show later how to accomplish this goal). In the

following steps, we focus on the analysis problem and

assume that the plant is deterministic and undriven as

described by x(k+1)= Ax(k). The controller design

problem will be discussed in Section 6.2. The first

step is to generate an n-dimensional cube centered at

the origin with sides of length 2L0. The center of this

first quantizer will be labeled CQ(0). The uncertainty

region is divided in 2r1 subregions in the x1 direction,

2r2 subregions in the x2 direction, and so on until we

obtain 2rn subregions in the xn direction. After one

time step, the state will land in one of these smaller

n-dimensional cubes and the total of small cubes will

be 2r1+r2+···+rn . Therefore, the number of bits needed to

represent all the cube centroids is R=r1+r2+·· ·+rn ,

which is the actual rate in bits/time-step. After deter-

mining in which cube the state has landed, we calculate

the centroid of this smaller cube. This centroid will

be chosen by the encoder as the estimate of the

state, x̄(0). The binary symbol, s, that represents x̄(0) is

transmitted to the receiver. Note that the error between

the state and the state estimate, �(0), lies in the region

{[−L0/2
r1 , L0/2

r1 ], [−L0/2
r2 , L0/2

r2 ], . . ., [−L0/2
rn ,

L0/2
rn ]}. This is the key property of this quantizer.

Figure 6. Quantizer evolution sample: centroid, state and
state estimator.

Figure 6 shows an example of a two-dimensional
F6

quantizer with r1=2 and r2=1. The encoder and

decoder will evolve the center of the quantizer, CQ at

time k+1:

CQ(k+1)= Ax̄(k) (17)

This new center is used to generate an uncertainty

region that may be divided into another 2r1+r2+···+rn

subregions with the same 2ri subregions in the xi direc-

tion as explained before. At time k+1, the length of

each of the sides parallel to xi is determined by the

quantity �xi . These �xi quantities are determined using

the matrix AQ and the vertices v0 of the original uncer-

tain n-dimensional cube and given by

�xi =max
v0

|(AQ,i )
k+1v0| ∀v0∈V0 (18)

where AQ,i is the ‘i th’ row of matrix AQ . Equation (18)

evaluates the maximum over absolute values, therefore,

we can guarantee that the state x(k+1) at time k+1

will land in an n-dimensional box (not necessarily a

cube) that is centered on CQ(k+1) and with sides of

length 2�xi in the xi direction. In other words, the

hyper-planes that are perpendicular to the xi component

direction will be located at −�xi and �xi units from

CQ(k+1) in the xi direction. The new uncertainty box

will again be divided into 2r1+r2+···+rn boxes with 2ri in
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the xi direction. We label these small boxes with binary

symbols (a total of 2r1+r2+···+rn binary symbols). We

then determine in which of these boxes the actual state,

x(k+1), lies and use the centroid of this specific box

as the state estimate x̄(k+1) at time k+1. We again

transmit the binary symbol, s, that corresponds to the

box where the state lies. Because of the way we have

constructed this quantizer and since AQ was assumed

to be stable, the uncertainty box keeps on shrinking

as k tends to infinity, which guarantees that our state

estimate reaches the actual state and that ‖�‖ tends to

zero. Note that both encoder and decoder must know

the original size L0 of the uncertainty as well as the

exact dynamics of the plant. In addition, both encoder

and decoder must be able to compute Equations (17)

and (18). This guarantees the equimemory property.

The only remaining issue is to guarantee that AQ is

stable. This may be done by the following procedure:

1. Set ri =⌈log2(|�i |)⌉ ∀i ∈{1,2, . . .,n}, where �i is

any of the n eigenvalues of A such that for all i �= j

the eigenvalue chosen is different. For the partic-

ular case where A is diagonal or a Jordan block

matrix, then ri is chosen to be ri�⌈log2(|�i |)⌉,
where �i is the eigenvalue associated with the

state-space component xi .

2. Using rates ri , we form the matrix QR and obtain

the eigenvalues of AQ = AQR .

3. Check that all such eigenvalues are inside the unit

circle, i.e. |�AQ
|<1.

4. If |�AQ
|<1, stop and use the rates ri for trans-

mission. If for any eigenvalue of AQ we have

|�AQ
|�1, then we look for the largest ri in QR

such that ri<⌈log2(�(A))⌉, and replace it by ri +1

and return to step 2.

We note that when A is not in Jordan form, there is a

degree of freedom in the way we allocate the bits for

every xi ; i.e. what eigenvalue is picked for every ri .

Therefore, the rate given by this algorithm is no unique

and optimizing this allocation is a part of a future work.

6.2. Adding a controller for stabilization

We consider the system described by Equation (1). Let

us include this system in the encoder/decoder computa-

tions and modify Equations (17) and (18) accordingly.

The new equations are

CQ(k+1) = Ax̄(k)+Bu(k) (19)

�xi =max
v0

|(AQ,i )
k+1v0| ∀v0∈V0 (20)

where AQ,i is the ‘i th’ row of matrix AQ . We assume

that the encoder/decoder has access to the control

signal or that it may be computed locally. The deriva-

tions of the previous subsection remain valid since the

addition of the control law only represent a translation

of the centroid of the quantizer. At this point the

simplest controller is the estimated state linear feed-

back controller, u(k)=−Kc x̄(k)=−Kc(x(k)−�(k)),

which is motivated by the following lemma found

in [8].

Lemma 6.1 (Tatikonda and Mitter [8])
Let As be a stable matrix. Let Bsm a set of matrices

such that ‖Bsm‖�M , M ∈R, ∀m, and the limit

limm→∞ Bsm →0. Let Sk =
∑k−1

m=0 A
k−1−m
s Bsm then

limk→∞ Sk →0.

We will use this Lemma 6.1 as follows. If a Kc

is found such that A−BKc is stable, then we can

solve iteratively x(k+1)= Ax(k)+B(−Kcx̄(k))=
Ax(k)+B(−Kc(x(k)−�(k))) with initial condition

x̄(0):

x(k) = (A−BKc)
k x̄(0)

+
k−1∑
m=0

(A−BKc)
k−1−mBKc�(m) (21)

Our encoder/decoder scheme guarantees that ‖�(m)‖�

supk ‖(AQ,i )
k+1v0‖ and that ‖�(m)‖ tends to zero when

m grows. Moreover, since AQ is stable, we know that

supk ‖(AQ,i )
k+1v0‖�∞. If we let As = A−BKc and

Bsm = BKc�(m), we then may apply Lemma 6.1. We

see that any stabilizing Kc asymptotically stabilize the

system using the rates obtained earlier since the first

additive term in Equation (21) tends to zero (since A−
BKc is stable), and the second additive term tends to

zero by Lemma 6.1.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2009)

DOI: 10.1002/rnc

(J
W

U
K

 r
n
c 

1
4
1
5
.P

D
F

 2
4
-J

an
-0

9
 1

7
:2

0
 2

7
7
2
1
9
 B

y
te

s 
1
5
 P

A
G

E
S

 n
 o

p
er

at
o
r=

S
h
ar

m
il

a)



U
N
C
O
R
R
E
C
T
E
D
 P

R
O
O
F

RNC 1415

SUB-OPTIMAL ENCODER–DECODER SCHEMES 11

7. COMPARISON BETWEEN BOTH ENCODING

SCHEMES

The truncation-based scheme requires a larger data

rate than the dynamic quantizer. To prove this fact,

we note that the worst data rate that is required in

the dynamic quantizer is when ri =⌈log2(�(A))⌉, ∀i .
Let r� =⌈log2(�(A))⌉, then QR = (1/2r�)In×n . This

is the worst case since AQ is guaranteed to be stable

for this particular QR . This is easily proven since

AQ = AQR = (1/2r�)A. From Linear Algebra, we

know that the eigenvalues of AQ are the eigenvalues

of A multiplied by 1/2r� . From the definition of r�,

the eigenvalues of AQ are inside the unit circle. We

note that for the worst case, the rate given by the

dynamic quantizer is R=nr� =n⌈log2(�(A))⌉. The

best case for the truncation-based encoding scheme

is R=n⌈log2(�(A)�)+ 1
2
log2(n)⌉+n according to

Equation (15). It is then obvious that the dynamic

quantizer achieves lower rate than the truncation-

based one. In terms of the computational cost of both

schemes, we note that the truncation-based only needs

to compute the scalar equation (3) in order to decode

correctly the transmitted signal. The dynamic quantizer

however has to compute two Equations, (19) and (20).

Moreover, once the quantizer evolves from k to k+1

we need to compute in which of the 2r1+r2+···+rn

boxes the state is located, and this requires several

comparison operations.

We can summarize that while our scheme saves

the matrix transformation step, it requires some addi-

tional bits, the question of when to use one or the

other depends on the quality of the network (channel

capacity) versus the quality of the processor power.

Whichever is more limited will determine what scheme

is more suitable. On the other hand, if we compare the

schemes in [8, 10], with the truncation-based scheme

proposed in this work, it will be difficult to predict

the performance of the closed-loop system. While

our scheme uses more bits, the fixed structure of our

controller limits the performance as compared with

an optimal choice of the gain in the state feedback

controllers used in [8, 10]. However, since the rate for

our scheme depends solely on the norm of A, it is

easier to incorporate other issues such as unmodeled

dynamics or saturation in the controllers (see [11]).

Moreover, even if we have an unconstrained network

(high bandwidth), another advantage of our scheme is

that it can be easily used for bit-limited acquisition

systems (which by design truncates the measured

signals).

8. SIMULATIONS

To verify some of the results derived in the previous

sections, we present several numerical examples using

Matlab�. We consider a DTLI plant, so that, x(k)

exists only at the time instants k={0,1,2, . . .}. We do

not consider the discretization of a continuous time

system; hence, the sampling time is not specified in

the simulations. However, in all the plots, x(k) was

interpolated between sampling times for ease of visu-

alization. We intentionally omit the packet maximum

length Dmax; hence, we can compare the rates in

bit/time-step and not in packet/time-step, which is

equivalent to assuming that Dmax=1 bit/packet. The

value L0 that is known a priori by the encoder–

decoder scheme was selected in the simulations to be

L0=2‖x(0)‖.

8.1. Example 1

We tested the results of Theorem 4.1 for the system

x(k+1)=

⎡
⎢⎣
1 0 0

0 3 0

0 0 4

⎤
⎥⎦x(k)+

⎡
⎢⎣
1 0

1 1

0 1

⎤
⎥⎦u(k)

Let L0=71.68 and we assume the initial condi-

tion x(0)=[−16.333 30.768 8.44]′, such that,

‖x(0)‖�L0. Since for this example n=3 and �=2,

the rate obtained according to Theorem 4.1 is R=18

bit/time-step and the simulation is shown in Figure 7.
F7

Note that asymptotic stability is indeed achieved. We

note that for this system, the Data Rate Theorem

gives 3.58 bit/time-step (or more accurately 4) while

the dynamic quantizer requires a rate larger than 4

bit/time-step.
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Figure 7. Truncation-based scheme: closed-loop NCS
(Type I) using R=18 bits/time-step.
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8.2. Example 2

To test the conservativeness of Corollary 4.1, we

considered a single-input system given by

x(k+1)=

⎡
⎢⎣
20 0 10

0 10 0

0 10 30

⎤
⎥⎦x(k)+

⎡
⎢⎣
1

1

1

⎤
⎥⎦u(k)

Let L0=166.45 and we assume initial condition x(0)=
[16.333 13.768 −80.44]′. Since for this example

n=�=3, the rate obtained using Corollary 4.1 is

R=51 bit/time-step. We then verify in Figure 8 the
F8

asymptotic stability claim of the corollary. Since our

results provide sufficient conditions only, we tried for

smaller values of R and found out that for this partic-

ular example, R=42 bit/time-step leads to instability,

see Figure 9. We note that for this system, the Data
F9

Rate Theorem gives 12.55 bit/time-step while the

dynamic quantizer requires a rate of 15 bit/time-step.

8.3. Example 3

Consider a second-order system (n=2)with time-delay

p=2 evolving according to the following dynamics:

x(k+1)=
[
2 0

0 1.5

]
x(k)+

[
1

1

]
u(k−2)

with the initial condition state vector x(0)=
[−16.333 30.768]′. Assuming L0=69.66, the rate
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Figure 8. Truncation-based scheme: closed-loop NCS
(Type I) using R=51 bit/time-step.
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Figure 9. Truncation-based scheme: closed-loop NCS
(Type I) using R=42 bits/time-step.
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obtained using Theorem 4.2 is R=28 bit/time-step.

The corresponding simulation is shown in Figure 10.
F10

For this particular example we do not compare with

the Data Rate Theorem or our dynamic quantizer since

neither of those consider a delayed system.

8.4. Example 4

Consider a third-order system (n=3) evolving

according to the following dynamics:

x(k+1)=

⎡
⎢⎣
4 0 0

0 7 0

0 0 5

⎤
⎥⎦ x(k)+

⎡
⎢⎣
1

1

1

⎤
⎥⎦u(k)

with the initial condition state vector x(0)=
[1.33 3.768 8.44]′. We assume that this plant is a part

of a Network Type II and we also assume L0=18.67.

The network rates obtained using Theorem 4.3 are

R1=30 bit/time-step and R2=10 bit/time-step and

the simulation is shown in Figure 11. For this partic-
F11

ular example we do not compare with the Data Rate

Theorem since this last one considers a Network Type

I and not a Type II as in this example.

8.5. Example 5

The following simulation shows the evolution of x

when using the control law given in Equation (13) with
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Figure 12. Closed-loop NCS using R=42 bit/time-step.
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the rate given by R=n⌈log2(|�max|�)+ 1
2
log2(n)⌉+n.

Let us consider the following system:

x(k+1)=

⎡
⎢⎣
2 100 100

0 4 100

0 1 4

⎤
⎥⎦ x(k)+

⎡
⎢⎣
1

1

1

⎤
⎥⎦u(k)

Let the initial condition be x(0)=[16.333 13.768

−80.44]′ and L0=166.45. Using Equation (15), we

find that R=42 bit/time-step is now sufficient for

stabilization. This was not the case using the control

law depending on the controllability matrix of the pair

(A, B). The simulation using this control law is shown

in Figure 12. We also show in Figure 13 the simulation
F12

F13
using the results of Theorem 4.1 and the rate was

R=57 bit/time-step. The tradeoff is evident when

comparing the two simulations: although a lower rate

is needed in the simulation in Figure 12, the transient

response (overshoot, settling time) in Figure 13 is

actually better.

8.6. Example 6

We present next an example considering the following

system:

x(k+1) = Ax(k)+Bu(k)=

[
2 0.5

3 4

]
x(k)+

[
1

1

]
u(k)

u(k) = −Kcx(k)=−[2.533 2.566] x(k)
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Figure 14. State evolution in NCS Type I using R=5
bits/time-step.

C
o
lo
r
O
n
li
n
e,

B
&
W

in
P
ri
n
t

With this Kc, the poles of (A−BKc) are located at

0.5 and 0.4. We assume that the initial condition state

vector x(0)=[2.1 2.8]′ and L0=7. We calculate the

rates to stabilize AQ are r1=2 and r2=3. This gives

a total rate of R=5 bit/time-step. Using the dynamic

quantizer scheme we obtain the plots in Figure 14.
F14

9. CONCLUSIONS AND FUTURE WORK

This paper has extended previous results for deter-

mining the sufficient rate for stabilization of a packet-

based networked control system (NCS). While the rates

obtained for Network Type I are higher that the limits

set by the Data Rate Theorem, the computational cost

of our scheme is lower than earlier proposed schemes.

In this setup we were able to treat the case of a constant

time-delay in the network.

We also obtained sufficient rates for stabilizing a

system using a Network Type II. In order to lower

the required transmission rates, we proposed a more

complex encoder/decoder scheme that achieves rates

close to those specified by the Data Rate Theorem.

Future work will include the inclusion of time delays

in an NCS Type II, and the extension of the general

case of m inputs of this type of closed-loop system.

Other ideas for future work include dealing with noise

in the loop and the generalization to the case of packet

drops and saturation in the control signal.
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