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Abstract—In distributed computing systems (DCSs) where server nodes can fail permanently with non-zero probability, the system

performance can be assessed by means of the service reliability, defined as the probability of serving all the tasks queued in the DCS

before all the nodes fail. This paper presents a rigorous probabilistic framework to analytically characterize the service reliability of

a DCS in the presence of communication uncertainties and stochastic topological changes due to node deletions. The framework

considers a system composed of heterogeneous nodes with stochastic service and failure times and a communication network

imposing random tangible delays. The framework also permits arbitrarily specified, distributed load-balancing actions to be taken

by the individual nodes in order to improve the service reliability. The presented analysis is based upon a novel use of the concept of

stochastic regeneration, which is exploited to derive a system of difference-differential equations characterizing the service reliability.

The theory is further utilized to optimize certain load-balancing policies for maximal service reliability; the optimization is carried out

by means of an algorithm that scales linearly with the number of nodes in the system. The analytical model is validated using both

Monte-Carlo simulations and experimental data collected from a DCS testbed.

Index Terms—renewal theory, queueing theory, reliability, distributed computing, load balancing
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1 INTRODUCTION

A distributed computing system (DCS) allows its
users to process large, time-consuming workloads

in a cooperative fashion. To achieve this goal, each work-
load has to be divided into smaller and independent
units, called tasks. Next, these tasks have to be redis-
tributed to appropriate computational elements, where
they are concurrently processed. Tasks have to be intel-
ligently allocated onto the nodes in order to efficiently
use the resources available in the system. Such task
allocation is referred to in the literature as load balancing
(LB). LB is of great importance in distributed computing
(DC) since, as commonly known, the performance of a
given DCS strongly depends upon the distribution of
the tasks in the system [1]. Furthermore, the LB problem
belongs to a more general class of problems in resource
allocation. These problems appear not only in DC but
also in routing in wireless networks, telecommunica-
tions, data replication in hard-drive arrays, and other
problems in computer science and operational research
[2]–[7].

LB policies rely on the effective exchange of load
state information among the nodes. This information
is used to estimate whether nodes are imbalanced or
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not with respect to other nodes in the DCS. Moreover,
load state information is utilized to calculate both the
appropriate amount of tasks that needs to be reallo-
cated to other nodes and the appropriate set of nodes
receiving the load. When the communication network
imposes stochastic, tangible delays, the load state infor-
mation available to the nodes may be severely dated
and therefore misleading. Moreover, such delays auto-
matically imply that the effect of task reallocation is not
instantaneous. Clearly, it is expected that the success of
any scheduler to balance the workload is degraded by
communication limitations [8], [9].

The dynamics of DCS becomes further complicated
in volatile or harsh environments in which nodes are
prone to fail permanently (as in scenarios where massive
disruptions result from weapons of mass destruction).
In such cases, messages have to be broadcasted among
working nodes in order to detect and isolate faulty
nodes. Once again, due to network stochastic communi-
cation delays, information available to each node about
the number of the functional nodes in the DCS may
not be current; as such, LB policies as well as methods
for reallocating tasks originally assigned to faulty nodes
must be analyzed employing a probabilistic framework.

The role of LB in improving the performance of DCSs
has been studied vastly considering a number of per-
formance metrics; these include the average response
time of an entire workload [1], [9], the probability of
successfully serving an entire workload [10]–[16], the
probability of serving a workload within a given amount
of time [17], the average queue-length of a node [18],
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[19], and the total sum of communication and service
times [5], [20]. In addition, the problem of LB has been
studied under both static and dynamic scenarios. In
static LB, a centralized entity allocates the tasks offline,
namely, tasks are allocated prior to their execution in the
DCS [11], [12], [18], [21]. In contrast, in dynamic load
balancing (DLB) tasks are queued at the nodes and LB
is triggered online whenever there is an imbalance in the
DCS [8], [9], [20], [22].

LB has been effectively employed to reduce the effect
of node failures on the execution of a workload. The
objective is to maximize the service reliability, while the
response time of the workload is simultaneously mini-
mized. To date, existing analytical solutions to this prob-
lem have been based upon multi-objective optimization
approaches. Some approaches have assumed determin-
istic communication delays [23]–[28] while introducing
task and/or hardware redundancy to compensate for
the delays [29], [30]. Other solutions either exploit a
priori information on the network configuration [31] or
provide computationally fast solutions by using heuristic
algorithms such as genetic algorithms [32] and simulated
annealing [33], [34]. Most relevant to this paper are
the recent works by Dai et al. [11], [12]. The authors
solve the static LB problem by using a centralized entity,
which allocates tasks in the DCS in order to maximize
the service reliability. In these works, the authors have
considered random communication delays as well as
random server failure. Additionally, in an earlier work
we have studied the effect of node failure and recovery
on the average response time of a workload served by a
two-node DCS [10].

In this paper we consider the problem of LB for
maximizing the service reliability of a DCS. Unlike Dai et
al., we address the DLB problem and propose an online
decentralized solution. We extend the model presented
in [16] and characterize the service reliability of DCSs
composed of an arbitrary number of nodes. Further, in
this paper we characterize the dynamics of the service
reliability as a function of the balancing instant. Note
that due to communication limitations, there is a tradeoff
between having accurate account of the node states prior
to LB by means of delaying the LB and immediacy of
LB action (to prevent wasting time). This new view of
reliability offered by our analytical approach enables us
to optimally select when the balancing action should
be taken. Potential applications of this work include
resilient DC for battlefield-management systems (as DC
is performed in harsh environments where nodes can fail
permanently), grid computing (where nodes can leave
the DCS at any time), and wireless sensor networks in
harsh environments.

This paper is organized as follows. In Section 2 we
build the regeneration-based stochastic theory for ana-
lyzing the reliability of DCSs. In Section 3 we apply the
theory to devise LB strategies that maximize the service
reliability of a DCS. In the same section, the analytical
model for reliability is validated and the performance

of the devised LB strategies is tested, both theoretically
and experimentally. Our conclusions are presented in
Section 4.

2 THEORY

2.1 Problem statement

Consider a DCS composed of n nodes communicating
over a network of arbitrary topology. Consider also that
a workload comprising M independent, indivisible tasks
has to be processed by the system. Suppose that the
service time of a task at each node is random and
suppose also that server nodes can fail permanently at
any random time. Assume that at t = 0 all the nodes
are functioning and tasks are allocated on the nodes
so that the jth node has in its queue mj tasks, with
∑n

j=1 mj = M . The problem addressed in this paper is
concerned with maximizing the service reliability of the
workload, that is maximizing the probability of serving
all the tasks before all nodes fail.

In order to maximize the service reliability, LB is
performed at time tb ≥ 0 so that each functional node,
the jth node, say, transfers a positive amount, Ljk, of
tasks to the kth node, with j 6= k, that is functioning
according to the knowledge of the jth node. Naturally,
these task exchanges over the network take random
transfer times. Additionally, we have assumed that at
t = 0 each node broadcasts a queue-length information
(QI) packet that takes a random amount of time to reach
the destination nodes.

The dynamics of the DCS is governed by the random
times associated to the service of tasks, the failure of
nodes and the transfer time of both information and
tasks in the network. These random times are key in
our analysis and are defined next.

2.1.1 Definitions and assumptions

Let the random variable Wki be the service time of the
ith task at the kth node, and let XQ

jk be the transfer time
of the QI packet sent from the jth to the kth node, j 6=k.
The failure time of the kth node is represented by the
random variable Yk, and the transfer time of the failure-
notice (FN) packet sent from the jth to the kth node is
represented by the random variable XF

jk (j 6=k). Finally,
let the random variable Zik be the transfer time of the
ith group of tasks sent to the kth node. In this paper
we require the following assumption on these random
variables.

Assumption A1 (Exponential distribution of the ran-
dom times): The random variables Wki, XQ

jk, Yk, and

XF
jk follow exponential distributions with rates λdk

, λQ
jk,

λfk
, and λF

jk, respectively. The random variable Zik is as-
sumed to follow an exponential distribution conditional
on the number of tasks transferred to the kth node.

Assumption A2 (Independence of the random times):
All the random variables listed in Assumption A1 are
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mutually independent.

Assumptions on the exponential distribution of the
service and failure times are commonly adopted in the
literature [1], [11], [18], [33]. Regarding the transfer times,
our assumptions are justified according to our prior
work [9], [10], [16] and the empirical data obtained from
the experiments conducted over the DC architecture to
be discussed in Section 3. In addition, we have assumed
that the mean transfer time of the ith group of tasks
being transferred to the kth node follows the first-order
approximation: E[Zi,k] = λ̃−1

i,k = ajk lik + bjk, where ajk

and bjk are positive constants (in seconds per task and
seconds, respectively) that depend upon the communica-
tion channel connecting the jth and the kth nodes, and
lik is the number of tasks in the ith group. This first-
order approximation captures the linear dependence of
the mean transfer time on: (i) the number of tasks to
be transferred; (ii) the end-to-end transmission time per
task, through the parameter ajk that is related to the
bandwidth; and (iii) the combined effects of the absolute
minimum end-to-end propagation time and any delays
resulting from queueing (due to congestion), which can
be represented by a single parameter, bjk.

Finally, our analysis focuses on characterizing and
maximizing the service reliability when the DCS is ded-
icated to a specific user, i.e., we consider the reliability
question one workload at a time. To this end, we assume
in our analysis that there are no future arrivals of external
tasks to the DCS after the submission of a workload
at t = 0. To tackle the reliability problem in the more
general, shared setting where workloads arrive contin-
uously, the analysis presented here must be modified
to distinguish between the different workloads in the
system, and in addition, queueing discipline (related to
workload prioritization) has to be considered. However,
the method presented here is an upper bound for such
general setting with continuous workload arrivals and it
gives the maximum reliability that the DCS can guarantee
to an individual user.

2.2 Task reallocation policy

In order to maximize the service reliability of the DCS,
each functioning node executes a distributed, albeit syn-
chronous, LB policy at t = tb. The execution of the
workload can be accomplished successfully only if task
redundancy is provided by the DCS. Task redundancy is
provided here by means of a trivial backup policy that is
executed only in the event of node failure. The backup
policy is asynchronous and it is triggered either at the
actual failure instant of the nodes or at the reception of
tasks by the backup system of a failed node.

2.2.1 Distributed load-balancing policy

First, since the DLB policy executed by the nodes is
distributed, each node must determine independently
the total amount of tasks to reallocate to other nodes. At
the balancing instant, tb ≥ 0, the jth functioning node

computes its excess load by comparing its local load to
the estimated average load in the system. Let Qj(tb) be
the number of tasks queued at the jth node at time tb.
Also, let Q̂ℓ,j(tb) be the estimate of the number of tasks
queued at the ℓth functioning node as perceived by the
jth node at time tb, with ℓ 6= j. Here we assume that
Q̂ℓ,j(tb) = mℓ if the QI packet has been received by the
jth node at the time tb and Q̂ℓ,j(tb) = 0 otherwise. The
excess load of the jth node at time tb is defined as

Lex
j (tb)

△

= Qj(tb)−
Λj

∑

ℓ∈Wj
Λℓ

M̂j(tb), (1)

where M̂j(tb)=Qj(tb) +
∑n

ℓ=1,ℓ 6=j Q̂ℓ,j(tb) is the estimate
of the initial workload in the system as perceived by
the jth node at time t= tb, Wj is the collection of nodes
that are functioning as perceived by the jth node at time
t = tb and the Λj ’s are parameters that can be defined
in several ways in order to establish different balancing
criteria. For example, if the Λj ’s are associated with the
processing speed, namely Λj =λdj

, then the imbalance in
the DCS is determined by the relative computing powers
of the nodes. Alternatively, if the Λj ’s are associated
to the reliability of the nodes, namely Λj = λ−1

fj
, then

the reliability of the nodes determines the amount of
imbalance. Yet another option is to define the Λj ’s so
that we simultaneously transfer fewer tasks to the less-
reliable nodes and transfer larger number of tasks to
the faster processors. With this criterion in mind, we
can define Λj = λdj

(1 − λfj
(
∑

k∈Wj
λfk

)−1). Note that
in the case of an extremely reliable node (λf ≈ 0), the
parameter Λj is approximately equal to the processing
rate of the node. On the contrary, for an unreliable
node the parameter Λj is only a reduced fraction of its
processing rate.

Second, each node has to determine the amount of
tasks to reallocate to the remaining nodes in the system.
Let us define the collection V of imbalanced nodes
in the DCS as all those nodes that, at the balancing
instant, perceive themselves as overloaded with respect
to their perceived fair share of the total workload of the

system. Mathematically, we define V
△

= {j : Lex
j (tb) > 0}.

Similarly, for each imbalanced node j, we define the
collection Uj of candidate task-receiver nodes as all those
nodes that, at time tb, are perceived by the sender
node as functioning and underloaded with respect to
their own perceived fair shares of the total workload;

namely, Uj
△

= {k : Lex
k,j(tb) < 0, k ∈ Wj}, where j ∈ V

and Lex
k,j(tb) is the excess load at the kth functioning

node as perceived by the jth node and is defined as

Lex
k,j(tb)

△

=Q̂k,j(tb)− Λj(
∑

ℓ∈Wj
Λℓ)

−1M̂j(tb).
Third, the jth node partitions its excess load among

all the candidate task-receiver nodes. For the kth candi-
date task-receiver node, the partition pjk is defined as

pjk
△

= Lex
k,j(tb)/(

∑

ℓ∈Uj
Lex

ℓ,j(tb)) whenever k ∈ Uj . For
convenience, the partition pji = 0 for all i /∈ Uj . Note
that in the special case when the task transfer times are
negligible, the partitions pjk will maximize the service
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reliability under all node-failure rates [9]. This is due
to the fact that upon the occurrence of a failure, the
unserved tasks of the failed node can instantly join the
queues of other surviving nodes. In general, however,
the above partitions pjk may not be effective and must
be adjusted in order to compensate for the effects of the
random transfer times. The load to be migrated from
the jth to the kth must be adjusted according to what is
called the load-balancing gain [9], [10], [16], [22], which is
denoted as Kjk, yielding Ljk(tb) = ⌊KjkpjkLex

j (tb)⌋. (⌊x⌋
is the greatest integer less than or equal to x.)

Note that at the balancing instant the excess load at
node j as well as the partitions pjk are fixed quantities;
the LB policy is determined by the LB gains. Here,
LB gains are regarded as parameters that have to be
optimally selected in order to maximize the service
reliability. Given that the quantity pjkLex

j defines the
maximum number of tasks to be exchanged from node
j to k, we have assumed here that the LB gains are
rational numbers in the interval [0,1]. Finally, we arrange
in matrix form the LB gains with the convention that
Kjj = 0 for all j. We denote such matrix by K. From
this, the LB policy K refers to a task reallocation policy
specified by the LB gains Kij and executed at t= tb.

2.2.2 Task recovery in the event of node failure

The reliability problem tackled here can be solved only if
the DCS provides task redundancy. Task redundancy is
provided by means of a backup system that is attached
to each node. This mechanism for task redundancy is a
distributed version of the centralized method described
in [13]. It must be noted that the backup system does
not service any tasks. More specifically, in the event
of node failure the backup system (i) broadcasts a FN
packet to alert the nodes about the change in the number
of functioning nodes; (ii) reallocates all the unfinished
tasks among those nodes perceived to be functioning;
(iii) handles the reception of tasks that were in transit
to the jth node before its failure, and next, reallocates
the received tasks among the functioning nodes. In par-
ticular, if the jth node has failed, its backup equipment
reallocates LF

jk tasks to the kth node, with k ∈ Wj . In
order to simplify the work of the backup system, the
number of tasks LF

jk is computed using the formula
LF

jk = ⌊QjΛk(
∑

ℓ∈Wj
Λℓ)

−1⌋.
The remainder of this section focuses on deriving re-

currence equations that characterize the service reliabil-
ity. We begin by introducing some necessary definitions
of key system variables.

2.3 State model for the service reliability

2.3.1 System-queue, system-function and network state

of a DCS

At any time, the configuration of a DCS can be described
using the following quantities: (i) the number of tasks
queued at each node; (ii) the functional or dysfunctional
state of each node in the system; and (iii) the amount

of tasks in transit over the communication network. In
what follows we formally develop the necessary notation
to describe the time-varying DCS configuration.

Recall that Qi(t) denotes the queue length of the ith
node in the DCS at time t. For i 6= j, we use the binary
variable qij(t) to indicate if the ith node is informed (“1”)
or not (“0”) about queue length of the jth node. That is,
the qij(t) variable describes if the QI packet broadcasted
by the jth node has been received or not by the jth
node. We can arrange the Qi(t) and qij(t) variables in
an n-by-n matrix, denoted by Q(t), whose ith diagonal
element contains Qi(t) and its ijth off-diagonal element
contains the qij(t) variables. We term the Q(t) matrix
as the system-queue state. For example, in a two-node
DCS, the state matrix Q(t0) =

(

m1 0
1 m2

)

at time t = t0
corresponds to the configuration for which the first node
has in its queue m1 tasks and is uninformed about the
queue length of node 2, while node 2 has m2 tasks in its
queue and is informed about number of tasks queued at
node 1 at t = 0.

Let fi(t) be a binary variable representing the working
(“1”) or failed (“0”) state of the ith node at time t. For
i 6= j, we define fij(t) = 1 (correspondingly, fij(t) = 0)
to indicate that the jth node is functioning (correspond-
ingly, faulty) as perceived by the ith node at time t. As
in the case of the system-queue state, we arrange all
these variables in an n-by-n matrix and introduce the
system-function state, which is denoted by the matrix F(t).
Note that as in the case of the queue-length information,
the random transfer time of FN packets introduce un-
certainty on the functioning state that a node perceives
about the other nodes in the DCS.

In addition, due to stochastic transfer-times in the
communication network, each group of tasks being mi-
grated over the network has a random transfer time.
Let the non-negative integer gk(t) represent the number
of different groups of tasks that are simultaneously in
transit, from different nodes, to the kth node at time
t. Let also lik be the number of tasks in the ith group
being transferred to the kth node. For convenience of
notation, we can assign the vector ck(t) to the kth
node such that the first component of ck(t) is always
set to gk(t), while its remaining components are set to

lik. More precisely, ck(t)
△

= (gk(t) l1k l2k . . . lgk(t)k). We
now define the network state as the concatenated vector
C(t)

△

=
(

c1(t), . . . , cn(t)
)

. For example, in a three-node
DCS, the vector C(t0) = ([2 10 1], [1 5], [0]) at t = t0
corresponds to a network state for which two different
groups of tasks (10 tasks in the first group and 1 task
in the second group) are being transferred to the first
node (c1(t0) = [2 10 1]), one group of 5 tasks is being
transferred to the second node (c2(t0) = [1 5]) and there
are no tasks in transit to the third node (c3(t0) = [0]).

2.3.2 Service reliability

At this point we are ready to define formally the service
reliability of a DCS. Let TK(tb;Q0,F0,C0) denote the
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random time taken by the DCS to serve its entire work-
load if the LB denoted by K is performed by all function-
ing nodes at time tb, and the initial system configuration
at t = 0 is as specified by Q0 = Q(0), F0 = F(0) and

C0 =C(0). More precisely, we define TK(tb;Q0,F0,C0)
△

=
inf

{

t> 0 : diag(Q(t))=0 and C(t)=0
}

, where diag(Q)
is a vector formed by all the elements in the diagonal of
the Q matrix. Note that by construction, the workload
completion time is infinite when all the nodes have failed
and at least one task remains unserved. Note also that
P{TK(tb;Q0,F0,C0) =∞} > 0 since servers can fail per-
manently with non-zero probability. Our objective is to
calculate the service reliability that is defined as the prob-
ability that all the tasks can be served before all servers

fail, that is RK(tb;Q0,F0,C0)
△

= P{TK(tb;Q0,F0,C0) <
∞}. Note that the service reliability is less than unity
since P{TK(tb;Q0,F0,C0) =∞} > 0.

2.4 Regeneration time

The main idea of our analysis is to introduce a regenera-
tion event, and analyze the queueing system emerging
immediately after the occurrence of the regeneration
event. The key property of the regeneration event is
that upon its occurrence, a fresh copy of the original
stochastic process (from which the random variable
TK(tb;Q0,F0,C0) is defined) will emerge, nonetheless
having a new initial system configuration that tran-
spires from the regeneration event. To this end, we
introduce the regeneration time, τ , which is the mini-
mum of the following five random variables: the time
to the first task service by any node, the time to the
first occurrence of failure at any node, the time to
the first arrival of a QI packet at any node, the time
to the first arrival of a FN packet at any node, or
the time to the first arrival of a group of tasks at

any node. More precisely, τ
△

= min
(

mink(Wk1),minj 6=k

(XQ
jk),mink(Yk),minj 6=k(XF

jk), mink,i(Zki)
)

.

Suppose that the initial system state is described by
Q0, F0 and C0. The occurrence of the regeneration event
{τ = s} gives birth to a new DCS at t = s whose random
times satisfy Assumptions A1 and A2 while having its
own initial system configuration. The new initial system
configuration can be either one of the following: (i) a new
initial task distribution when the regeneration event is
a service to a task at a node; (ii) a new system-queue
state when the regeneration event is the reception of
a QI packet; (iii) a new initial task distribution, a new
system-function state and a new network state when the
regeneration event is a node failure; (iv) a new system-
queue state and a new system-function state when the
regeneration event is the reception of a FN packet; or (v)
a new initial task distribution and a new network state
when the regeneration event is the reception of a group
of tasks by a node.

2.5 Characterization of the service reliability

Our main results are given in Theorems 1 and 2. The-
orem 1 characterizes the service reliability of an n-node
DCS in the form of a difference-differential equation.
Theorem 2 provides the initial condition required to
solve Theorem 1.

We will introduce necessary notation that will facilitate
keeping track of the changes in the initial system con-
figuration. While the notation may seem cumbersome it
is extremely effective in allowing us to write equations
in Theorems 1 and 2 compactly. Let ∆ij denote an n-
by-n matrix with all its entries equal to zero except that
its ijth element is equal to one. Let A be a matrix, we
denote by Aij a matrix that is identical to A but with
its ijth component set to zero. Also, recall that fii is the
ith diagonal element of F0, LF

ik is the number of tasks
reallocated from the ith to the kth node upon failure of
node i, lji is the number of tasks in the jth group in

transit to the ith node, and ck
△

= (gk l1k l2k . . . lgkk) is
the vector representing the number of tasks in transit
to the kth node at a certain time t. Vectors CYi

0 and

C
Zji

0 represent the change in the network-state when
the ith node fails and when receives the jth group
of tasks, respectively. More precisely, vectors CYi

0 and

C
Zji

0 are defined as CYi

0
△

= (cYi

1 , . . . , ci, . . . , c
Yi
n ) with

cYi

k = (gk + u(LF
ik) l1k . . . lgkk LF

ik), u(·) the unit-

step function and C
Zji

0 = (c
Zji

1 , . . . , c
Zji

k , . . . , c
Zji
n ) with

c
Zji

i = (gi − 1 l1i . . . l(j−1)i l(j+1)i . . . lgki) and c
Zji

k =
(gk + u(LF

ik) l1k . . . lgkk LF
ik) for k 6= i.

Theorem 1: Consider an n-node DCS with an arbi-
trarily specified initial system configuration Q0 = Q(0),
F0 =F(0) and C0 =C(0). The service reliability satisfies
the difference-differential equation:

d

dtb
RK

(

tb;Q0,F0,C0

)

=

n
∑

i=1

λdi
RK

(

tb;Q0 −∆ii,F0,C0

)

+
n

∑

i=1

n
∑

j=1,j 6=i

λQ
ijRK

(

tb;Q0+∆ji,F0,C0

)

+

n
∑

i=1

n
∑

j=1,j 6=i

λF
ijRK

(

tb;Q
ji
0 ,Fji

0 ,C0

)

+
n

∑

i=1

gi
∑

j=1

λ̃j,iRK

(

tb;Q0 + fii lji∆
ii,F0,C

Zji

0

)

+
n

∑

i=1

λfi
RK

(

tb;Q
ii
0 ,Fii

0 ,CYi

0

)

−λRK

(

tb;Q0,F0,C0

)

, (2)

with λ=
∑n

i=1(λdi
+λfi

+
∑gi

j=1 λ̃j,i)+
∑ ∑n

i,j=1,j 6=i(λ
Q
ij+λF

ij).

Proof: See Appendix.

It must be noted that the characterization for the
service reliability is differential in the balancing instant,
recursive in the number of tasks to be serviced by the
DCS and depends also on the LB policy.
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In order to solve the equation in Theorem 1 not only
values of Q0, F0, C0 for mi − 1 are required, but also
other system configurations, such as when only one of
the servers is functioning, when more than one group
of tasks is in transit to a server and when no tasks are
in transit in the network. Consequently, starting with
Q0, F0, C0 and (2) we have to construct a system of
equations, which has to be solved following a particular
order. Equations forming such system are derived in a
straightforward manner using (2) and the new initial
configurations shown at the right hand side of (2).
Finally, recursions are solved using the following initial
conditions: R(tb;Q0,F0,C0)=1 when there are no tasks
to be serviced in the DCS and R(tb;Q0,F0,C0)=0 when
all the nodes have failed and at least one task is remains
unserviced.

Additionally, to solve the recurrence equation in The-
orem 1, we first need to calculate its initial condition
corresponding to tb = 0, that is RK(0;Q0,F0,C0). By
exploiting the regenerative theory developed in this
paper we obtain the algebraic recursion presented in
Theorem 2.

Theorem 2: Consider an n-node DCS with initial
system configuration Q0, F0, C0 at tb = 0. The service
reliability satisfies the algebraic recursion:

RK

(

0;Q0,F0,C0

)

=

n
∑

i=1

λdi

λ
RK

(

0;Q0 −∆ii,F0, C̃0

)

+

n
∑

i=1

n
∑

j=1,j 6=i

λF
ij

λ
RK

(

0;Q0,F
ji
0 ,C0

)

+
n

∑

i=1

gi
∑

j=1

λ̃j,i

λ
RK

(

0;Q0 + fii lji∆
ii,F0,C

Zji

0

)

+
n

∑

i=1

λfi

λ
RK

(

0;Qii
0 ,Fii

0 ,CYi

0

)

, (3)

with λ=
∑n

i=1(λdi
+λfi

+
∑gi

j=1 λ̃j,i)+
∑n

i=1

∑n

j=1,j 6=i λF
ij .

We omit the proof of Theorem 2 since it is similar to
that of Theorem 1. (We refer the reader to [15], [16] for
a proof in the special case of n=2 nodes.)

2.6 Optimal LB policies for maximal reliability

The model for the service reliability given in Theorems 1
and 2 can be used to search for the optimal balancing
instant, t∗b , and the optimal LB policy, K∗, that maximizes
the service reliability. Formally, we have

(t∗b ,K
∗)

△

= argmax
(tb,K)

RK(tb;Q0,F0,C0) (4)

subject to tb ≥ 0 and Kij ∈ [0, 1].
We can attempt to solve the optimization problem

using the n-node characterization for the reliability given
in Theorems 1 and 2; however, computing the reliability
using such characterization is computationally expensive
for systems with a large number of nodes as the amount

of computations grows exponentially in the number of
nodes. As an alternative, for DCSs with an arbitrary
number of servers, we follow [15], [16] and provide a
sub-optimal algorithm for LB policies that scales linearly
with the number of nodes. The key idea is to decompose
an n-node system into several two-node DCSs and ex-
ploit our exact characterization of optimal policies for
two-node systems.

2.6.1 Algorithm for devising optimal LB policies

Suppose that the jth node is imbalanced and recall
that Uj is the collection of candidate receiver nodes as
perceived by the jth node. Let Ki

jk denote the LB gain,
calculated at the ith iteration of the algorithm, that is
associated with the load transfer from the jth to the kth
node. Similarly, let tib denote the LB instant calculated
at the ith iteration of the algorithm. Also, let us denote
by U ′

j the set containing all those recipient nodes k,
for which Ki

jk and tib have been already calculated.
In addition, let Uj denote the set of recipient nodes
ℓ, for which ti−1

b and Ki−1
jℓ have been computed. The

algorithm for computing the LB policy is described in
the following steps.

Initialization: To start the iterations, the algorithm as-
sumes that Uj = Uj , U ′

j is empty and K0
jk = 1 for

all k ∈ Uj . Namely, we have assumed that the jth
imbalanced node can send full load partitions to the
recipient nodes.

Repeat: At the ith iteration of the algorithm we select
a recipient node, say the kth node, from the collection
Uj . The LB gain Ki

jk is obtained by considering a two-
node system composed of nodes j and k. Thus, upon the
execution of LB at tb the kth and the jth nodes have loads
Q̂k,j(tb) and Qj(tb) −

∑

ℓ∈(Uj\{k})⌊K
i−1
jℓ pjℓL

ex
j (tb)⌋ −

∑

ℓ∈U ′

j
⌊Ki

jℓpjℓL
ex
j (tb)⌋ − ⌊K

i
jkpjkLex

j (tb)⌋, respectively,

while ⌊Ki
jkpjkLex

j (tb)⌋ tasks are assumed to be in transit
from the jth to the kth node. After computing the
optimal values tib and Ki

jk we update the sets Uj and
U ′

j as follows: Uj ← Uj \ {k} and U ′
j ← U ′

j ∪ {k}. These
calculations are repeated until LB instants and LB gains
of all the nodes in Uj are obtained, that is after Uj

becomes empty. After this we set Uj to be equal to Uj

and U ′
j be empty.

Termination condition: The ith iteration of the algorithm
is repeated until either all the LB gains converge to a
certain value or an user-defined maximum number of
iterations, N , is executed. The announced LB gains are
those obtained after either one of these two termination
conditions are met. The announced tb is the largest
balancing instant computed for each pair of nodes at
the last iteration of the algorithm.

Algorithm complexity and scalability: Suppose that the
jth node is imbalanced and has to reallocate tasks to η
nodes, with η ∈ [0, n − 1]. Since the LB policy executed
by the nodes is distributed, each node has to solve
Theorems 1 and 2 individually. For n = 2 nodes, the
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complexity in solving equations in Theorems 1 and 2
is a function of the number of tasks queued at the jth
node, that is O(f(mj)). Since the jth node decomposed
the DCS in η pairs of DCS, the imbalanced node has
to solve at most η times the optimization problem (4)
for n = 2. Further, by construction of the algorithm,
the jth node has to solve no more than N times such
optimization problem. From this, we observe that the
complexity of the algorithm is O

(

N(n − 1)f(mj)
)

. In
addition, if an exhaustive search in the LB gains is
conducted in order to solve the optimization problem,
then f(mj) is bounded by mj , because no more than
Lex

j = ⌊mj − Λj(
∑

ℓ∈Wj
Λℓ)

−1M̂j⌋ LB gains have to be
evaluated.

We conclude that the proposed algorithm scales lin-
early in both the number of nodes in the DCS and the
number of tasks queued at the imbalanced node. It must
be commented that for n = 2, we have observed in our
simulations and in our prior works [15], [16] that the ser-
vice reliability exhibits a concave shape as a function of
the LB gains. This heuristic can be exploited to search for
the optimal LB gains using a bisection algorithm. As the
complexity of bisection search algorithms is logarithmic,
the complexity in solving the regenerative equations can
be bounded by log(mj).

3 RESULTS

3.1 Distributed computing architecture

We have implemented a small-scale DCS testbed to
experimentally validate the theoretical achievements
shown in this paper. The hardware architecture consists
of the computing nodes, the backup nodes and the
communication network. The set of computing nodes
comprises heterogeneous processors, such as Pentium
II- and Pentium 4-based computers. Some of the com-
puting nodes are dedicated machines, while others are
serving as lightly loaded web-, mail- and database-
servers. Given that the occurrence of a failure at any
node is simulated by software, the set of backup nodes
is the same set as the set of working nodes. Upon
the occurrence of a failure, a node is switched from
the so-called working state to the backup state. If a
node is in the backup state then it is not allowed to
continue processing tasks. The communication network
employed in our architecture is the Internet, where the
final links connecting the computing nodes are either
wired or wireless. On one hand, some communication
links connect nodes separated geographically by a large
distance; hence, they naturally exhibit a notorious com-
munication delay. On the other hand, for those nodes
in the DCS connected by high speed links, we have
introduced some artificial latency by employing traffic
shaper applications. Such kind of applications allow us
to reduced the actual transfer speed of the network
interfaces to slow speeds such as 1024 to 512 Kbps.

The software architecture of the DCS is divided in
three layers: application, task allocation and communica-

tion. Layers are implemented in software using POSIX
threads. The application layer executes the application
selected to illustrate the distributed processing: matrix
multiplication. We have defined the service of a task
as the multiplication of one row by a static matrix,
which is duplicated in all nodes. To achieve variability
in the processing speed of the nodes, the randomness
is introduced in the size of each row by independently
choosing its arithmetic precision with an exponential
distribution. In addition, the application layer updates
the QI of each node and determines the failure instants
of each node. As part of the latter task, the application
layer also switches the state of a node from working to
backup. The task allocation layer executes the LB policy
defined for each type of experiment conducted. This
layer schedules and triggers the LB instants when task-
exchange is performed. It also: (i) determines if a node is
overloaded with respect to the other nodes in the system;
(ii) selects which nodes are candidate receiving nodes;
and (iii) computes the amount of task to transmit to the
receiver nodes by solving the recursion (3). In addition,
when a node is in the backup state, this layer executes
the reallocation of tasks to all the surviving nodes as
it is described in Section 2. Finally, the communication
layer of each node handles the transfer of tasks as well
as the transfer of QI and FN packets among the nodes.
Each node uses the UDP transport protocol to transfer
either a QI or an FN packet to the other nodes. The TCP
transport protocol is used to transfer tasks between the
nodes.

3.2 Maximizing the reliability of a two-node DCS

Example 1: We have conducted experiments using a ded-
icated (node 1) and a non-dedicated computer (node 2).
The nodes are separated by a large geographic distance
and communicate through the Internet. The free param-
eters of the system, namely, the initial workload and
the average failure times, were defined to be: m1=100
tasks and m2=50 tasks, λ−1

f1
= 300 s and λ−1

f2
= 200

s. The remaining system parameters were estimated
conducting experiments on the two-node DCS: (i) The
estimated service rates of each node are λd1

= 0.8285
tasks per second (tps) and λd2

= 1.2453 tps; (ii) The mean
arrival times of QI packets and FN packets are (λQ

12)
−1 =

(λF
12)

−1 = 1.6134 s and (λQ
21)

−1 = (λF
21)

−1 = 1.6659 s; and
(iii) The parameters for the first-order approximation
of the average transfer time of tasks are a12 = 0.243
seconds per task, b12 = 1.613 s, a21 = 0.336 seconds
per task and b21 = 1.666 s. Figure 1(a) shows results of
the experiments conducted on our two-node DC testbed
for the case of the communication channel linking the
node 2 to the node 1. In the Figure, dots represent
measurements of the transfer time of a group of tasks
between the nodes, while the straight-line represents the
first-order approximation for the average transfer time
of tasks. We observe that, for the amount of tasks to be
exchanged in the experiments conducted in this paper,
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a first-order approximation for the average transfer time
is valid for the communication channel.
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Fig. 1. (a) Dots are realizations of the task transfer time in a two-
node DCS. The solid line represents the first-order approximation for the
average transfer time. (b) Service reliability as a function of the LB gain
of the node, 1 when LB is executed at t=0. In the upper plot K21 =0.25
while in the lower plot K21 = 0.9. (c) Service reliability as a function of
the balancing instant for four representative LB gains.

Let us first look at the solution of the initial condition
Q0 =

(

m1 0
0 m2

)

, F0 =
(

1 1
1 1

)

and C0 =([0], [0]) at tb =0. Note
that immediately after the execution of the LB policy
the number of tasks remaining queued at the ith node
is ri = mi − Lij , for i = 1, 2 and i 6= j. Consequently,
the initial system configuration is modified as follows:
Q̃0 =

(

r1 0
0 r2

)

, F̃0 = F0 and C̃0 = ([1 L21], [1 L12]) and the

LB policy executed is K=
(

0 K12

K21 0

)

. In order to explore
all the possible amounts of tasks to exchange among the
nodes we use the formula Ljk = ⌊Kjk mj⌋. Note that in
a two-node DCS, nodes do not have to partition their
excess load because there is only one recipient node.

Now we solve the recursion in Theorem 2 to calculate
RK

(

0; Q̃0, F̃0, C̃0

)

. In Fig. 1(b), the service reliability
under two choices of K21 is plotted as a function of K12.
On one hand, small values for K12 imply that node 1
remains unbalanced with respect to node 2 and serves
most of its workload. As a consequence, the second node
is under utilized because, on average, node 2 serves
its entire workload before it fails. Therefore, the time
required to serve the workload becomes “large” and the
service reliability is “small.” On the other hand, when
K12 approaches to 1, the first node transfers most of
its initial load to the second node. Hence, almost all
the tasks are queued and served at the less reliable
node until it fails. Upon failure, the remaining tasks are
transferred back to node 1, if it is functioning; thereby,
the service reliability is reduced by an excessive queue-
ing of tasks in the communication network. In addition
to the theoretical predictions, Fig. 1(b) shows Monte-
Carlo (MC) simulations as well as experimental results
obtained for the LB policy K. In our simulations, the
service reliability is calculated by averaging outcomes
(failures or successes) from 50000 independent realiza-
tions of the policy. Simulation results strongly agree with
our theoretical predictions, and remarkably, experiments
conducted on the two-node DCS show a fairly good
agreement with theoretical curves. In the experiments,
the service reliability is calculated by averaging the
results of 500 independent trials for each policy shown
in the Fig. 1(b).

Next, we look at the solution of the equations given
in Theorem 1. Figure 1(c) shows theoretical predictions,
MC simulation and experimental results for the service
reliability as a function of the balancing instant, for
some representative selections of LB gains. After solving
the differential equation in Theorem 1, we obtain a
maximal service reliability of 0.874 that is achieved at
t∗b = 0 by the following four LB policies: K∗

1 =
(

0 0.37
0 0

)

,
K∗

2 =
(

0 0.38
0 0

)

, K∗
3 =

(

0 0.39
0 0

)

, and K∗
4 =

(

0 0.39
0.02 0

)

. Fig. 1(c)
shows the service reliability as a function of tb for the
optimal policy K∗

1. Note that an improper selection of
the LB gains can produce a notorious reduction on the
service reliability, as is depicted for the case of choosing
K =

(

0 0.01
0.95 0

)

. Note also that, an incorrect selection for
the LB gains can be compensated by delaying the LB
action.

Let us discuss now the effect of the optimal LB pol-
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icy on the utilization of the computing resources. The
optimal policies dictate that 39% of the load initially
allocated at the first server have to be transferred to the
second server, while the latter server must keep all its
initial load. Note that, on average, server 2 processes its
initial load in 40 s, and note also that, transferring 39
tasks from server 1 to server 2 takes 11 s. Consequently,
the optimal task reallocation is perceived by the second
server as an instantaneous exchange of load. In addition,
note that processing 89 tasks at server 2 takes 71 s, on
average, while serving the remaining 61 tasks at server
one takes 73 s, on average. Therefore, the optimal policy
keeps both servers busy for approximately the same
amount of time, thereby efficiently using the computing
resources of the DCS.

3.3 Maximizing the reliability of a multi-node DCS

In this section we maximize the service reliability of
a multi-node DCS utilizing the algorithm presented in
Section 2.6.1. We devise several decentralized LB policies
considering different balancing criteria.

The scenario considered in the following examples
comprises a five-node DCS, for which a workload of
M = 150 tasks is provided. We have assumed that the
average failure times of the nodes are λ−1

f1
= 400 s,

λ−1
f2

= 10 s, λ−1
f3

= 100 s, λ−1
f4

= 200 s, and λ−1
f5

= 300
s. The service rates, estimated using some training sets
of tasks on our DCS testbed, are λd1

= 0.16823 tps,
λd2

= 0.49784 tps, λd3
= 0.25869 tps, λd4

= 0.25361
tps, and λd5

= 0.18356 tps. In this scenario, the nodes
dedicated only to compute our tasks are the first, the
fourth and the fifth node, while the remaining two
are non-dedicated nodes. The channel-dependent pa-
rameters, also estimated from data collected using our
testbed, are listed in Table 1. For brevity, we provide
only the minimum and the maximum values for the
estimated mean arrival times of both QI and FN packets,
namely, min

(

minj,k(λQ
jk)−1,minj,k(λF

jk)−1
)

= 0.343 s

and max
(

maxj,k(λQ
jk)−1,maxj,k(λF

jk)−1
)

= 1.927 s, for
j, k ∈ {1, . . . , 5}.

TABLE 1

Parameters ajk and bjk of the first-order approximation of the

average task-transfer delay for the case of a five-node DCS.

ajk k = 1 k = 2 k = 3 k = 4 k = 5
j = 1 — 0.898 0.838 0.706 0.751
j = 2 0.336 — 0.335 0.273 0.350
j = 3 0.541 0.665 — 0.677 0.617
j = 4 0.248 0.532 0.408 — 0.273
j = 5 0.219 0.355 0.298 0.234 —
bjk k = 1 k = 2 k = 3 k = 4 k = 5

j = 1 — 1.970 2.219 2.000 2.199
j = 2 1.651 — 1.993 1.876 1.667
j = 3 5.001 4.997 — 5.203 5.557
j = 4 4.131 7.604 5.862 — 7.604
j = 5 3.009 2.887 2.731 2.943 —

Example 2: We devise and discuss three LB policies
that have the same balancing criterion. The balancing

criterion utilized by the policies is based upon the relia-
bility of the nodes. So, we have set the Λj ’s parameters
in (1) to be Λj = λ−1

fj
for j = 1, . . . , 5. The three LB

policies investigated are: (i) The Null LB policy where all
the LB gains employed by the policy are equal to zero;
(ii) The Full LB policy where all the LB gains are equal
to one; and (iii) The Maximal-Service LB policy where the
LB gains employed by the policy are computed using the
algorithm presented in Section 2.6.1. Note that the Null
LB policy determines the service reliability inherently
provided by the DCS, i.e., it defines the service reliability
when LB is not performed by the nodes in the system.
Therefore, the Null LB policy establishes the minimal
service reliability that can be demanded to any effective
LB policy acting on the DCS.

The theoretical predictions obtained for the three LB
polices under study, and for different initial task al-
locations, are listed in Table 2. The values in Table 2
correspond to centers of 95% confidence intervals, for
which the estimated service reliability will not differ
from the true value by more than 0.001. In addition,
the column labelled as Experiments presents the results
obtained after averaging 500 realization of experiments
conducted on our DCS testbed.

The first five rows of Table 2 list results for cases
when the system is totally imbalanced. The sixth row
presents the case of an initial uniform distribution of
tasks. The seventh, eighth and ninth rows correspond
to cases where tasks are initially allocated according to
the reliability of the nodes, the processing rate of the
nodes, and a combination of the latter two parameters,
respectively. Finally, the last row represents a case of an
arbitrary task distribution.

We can see from Table 2 that the Maximal-Service LB
policy outperforms the other two policies in all the cases
considered. In the first five cases listed in Table 2, the
optimal tb is equal to zero, while in the remaining cases
the optimal tb is between 2.0 and 2.4 s. Note that such
values correspond to cases where all the nodes are, on
average, informed about the queue-length of the other
nodes in the system. We can also note that the Maximal-
Service LB policy effectively increases the inherent ser-
vice reliability provided by the DCS. Such increment
can be attributed mainly to two issues: (i) the Maximal-
Service LB policy trades off network queueing times and
node idle times by computing appropriate LB gains; and
(ii) the Maximal-Service LB policy effectively exploits the
extra balancing action provided by the backup system of
a faulty node. To support these statements, we discuss
a representative case from Example 2.

Consider the case where all the tasks are queued at
the fourth node (fourth row in Table 2). If no LB action
is performed, then on average at t = 200 s the fourth
node fails, while on average the following events have
occurred in the DCS: (i) the second and third nodes have
failed; (ii) the fourth node has been informed about the
failures of the second and third nodes; and (iii) the fourth
node has served 50 tasks. Upon the failure of the fourth
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node, its backup system reallocates the remaining 100
tasks to the first and fifth node. So, we clearly note that
the first and the fifth node have remained idle for long
periods of time, and worst than that, we notice that the
second and third node were never used to serve any
task. On the contrary, if the Full LB policy is employed,
then at tb = 0 the fourth node decides to transfer 59,
1, 14, and 44 tasks to the first, second, third, and fifth
node, respectively, while 32 tasks remain queued at the
fourth node. As such, we can deduce from the discussion
that the Full LB policy is advantageous over the Null LB
policy, as evidenced by the service reliability shown in
Table 2.

Notably, the Maximal-Service LB policy takes an even
better decision at the balancing instant by exploiting
one extra mechanism. After executing the proposed
algorithm, the policy obtains the following LB gains:
K∗

41 = 0.610, K∗
42 = K∗

43 = 1, and K∗
45 = 0.886; this

implies that the fourth node has to transfer 35, 1, 14,
and 38 tasks to the first, second, third, and fifth node,
respectively. Unlike the Full LB policy, a total of 62 tasks
remain queued at the fourth node. Note that by sending
fewer tasks to the first and fifth node, the Maximal-
Service LB policy reduces the idle time of these nodes
as compared to the Full LB policy. In addition, we can
note that on average: (i) the fourth node is able to process
only 50 tasks before it fails; and (ii) by the average failure
time of the fourth node, the first and fifth node are
still busy serving the tasks reallocated at the balancing
instant. Therefore, the task reallocation performed upon
the failure of the fourth node does not introduce any idle
time in the receiving nodes.

TABLE 2

Service reliability under different LB policies. The balancing

criterion utilized is based on the reliability of the nodes.

Initial load Service reliability
(m1, . . . , m5) Null Full Max-Service

Theo. Theo. Theo. Exp.
(150,0,0,0,0) 0.210 0.508 0.509 0.527
(0,150,0,0,0) 0.552 0.495 0.614 0.595
(0,0,150,0,0) 0.372 0.510 0.601 0.597
(0,0,0,150,0) 0.330 0.532 0.583 0.575
(0,0,0,0,150) 0.255 0.533 0.543 0.559

(30,30,30,30,30) 0.634 0.557 0.634 0.603
(59,2,4,34,51) 0.534 0.555 0.556 0.539

(18,55,29,27,21) 0.642 0.563 0.642 0.625
(26,30,28,38,28) 0.642 0.563 0.642 0.603
(40,15,40,35,20) 0.621 0.562 0.624 0.649

It can be observed from Table 2 that caution must be
exercised in selecting the amount of tasks to reallocate
at the balancing time; otherwise, we can devise policies
that perform worse than taking no LB action! Consider
for instance the case where all the tasks are queued at
the second node. When the Full LB policy is employed,
the policy determines that 59, 14, 29, and 44 tasks have
to be transferred to the first, third, fourth, and fifth node.
The four tasks that remain queued at the second node
are, on average, served by the node. In addition, the

average transfer plus service time of the tasks assigned
to the third and fourth nodes are about 60 and 124 s,
respectively. We now note that the inappropriate task
reallocation performed by the Full LB policy forces the
fourth node to remain idle for 76 s before it fails. If we
perform a similar kind of analysis for the case of the
Null LB policy, we can conclude that, due to the failures
of the second and third nodes and the task exchanges
performed by their backup systems, the fourth node is
kept busy until it fails at t = 200 s, and its average idle
time is only 20 s. Therefore, it can be concluded that the
Full LB policy performs worse than the Null LB policy.

In light of the previous discussions, we can now com-
prehend the counterintuitive behavior shown in Table 2.
It can be noted that for cases where all the load is
queued at a single node and no LB action is taken,
the service reliability is better when tasks are initially
allocated at the less reliable nodes. This situation is
justified because, by initially allocating the workload at
less reliable nodes, we can exploit both the computing
power of the unreliable servers and the task reallocation
action executed by the backup systems of the faulty
nodes.

Example 3: We study now the effect of the selection
of various balancing criteria on the service reliability.
We have considered three LB policies, each one of them
having a different balancing criterion but sharing the
same algorithm to compute the LB gains. The Maximal-
Service LB policy balances the DCS according to the
reliability of the nodes. The Processing-Speed LB policy
balances the DCS based upon the processing rate of the
nodes, i.e., Λj = λdj

in (1). Finally, the Complete LB policy
uses a balancing criterion that combines both processing
and failure rates, specifically, the Complete LB policy

defines Λj = λdj
(1 − λfj

(
∑n

k=1 λfk
)
−1

). Additionally,
we have conducted MC based exhaustive search, over
the LB gains, in order to estimate the optimal service
reliability for each case considered. The results of our
evaluations are listed in Table 3.

Note that the fastest servers in the example are also the
less reliable ones. Consequently, the balancing criterion
employed by the Processing-Speed LB policy appears
to be inappropriate in order to maximize the service
reliability. However, it can be seen from Table 3 that,
in most of the cases, the three policies achieve approxi-
mately the same performance, which shows the strength
of our approach. For example, in the case when all
the tasks are initially queued at the fourth node, the
Processing-Speed LB policy dictates that 54 tasks have to
be transferred to the second node. However, the LB gain
computed by our algorithm reduces such amount to only
11 tasks. From Table 3 we observe that the Complete LB
policy outperforms in almost all the cases the other two
policies. This is because such policy trades off reliability
and computing speed in both the imbalance detection
process and the excess workload partitioning. Finally,
it can be seen from Table 3 that the service reliability
achieved by the policies is within 70% of the optimal
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service reliability for each case. In fact, the optimum is
achieved in some cases.

TABLE 3

Service reliability achieved by three LB policies, which have

different balancing criteria. For comparison purposes, we list

the optimal value obtained for each case.

Initial load Service reliability
(m1, . . . , m5) Max-Service Proc-Speed Complete Optimum
(150,0,0,0,0) 0.509 0.511 0.573 0.631
(0,150,0,0,0) 0.614 0.610 0.617 0.617
(0,0,150,0,0) 0.601 0.591 0.601 0.601
(0,0,0,150,0) 0.583 0.533 0.612 0.615
(0,0,0,0,150) 0.543 0.566 0.613 0.619

(30,30,30,30,30) 0.634 0.603 0.636 0.657
(59,2,4,34,51) 0.556 0.608 0.638 0.668

(18,55,29,27,21) 0.642 0.623 0.640 0.649
(26,30,28,38,28) 0.642 0.639 0.642 0.642
(40,15,40,35,20) 0.624 0.610 0.643 0.656

4 CONCLUSIONS

We have undertaken a novel approach to analyze the
stochastic dynamics and the service reliability of DCSs
in the presence of communication and node uncertainty.
We have rigorously modeled the service reliability of
a DCS, that is the probability of successfully serving
a collection of tasks queued at the nodes before all of
them fail permanently. Our model takes into account the
heterogeneity in the computing resources, the stochastic
communication and transfer delays in the network, the
uncertainty associated with the number of functional
nodes in the DCS, and an arbitrary LB policy executed
by the nodes. We have introduced in our analysis three
fundamental stochastic quantities, namely the system-
queue and the system-function matrices as well as the
network-state vector. These quantities track the underly-
ing point processes associated with the dynamics of the
DCS. At any given time, these matrices store information
about task distribution among the nodes, the functional
or dysfunctional state of the nodes and the number of
tasks queued in the communication network. A novel
regeneration argument has been established yielding
an analytic characterization for the service reliability.
Our mathematical framework can be easily modified to
calculate other performance metrics, such as computing
speed-up, statistics of queue-length of servers and aver-
age sojourn time of workloads.

By using this analytical model for reliability, we have
devised optimal DLB strategies for maximizing the ser-
vice reliability of a DCSs. We have presented a simple,
yet efficient and scalable algorithm for devising these
optimal DLB strategies. The policies devised using our
algorithm dictate when to execute the LB action and how
to reallocate the tasks among the nodes. We have eval-
uated the performance of the optimal LB policies and
noticed that the service reliability can be improved up to
65% as compared to the reliability provided by a DCS,
and up to 22% as compared to policies that consider

nodes’ reliability but disregard the communication costs
over the network. Moreover, our algorithm to compute
the LB strategies achieves a service reliability within 70%
of the optimal service reliability, and in cases achieves
the optimal value.

Our theory enables us to understand the effectiveness
of task reallocation in a delay-infested DCSs while offer-
ing an algorithm for generating task-reallocation poli-
cies that maximize the service reliability. The interplay
between the task transfer time and the idle time of the
nodes has been discussed, and we have noted that the
service reliability can be improved if the idle times of the
nodes are reduced as much as possible. In addition, we
have discussed the advantages of delaying the balancing
action until the nodes have collected information about
both the queue-length and the functioning state of the
nodes.

In general, we have found that the experiments con-
firm our theoretical predictions as well as our MC sim-
ulations. Through experimentation, we have also ob-
served that the computational overhead introduced by
our algorithm, which is mainly due to the calculations
associated to the regenerative equations, is negligible as
compared to the time to serve the tasks.

Future work will consider relaxing the exponen-
tial assumption on the random task-transfer and task-
execution times. To this end, we will undertake an age-
dependent regeneration-based approach whereby auxil-
iary “age-variables” are introduced in the analysis. An-
other extension we are currently considering is to allow
each node have an arbitrary number of functionality
states instead of a binary (on-off) functionality state as
presented here. This can be implemented, for example,
by assigning a range of possible processing speeds for
each node, where upon the occurrence of a “failure
event” only one of these possible states is selected.

APPENDIX

The gist of the proof of Theorem 1 can be found in
[15] for the special case of two nodes. Here we present
a generalized version of such proof considering a DCS
with n nodes.

For clarity, we first introduce some useful definitions
and then present Lemmas 1 to 6, which will be used
in the proof of Theorem 1. Recall that the regenera-

tion time is defined as τ
△

= min
(

mink(Wk1),minj 6=k

(XQ
jk),mink(Yk),minj 6=k(XF

jk), mink,i(Zki)
)

. Note that in
light of Assumptions A1, A2, and Convention C1, it is
straightforward to see that τ is an exponentially dis-
tributed random variable. For the DCS emerging at the
regeneration time τ , let the random times (all measured

from τ ) W
′

ki, Y
′

k , XQ′

jk , XF ′

jk and Z
′

ik, respectively, be the
service time for the ith task at the kth node, the failure-
time of the kth node, the arrival time of the QI packet
sent from the jth node to the kth node, the arrival time
of the FN packet sent from the jth node to the kth
node, and the arrival time of the ith group of tasks sent
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to the kth node. In addition, on {τ ≤ tb}, we define
T ′
K

(tb;Q
′
0,F

′
0,C

′
0) as the time taken by the new DCS

emerging at τ to serve all the tasks in the system if the
LB policy K is executed by all functioning nodes at time
tb provided that the system condition at t = τ is specified
by Q′

0, F′
0 and C′

0. To prove that the DCS is regenerated
upon the occurrence of {τ = s}, it suffices to show that

the conditional distributions of W
′

ki, X
Q′

jk , Y
′

k , XF ′

jk and

Z
′

ki given that the event {τ = s} has occurred, satisfy
assumptions A1 and A2.

Lemma 1: For s ≤ tb, P{TK(tb;Q0,F0,C0) <∞
∣

∣τ =s, τ =
Wi1}=P{TK(tb − s;Q0 −∆ii

0 ,F0,C0) <∞}.
Proof: Note that the regeneration event {τ = s, τ = Wi1}
is precisely service to the first task at the ith node before
any other activity takes place in the DCS. Upon the
occurrence of the event {τ = s, τ = Wi1}, the system-
function state and the network-state remain the same,
i.e. F′

0 = F0 and C′
0 = C0, while mi − 1 tasks are now

queued at the ith node and mj remain queued at the jth
node, j 6= i. In matrix notation that is Q′

0 = Q0 −∆ii
0 .

Therefore, by construction P{TK(tb;Q0,F0,C0) <∞|τ =
s, τ = Wi1} = P{τ + T ′

K
(tb;Q0 −∆ii

0 ,F0,C0) < ∞|τ =
s, τ = Wi1}. The proof is complete once we establish
that P{T ′

K
(tb;Q0 −∆ii

0 ,F0,C0) < ∞|τ = s, τ = Wi1} =
P{TK(tb − s;Q0 −∆ii

0 ,F0,C0) <∞}.

Next, by construction W
′

k1 = Wk1 − τ , XQ′

jk = Xjk − τ ,

Y
′

j = Yj − τ , XF ′

jk = XF
jk − τ , and Z

′

ℓk = Zℓk − τ for
k 6= i and j 6= k. Moreover, it is shown below that the
conditional distribution of W

′

k1 is

P{W
′

k1≤ t|τ =s, τ =Wi1}=
(

1− exp(−λdk
t)

)

u(t), (5)

where u(·) is the unit step function. Similarly, we get

P{XQ′

jk ≤ t|τ = s, τ = Wi1} = (1 − exp(−λQ
jkt))u(t),

P{Y
′

k ≤ t|τ = s, τ = Wi1} = (1 − exp(−λfk
t))u(t),

P{XF ′

jk ≤ t|τ = s, τ = Wi1} = (1 − exp(−λF
jkt))u(t),

and P{Z
′

jk ≤ t|τ = s, τ = Wi1} = (1 − exp(−λ̃j,kt))u(t).
Therefore, conditional upon the occurrence of {τ = s, τ =
Wi1}, all random times of the newly emerging DCS
satisfy Assumption A1.

The conditional independence of W
′

j1, with j 6= i,

and Y
′

k is proved below in this Appendix. Similarly, it
can also be shown that conditional upon the occurrence

of {τ = s, τ = Wi1}, the random times W
′

kj , XQ′

jk , XF ′

jk ,

and Z
′

jk are mutually independent. Therefore, upon the
occurrence of {τ = s, τ = Wi1}, all random times of the
emerging DCS satisfy Assumption A2.

In summary, we have shown that conditional on the
occurrence of {τ = s, τ = Wi1}, the random times
characterizing the DCS at time s satisfy Assumptions
A1 and A2. Therefore, by shifting the time origin from
t = 0 to t = s, we can think of the emergent DCS as the
original system but with mi−1 tasks in the queue of the
ith node, while other system initial conditions remain
the same. In addition, due to the shift of origin, the LB
instant is now at tb−s units of time from the new origin.
Hence, we conclude that P{T ′

K
(tb;Q0−∆ii

0 ,F0,C0) <∞

∣

∣τ = s, τ = Wi1}= P{TK(tb − s;Q0 −∆ii
0 ,F0,C0) < ∞},

which completes the proof of Lemma 1. ✷

Lemmas 2 to 5 are presented without proof as they
follow similar principles as those of Lemma 1.

Lemma 2: For s ≤ tb, P{TK(tb;Q0,F0,C0) <∞
∣

∣τ =s, τ =

XQ
ij}=P{TK(tb − s;Q0 + ∆ji,F0,C0) <∞}.

Lemma 3: For s ≤ tb, For s ≤ tb, P{TK(tb;Q0,F0,C0) <
∞

∣

∣τ =s, τ =Yi}=P{TK(tb − s;Qii
0 ,Fii

0 ,CYi

0 ) <∞}.

Lemma 4: For s ≤ tb, P{TK(tb;Q0,F0,C0) <∞
∣

∣τ =s, τ =

XF
ij}=P{TK(tb − s;Qji

0 ,Fji
0 ,C0) <∞}.

Lemma 5: For s ≤ tb, P{TK(tb;Q0,F0,C0) <∞
∣

∣τ =s, τ =

Zji}=P{TK(tb − s;Q0 + fiilji∆
ii,F0,C

Zji

0 ) <∞}.

Lemma 6: P{TK(tb;Q0,F0,C0) < ∞
∣

∣τ > tb} =
P{TK(0;Q0,F0,C0)<∞}.

Proof: The occurrence of the event {τ > tb} implies that
the system condition of the DCS at time tb is exactly
the same as the initial system condition of the original
system. Therefore, for {τ > tb} let T ′′

K
(tb;Q0,F0,C0)

be the time taken by the new DCS emerging at tb to
serve all tasks if the LB policy K is executed by all
functioning nodes at time tb, and provided that the
system condition at t = tb is specified by Q0, F0 and
C0. Therefore, by construction P{TK(tb;Q0,F0,C0) <
∞|τ > tb} = P{tb + T ′′

K
(tb;Q0,F0,C0) < ∞|τ > tb}.

Let the random times characterizing the DCS emerging

at tb be W
′′

ki, X
Q′′

jk , Y
′′

k , XF ′′

jk and Z
′′

ik, all measured from

tb. We have that W
′′

i1 = Wi1 − tb, XQ′′

jk = XQ
jk − tb,

Y
′′

k = Tk − tb, XF ′′

jk = XF
jk − tb, and Z

′′

ik = Zik − tb.
Based on Assumptions A1 and A2 it is straightforward
to show that P{W

′′

ki ≤ t|τ > tb} = (1 − exp(−λdk
t))u(t)

and P{W
′′

ki ≤ t1, Y
′′

k ≤ t2|τ > tb} = P{W
′′

ki ≤ t1|τ >
tb}P{Y

′′

k ≤ t2|τ > tb}. Similarly, conditional on the
occurrence of {τ > tb}, the conditional distributions

of XQ′′

jk , Y
′′

k , XF ′′

jk , and Z
′′

ki can be shown to satisfy
A1 and A2. Consequently, nothing has changed in the
initial condition as well as the statistics of the random
times characterizing the DCS while tb units of time have
elapsed. Therefore, we can shift the origin by tb units
of time, which makes the LB instant at t = 0 for the
new DCS. So, P{T ′′

K
(tb;Q0,F0,C0) < ∞|τ > tb} =

P{TK(0;Q0,F0,C0) <∞}. ✷

Proof of Theorem 1: First we observe that from As-
sumptions A1 and A2, it is straightforward to show that
fτ (t) = λ exp(−λt)u(t), where λ =

∑n

i=1(λdi
+ λfi

+
∑gi

j=1 λ̃j,i +
∑

j 6=k(λQ
jk + λF

jk)). Next, we condition the
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service reliability on the regeneration time to obtain

RK(tb;Q0,F0,C0) = P{TK(tb;Q0,F0,C0) <∞}

=

∫ tb

0

P{TK(tb;Q0,F0,C0) <∞|τ =s}fτ (s) ds

+

∫ ∞

tb

P{TK(tb;Q0,F0,C0) <∞|τ =s}fτ (s) ds. (6)

Moreover, we can further condition the first integrand
at the right side of (6) on all the possible, disjoint
regeneration events occurring at the time τ = s as

P{TK(tb;Q0,F0,C0) <∞|τ =s} =

n
∑

i=1

P{τ =Wi1|τ =s}×

P{TK(tb;Q0,F0,C0) <∞|τ =s, τ =Wi1}+

n
∑

i=1

n
∑

j=1,j 6=i

P{TK(tb;Q0,F0,C0) <∞|τ =s, τ =XQ
ij}P{τ =Xij |τ =s}+

n
∑

i=1

P{TK(tb;Q0,F0,C0) <∞|τ =s, τ =Yi}P{τ =Yi|τ =s}

+
n

∑

i=1

n
∑

j=1,j 6=i

P{TK(tb;Q0,F0,C0) <∞|τ =s, τ =XF
ij}×

P{τ =XF
ij |τ =s}+

n
∑

i=1

gi
∑

j=1

P{τ =Zji|τ =s}×

P{TK(tb;Q0,F0,C0) <∞|τ =s, τ =Zji}. (7)

In addition, note that
∫ ∞

tb
P{TK(tb;Q0,F0,C0) < ∞|τ =

s}fτ (s) ds = P{TK(tb;Q0,F0,C0) <∞|τ > tb}P{τ > tb}.
We now apply Lemma 6 to the later result and Lemmas
1–5 to (7), and substitute those results in (6) to obtain:

RK(tb;Q0,F0,C0) =

∫ tb

0

(

n
∑

i=1

P{τ =Wi1|τ =s}×

RK(tb − s;Q0 −∆ii
0 ,F0,C0) +

n
∑

i=1

n
∑

j=1,j 6=i

P{τ =XQ
ij |τ =s}×

RK(tb − s;Q0 + ∆ji,F0,C0) +
n

∑

i=1

P{τ =Yi|τ =s}×

RK(tb − s;Qii
0 ,Fii

0 ,CYi

0 ) +

n
∑

i=1

n
∑

j=1,j 6=i

P{τ =XF
ij |τ =s}×

RK(tb − s;Qji
0 ,Fji

0 ,C0)+
n

∑

i=1

gi
∑

j=1

P{τ =Zji|τ =s}×

RK(tb − s;Q0 + fiilji∆
ii,F0,C

Zji

0 )
)

fτ (s) ds

+ P{τ >tb}RK(0;Q0,F0,C0) .

Using basic concepts from probability theory, we can
show that P{τ = Wi1|τ = s} = λdi

λ−1, P{τ = XQ
jk|τ =

s} = λQ
jkλ−1, P{τ = Yk|τ = s} = λfk

λ−1, P{τ = XF
jk|τ =

s} = λF
jkλ−1, P{τ = Zji|τ = s} = λ̃jiλ

−1, Therefore, the

last equation becomes

RK(tb;Q0,F0,C0) =

∫ tb

0

exp(−λs)
(

n
∑

i=1

λdi
RK(tb − s;Q0 −∆ii

0 ,F0,C0)

+

n
∑

i=1

n
∑

j=1,j 6=i

λQ
ijRK(tb − s;Q0 + ∆ji,F0,C0)

+

n
∑

i=1

λfi
RK(tb − s;Qii

0 ,Fii
0 ,CYi

0 )

+

n
∑

i=1

n
∑

j=1,j 6=i

λF
ijRK(tb − s;Qji

0 ,Fji
0 ,C0)

+

n
∑

i=1

gi
∑

j=1

λ̃jiRK(tb − s;Q0 + fiilji∆
ii,F0,C

Zji

0 )
)

ds

+P{τ >tb}RK(0;Q0,F0,C0) . (8)

Finally, by differentiating (8) with respect to tb and
rearranging terms we obtain (2). ✷

Proof of Equation (5). Let us look at the conditional
distribution of W

′

j1, with j 6= i: P{W
′

j1 ≤ t|τ = s, τ =
Wi1} = P{Wj1 − τ ≤ t|τ = s, τ = Wi1} = P{Wj1 ≤
t+s|τ =s, τ =Wi1}. Note that the event {τ = s, τ = Wi1}
is equivalent to {Wi1 = s, W11 > s, . . . , W(i−1)1 >

s, W(i+1)1 > s, . . . ,Wn1 > s, Y1 > s, . . . , Yn > s, XQ
12 >

s, . . . , XQ

n(n−1) > s, XF
12 > s, . . . , XF

n(n−1) > s, Z11 >

s, . . . , Zngn
> s}. Therefore, the latter equation becomes

P{W
′

j1 ≤ t|τ = s, τ = Wi1} = P{Wj1 ≤ t + s|Wi1 =
s, W11 > s, . . . , W(i−1)1 > s, W(i+1)1 > s, . . . , Wn1 >

s, Y1 > s, . . . , Yn > s, XQ
12 > s, . . . ,XQ

n(n−1) > s, XF
12 >

s, . . . , XF
n(n−1) > s,Z11 > s, . . . , Zngn

> s. Exploiting

the independence (Assumption A2) we obtain P{W
′

j1 ≤
t|τ = s, τ = Wi1} = P{Wj1 ≤ t + s|Wj1 > s} =
(1− exp(−λdj

t))u(t). ✷

Proof of the conditional independence of W
′

j1 and Y
′

k .

Recall that W
′

j1 = Wj1 − τ and Y
′

k = Yk − τ . Therefore,

for any real number t1 and t2 we have P{W
′

j1 ≤ t1, Y
′

k ≤
t2|τ = s, τ = Wi1} = P{Wj1 ≤ t1 + s, Yk ≤ t2 + s|τ =
s, τ = Wi1} = P{Wj1 ≤ t1 + s, Y1 ≤ t2 + s|Wi1 =
s, W11 > s, . . . , W(i−1)1 > s,W(i+1)1 > s, . . . , Wn1 >

s, Y1 > s, . . . , Yn > s, XQ
12 > s, . . . ,XQ

n(n−1) > s, XF
12 >

s, . . . ,XF
n(n−1) > s, Z11 > s, . . . , Zngn

> s} since the
events conditioning the probability are equivalent. Next,
by exploiting Assumption A2 we have P{W

′

j1 ≤ t1, Y
′

k ≤
t2|τ = s, τ = Wi1} = P{Wj1 ≤ t1 + s, Yk ≤ t2 + s|τ =
s, τ = Wi1} = P{Wj1 ≤ t1 + s, Yk ≤ t2 + s|Wj1 >
s, Yk > s} = P{Wj1 ≤ t1 + s, Yk ≤ t2 + s, Wj1 >
s, Yk > s}(P{Wj1 > s, Yk > s})−1 = P{s < Wj1 ≤
t1 + s}(P{Wj1 > s})−1

P{s < Yk ≤ t2 + s}(P{Yk > s})−1.
Therefore, we get P{W

′

j1 ≤ t1, Y
′

k ≤ t2|τ = s, τ =

Wi1} = P{W
′

j1 ≤ t1|Wj1 > s}P{Y
′

k ≤ t2|Yk > s},

which concludes the proof by noting that P{W
′

j1 ≤

t1|τ = s, τ = Wi1} = P{W
′

j1 ≤ t1|Wj1 > s} and
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P{Y
′

k ≤ t2|τ = s, τ = Wi1} = P{Y
′

k ≤ t2|Yk > s}. ✷
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