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" Chapter 4

Continuous Random Variables and Probability Distributions

4-1 CONTINUOUS RANDOM VARIABLES:

» Example:

- Measurement of the current in a thin copper (different results due to variation).
- Measuring a dimensional length of a part (Also different results due to variations).

The measurement of interest can be represented by a RANDOM VARIABLE.

It 1s reasonable to model the range of possible values of the random variable by an
interval (finite or infinite) of real numbers.

¢+ However, because the number of possible values of the random variable X is
uncountably infinite, X has a distinctly different distribution from the discrete random
variables studied previously. The range of X includes all values in an interval of real
numbers; that 1s, the range of X can be thought of as a continuum.



4-2 ROBABILITY DISTRIBUTION AND PROBABILITY DENSITY FUNCTION:

¢ Density functions are commonly used in engineering to describe physical systems.

> Example:

Consider the density of a loading on a long, thin beam as shown in following figure.

Loading

x

- For any point x along the beam, the density can be described by a function (in
grams/cm).

- Intervals with large loadings correspond to large values for the function.

- The total loading between points a and b is determined as the integral of the density

function from ato b — AREA



' Siilarly, a probability density function f(x) can be used to describe the probability
distribution of a continuous random variable X.

v" The Probability that X is between a and b is determined as the integral of f(x) from a to b.

_?1 [

Pia =X = b

a 2] i
*¢* Probability Density Function:

For a continuous random variable X, a probabhility density function is a function
such that

(1) flx)=0

(3) Pla=X=b)= | flx)dx = areaunder f{x)fromatob

[

for any a and b




probability density function provides a simple description of the probabilities
associated with a random variable.

v" A histogram is an approximation to a probability density function.

f ix)

X
v For each interval of the histogram, the area of the bar equals the relative frequency

(proportion) of the measurements in the interval.

v" The relative frequency is an estimate of the probability that a measurement falls in the
interval.

v’ Similarly, the area under f(x) over any interval equals the true probability that a
measurement falls in the interval.



+» The important point is that fi{x) is used to calculate an_area that represents the

probability that X assumes a value in [a, b].

s By appropriate choice of the shape of f(x), we can represent the probabilities
associated with any continuous random variable X.

ssFor the density function of a loading on a long thin beam, because every point has
zero width, the loading at any point i1s zero. Similarly, for a continuous random variable
X and any value x.

PX=x) =0
» Example:

When a particular current measurement is observed, such as 14.47 milliamperes,

This result can be interpreted as the rounded value of a current measurement that is
actually 1n a range such as

14.465<x<14.475 (NOT ZERO)



e

If X 1s a continuous random variable, for any x| and x,,

F'[’.\'I =X= .‘I.'_‘.-] — P(.";'] =D, = .1'3] — P(.T[ =X< .1‘2) = P(.\'l =y .T:)

> Example:

Let the continuous random variable X denote the diameter of a hole drilled in a sheet
metal component. The target diameter is 12.5 millimeters. Most random disturbances to
the process result in larger diameters. Historical data show that the distribution of X can
be modeled by a probability density function

flx) = 20721290y = 12.5
e ;

If a part with a diameter larger than 12.60 millimeters 1s scrapped, what proportion of
parts 1s scrapped? flx)

12.5 12.6 x



e

o
(X = 12.60) flx)de = | 20e™20%—123) )

2.6
2.4 2.4

What p

roportion of parts is between 12.5 and 12.6 millimeters?

L0

-

25 =< X =12.6)=1— P 26)=1—0.135 = 0.863



¢ it is sometimes useful to be able to provide cumulative probabilities such as P(X < x)
and that such probabilities can be used to find the probability mass function of a random

variable.

¢ Using cumulative probabilities is an alternate method of describing the probability
distribution of a random variable.

In general. for any discrete random wvarniable with possible wvalues x,. x,. ... x,.
the events {X¥=ox). {¥=2x)..... {X=2x,) are mutvally exclusive. Therefore.

PX =x) = E.r;"—-'x--i'-[-ﬁ']']-



> Question 4-7.
The probability density function of the net weight in pounds of a packaged chemical

herbicide 1s f(x) = 2.0 for 49.75 <x < 50.25 pounds.

a- Determine the probability that a package weighs more than 50 pounds.

|
LN

Ln
£
Lh
£
ket
Lh
-
]

Odc =2, =

Lh
£

-_-l
[ g

P(X »50) =

Lhp
e

b- How much chemical is contained in 90% of all packages?

Lnh
o
k.t
Lnh
Ln
£
| -]
Ln

v

2.0cx = 2

o

Pl »=x)=090=
Then, 2x =99 6andx =49 8.

100.
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= 4-3 UMULATIVE DISTRIBUTION FUNCTION:

** An alternative method to describe the distribution of a discrete random variable can
also be used for continuous random variables.

¢ Cumulative Distribution Function

The cumulative distribution function of a continuous random varnable X 1s

Fix) = PIX=x) = | flu)du

—

for —oo < x = @,
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ple:
For the drilling operation in the previous example, where

. Ty

F(x) consists of two expressions,

Fix)=0 for x< 11

X
W e |7 &
Flx) = | 20¢20-125)
12.5
1 20—
Therefore,
0

L




i

0 12.5 x

¢ The probability density function of a continuous random variable can be determined
from the cumulative distribution function by differentiating. Recall that the fundamental

theorem of calculus states that

x
— HYaw = Jilx
dax |7 } : o }

— G

Then, given F{x)

As long as the derivative exists.



> Example:

The time until a chemical reaction i1s complete (in milliseconds) is approximated by the
cumulative distribution function

0 x = ()
Flx) = | o0l =
-Determine the probability density function of X.
o (0 x =
Hx) = _ .
- 0017 0=«

- what proportion of reactions 1s completed within 200 milliseconds?

-

P(X < 200) = F{200) = | — ¢ = 0.8647



> Question 4-13.

The gap width is an important property of a magnetic recording head. In coded units, 1f the

width is a continuous random variable over the range from 0<x<2 with

f(x) =0.5x,

Determine the cumulative distribution function of the gap width.

s

0.5xdx
0.
0.25x",
L

v
. : 7 ) )
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x<(

0<x<?2
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-4 EAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE:

¢ Integration replaces summation in the discrete definitions.

** Mean and Variance

Suppose X 15 a continuous random variable with probability density function fix).
The mean or expected value of X, denoted as p or E(X), 1s

e
.

xf(x) dx

n = E(X) =

-

The variance of X, denoted as F(X) or o2, is

-

o = VX)) = | (x — p)flx)dx =

- [

— — o

q)

The standard deviation of Y15 o0 =
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For the copper wire example where f(x) = 0.05 for 0 <x <20 mA,

The mean of X 1s,

-

The variance of X 1s,

20

VY) = . _




¢ The expected value of a function h(X) of a continuous random variable is defined
similarly to a function of a discrete random variable.

+» Expected Value of a Function of a Continuous Random Variable:

E[h(X)]

[f X 1s a continuous random variable with probability density function fix),

> Example:

For the copper wire example, what 1s the expected value of the squared current?

h(x) = X2, therefore

TG
"

E[h(X)] =

x*flx) dx

C 3|
= | 0.05x" dx = 0.05 - | =1

J 1
0

()
e
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> Question 4-29.

The thickness of a conductive coating in micrometers has a density function of 600x- for
100pm < x < 120pum.

A- Determine the mean and variance of the coating thickness.

E(X)= J r@a‘r =6001In x|, =109.39
00 X
120 120 .
V(X)= J(r—mg 39)° (’UO @00]1— L B iy
100 X 100
=600(x —218.78Inx —109.392x ") |~ =33.19

B- If the coating costs $0.50 per micrometer of thickness on each part, what is the
average cost of the coating per part?

Average cost per part = $0.50%109.39 = §54.70



=15 CONTINUOUS UNIFORM DISTRIBUTION:

¢ The simplest continuous distribution is analogous to its discrete counterpart.

A continuous random variable X with probability density function
flx) = 1/(b — a), a=x=bh

15 a continuous uniform random variable.

_?'1|' x

[—

o
i
5]



po= E(X) =

If X 15 a continuous uniform random vanable overa = x = b,

(@ + b) (b — a)

o = VX) =

» Example:

Let the continuous random variable X denote the current measured in a thin copper wire
in milliamperes. Assume that the range of X is [0, 20 mA], and assume that the

probability density function of X 1s f(x) = 0.05, 0 <x < 20.

- What 1s the probability that a measurement of current is between 5 and 10

milliamperes?
HET.

.08




= 5(0.05) = 0.25

The mean and variance formulas can be applied with a=0 and b=20. Therefore,

p)

EiX1=10mA and FX)=20-/12

33.33 mA-

S.D.=5.77 mA.

The Cumulative distribution function 1s: (If a < x <b)

X

Flx) = | /(b — a)du = x/(b — a) — a/{b — a)

L=



Therefore, the complete description of the cumulative distribution function of a
continuous uniform random variable is:

{0 |
Fxlj=3x—a)f(b—a) a=x<5h
] h=x

» Question 4-36.

Suppose the time it takes a data collection operator to fill out an electronic form for a
database is uniformly between 1.5 and 2.2 minutes.

A- What 1s the mean and variance of the time it takes an operator to fill out the form?
E(X)=(1.5+2.2)/2 = 1.85 min

V(X) = (2.2-1.5)%/12 = 0.0408 min?



B- What is the probability that it will take less than two minutes to fill out the form?

2 : 2

| 0.7dx

P(X <2) 0.7, =0.7(.5)=0.7143

—
L]

C- Determine the cumulative distribution function of the time it takes to fill out the
form.

.'{; 1 .'4.; .

F(X)= dx = J 0.7dx =0.7x);, for 1.5 <x<2.2. Therefore.
’5(22-1.5 15 '3
' 0, x<l.5

F(x)=410.7x=-2.14, 15<x<22




= 4-6 ORMAL DISTRIBUTION:

¢ Undoubtedly, the most widely used model for the distribution of a random variable is a

normal distribution.

s Whenever a random experiment is replicated, the random variable that equals the
average (or total) result over the replicates tends to have a normal distribution as the

number of replicates becomes large.

CENTRAL LIMIT THEORIM

+* Normal Distribution is also referred to as a Gaussian distribution.




-> Example:

- Assume that the deviation (or error) in the length of a machined part is the sum of a
large number of infinitesimal effects, such as:

- Temperature and humidity drifts, vibrations, cutting angle variations, cutting tool wear,
bearing wear, rotational speed variations, mounting and fixture variations, variations in
numerous raw material characteristics, and variation in levels of contamination.

- If the component errors are independent and equally likely to be positive or negative,
the total error can be shown to have an approximate normal distribution.



¢ Random variables with different means and variances can be modeled by normal
probability density functions with appropriate choices of the center and width of the
curve.

fix) ~FE=1

=15 x
-The Center of the probability density function E(X) =
- The width of the curve V(X) = o?

¢ All Normal functions has the characteristic symmetric bell-shaped curve, but the
centers and dispersions differ.



+¢» Normal Distribution:

A random varnable X with probability density function

~(x—pJ’

f(x) = —e 2 —o0 < x <
/) v 2o

15 a normal random variable with parameters w, where —= << p << =, and o = (.

Also,
EX)=p and V(X)=o

and the notation N{p, crj} 1s used to denote the distribution.




-> Example:

Assume that the current measurements in a strip of wire follow a normal distribution
with a mean of 10 milliamperes and a variance of 4 (milliamperes)?.

-What is the probability that a measurement exceeds 13 milliamperes?

X: the current in mA.

fix)

10 13 x

v’ There is no closed-form expression for the integral of a normal probability density
function, and probabilities based on the normal distribution are typically found
numerically or from a table (that we will later introduce).
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¢ The probability density function decreases as x moves farther from Consequently, the
probability that a measurement falls far from p 1s small, and at some distance from p the
probability of an interval can be approximated as zero.

¢ Because more than 0.9973 of the probability of a normal distribution is within the

interval (u - 30, n + 30) — 60 is often referred as the of a normal
distribution

¢ The Integration of normal probability density function between (-co <x <+ o) =1

+¢» Standard Normal Random Variable:

A normal random vanable with

p=0 and o’=1

15 called a standard normal random variable and 1s denoted as Z.
The cumulative distribution function of a standard normal random vanable 1s
denoted as

P(z) = P(£ = z)




+ Apendix Table II provides cumulative probability values for ¢(z) , for a standard normal

random variable.

Table I Cumulative Standard Mormal Distribution (contnued)

Z

0.00

0.01

0.02

0.03

.04

0.05

0.06

0.07

(.08

0.09

0.0
0.1
0.2
0.3
(.4
(.5
(.6
0.7
(.5
0.9
1.0

0, SO0000
(.539828
0.579260
0617911
(.655422
(.691462
0.725747
(. 758036
(. 788145
0.8 15940
(.841345

0.503989
(.543795
(L.583 166
0.621719
0.650097
0.694974
0.729069
0.761148
0.791030
(L1858
0.843752

0.507978
0.547758
0.587064
0.625516
0.662757
0.698468
0.732371
0.764238
(0.793R802
0.821214
(L8461 36

0.511967
0.551717
0.590954
0.629300
0666402
0701944
0LT35653
07673035
0.796731
0.823815
.84 8495

(L515953
0.555760
0.594835
0.633072
0.670031
0.705401
0.738914
0.770350
0.799546
(.82639]
0.850830

(.5199349
(.559618
(0.598706
(0.636831
(.673645
(.T08840
(.742154
(.773373
(LRDZ338
(.828044
(.853141

(.532922
(1.563559
(0.602568
0.640576
(0.677242
(0.T12260
(.745373
0.776373
(0.805106
(.831472
(.B55428

0.527903
0.567495
0.606420
0.644309
0.680822
0.715661
0. 748571
0.779350
0.807850
0.833977
0.857690

(.53188]
0.571424
(610261
0.648027
0.684386
0.719043
0751748
(0. TE2305
0.810570
0.836457
0.859929

(L335856
(.575345
0.614092
L651732
0.687933
0.722405
0.754903
0.T85236
0.813267
(LE389]3
0.862143



-> Example:

Find P(Z < 1.5) 2222

z (.00 0.01 0.02 0.03 .04 0.05 0.06 0.07 0.08 .09

1.3 0903199 0904902 0906582 0908241 0909877 0911492 0913085 0914657 0916207 0917736
1.4 0919243 0920730 0922196 0923641 0925066 0926471 0927855 0.920219 0930563 0.93]888
1.5 0933193 0.93447s 0935744 0936992 00938220 09304290 0940620 0941792  0.942947  0.944083
1.6 09452010 0946301 0947384  0.948449  0.949497  0.950529 0951543 0952540 0953521 0.954486

- Z = 1.5 =5(1.5)
= shaded araa

P(Z<1.5)=0.933193

P(Z <1.36) =0.913085



> Example:

1-P(Z>1.26)=1-P(Z<1.26)=1-0.89616 = 0.10384

(1)
= 1~
0 1.26 0 1.26
P(Z < -0.86) = 0.19490
(2)
086 0
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.00
—{.8 0.186733 (. 189430 0. 192150 0.194894 0. 197662 0.200454 0.203269 0.206108 0.208970 0211855

—0.7 0214764 0217695 0220650 0223627 0226627 0229650 0232695 0235762 0238852 0.241964



e
@:EW:W 155*155** - . u***i%** ********“5‘*355 ”***:§:** %Wﬁ@%ﬁﬁh - **15‘*1?****?:** @%ﬁmﬁ%* *f*:i*iii*ﬁi*i?*w*
- - . = . .. .. R

P(Z>=T37) = P(Z < 1.37) = 0.91465

(3)

:

-1.37 0

-1.25 0 037 0 0.37

-1.25 o

- P(Z <-4.6) Cannot be found exactly from the standard table.
rom Table we can find P(Z <-3.99) 0.00003 so that (Z < - 4.6) nearly Z

AN

-4.6 -3.99 o

o



Al wmethe value of z such that P(Z > z) = 0.05

.05

] z=1.65

Find P(Z < z) = 0.95 then from table..... Z = 1.65

z (.00 0.01 0.02 0.03 0.04 .05 0.06 0.07 .08 0,009

S0 0933193 0934478 0935744 0936992 0938220 0939420 0940620 0941792 0.942947  0.944083
e e anrm s : : : 0051543 0052540 0.953521 0.954486
T 00955435 0956367 0957284 0958185 0.959071 0959041 0960796 0961636 0962462 0963273

7- Find the value of z such that P(-z <Z <z) =0.99

(7]

Z=200 8



% The standard table can be used to find the probabilities associated with an arbitrary
normal variable by first using a simple transformation.

¢ Standardizing a Normal Random Variable:

If X is a normal random variable with E(X) = p and F(X') = o, the random variable

XN—p
F

=

15 a normal random wvariable with E{Z) = 0 and F(Z) = 1. That 1s, Z 1s a standard
normal random variable.

¢ The random variable Z represents the distance of X from its mean in terms of standard
deviations. It is the key step to calculate a probability for an arbitrary normal random
variable.



> Example:

Assume that the current measurements in a strip of wire follow a normal distribution
with a mean of 10 milliamperes and a variance of 4 (milliamperes)?.

-What is the probability that a measurement exceeds 13 milliamperes?

— > = P(Z > 1.5) = 0.0668]
PX=>13)=P(Z=>15)=1-P(Z

(X —10) (13 — 10)
PX>13)=P :

-

I
—
£
o
||

| — 0.93319 = 0.06681

X-p

i)

Distribution of Z =

Cistribution of X

4 7 S 1011 13 la =

-

-3 -15-0500.5 1.5 3 =z



tandardizing to Calculate a Probability:

Suppose X 1s a normal random variable with mean p and variance o Then,

P(X = x) = P('}; —F <! ;”)= P(Z =)

(xr — )

where Z is a standard normal random variable, and z = ———— is the z-value
obtained by standardizing X,
The probability 1s obtained by entering Appendix Table IT with z = (x — p)/o.

» Example:

For the previous example, what 1s the probability that a current measurement 1s between
9 and 11 mA?

P9 <X < 11)

P((9 — 10)/2 < (X — 10)/2 < (11 — 10)/2)
P(—0.5 < Z< 05) = P(Z < 05) — P(Z < —0.5)
= 0.69146 — 030854 = 0.38292



crmine the value for which the probability that a current measurement is below this
value 1s 0.98.

P(X < x) = P((X — 10)/2 < (x — 10),2)

= P(Z < (x — 10)/2)

(Z < 2.05) = 0.97982

r = 2(2.05) + 10 = 14.1 milliamperes




> Example:
The diameter of a shaft in an optical storage drive 1s normally distributed with mean

0.2508 inch and standard deviation 0.0005 inch. The specifications on the shaft are
0.2500 + or - 0.0015 inch. What proportion of shafts conforms to specifications?

Fial -« Specifications ——=

‘\-,_l__‘_‘_
0.2485 jo0EsDE 0.28l8 «x

i

0.25

Let X denote the shaft diameter in inches.

P(0.2485 < X < 0.2

L

o (+}.z435 ~ 02508 _ 02515 n.z:’wm«:)
)= 0.0005 Ses 0.0005

P(—4.6 < Z< 14)=P(Z < 14) — P(Z < —4.6)
— 0.91924 — 0.0000 = 0.91924

v Find the probability when the process is centered....................



> 0uestion 4-49.

The compressive strength of samples of cement can be modeled by a normal
distribution with a mean of 6000 kilograms per square centimeter and a standard
deviation of 100 kilograms per square centimeter.

a) What is the probability that a sample’s strength is less that 6250 Kg/cm??

6250 — 6000
100 )

(X <6250)= P| Z <

=P(Z£=25)
=0.99375
b) What is the probability that a sample’s strength is between 5800 and 5900 Kg/cm??

P (5800 <X <5900)= P 5800-6000 o 5900-6000 |
. 100 100

=P(-2<Z<-1)

=P(Z<-1)-PZ<-2)

=0.13591




c) What strength 1s exceeded by 95% of the samples?

_ )
PX>x)= Pl Z =2 6000 | =0.95.

| 100

x—6000
Therefore, 100 =-1.65andx=35835

» Question 4-63.

The weight of a sophisticated running shoe is normally distributed with a mean of 12
ounces and a standard deviation of 0.5 ounce.

a) What is the probability that a shoe weights more that 13 ounces?

( 13-12)
=13 F L —
PX )= \ 05

=P(Z=2)
=0.02275



b) What must the standard deviation of weight be in order for the company to state that
99.9% of its shoes are less that 13 ounces?

[ 13-12)
If P(X<13)=0999.then P| Z <« ——= | =0.999.
\ o )

i

Therefore. 1/ o =3.0%9and g =1/3.09=0.324

c¢) If the standard deviation remains at 0.5 ounce, what must be the mean weight in order
for the company to state that 99.9% of its shoes are less that 13 ounces?

\
IfP(X<13)=0.999 then P Z < 13[] :‘5
i_. ) __.'I

i

Therefore, 1—“‘ =3 0%and p =11.455

-
-

=0.995.




-7I NORMAL APPROXIMATION TO THE BINOMIAL AND POISSONDISTRIBUTION:

¢ The normal distribution can be used to approximate binomial probabilities for cases in

which n 1s large.

¢ In some systems,
distribution.

» Example:

flxi

i1s difficult to calculate probabilities

0.20

0.10

0.00

[\

B
n
i

=

n o

8

9

10

by using the binomial



% The area of each bar equals the binomial probability of x.

¢ Notice that the area of bars can be approximated by areas under the normal density

function.

*» From the last figure, it can be seen that a probability such as P(3< X <7) is better
approximated by the area under the normal curve from 2.5 to 7.5.

¢ This observation provides a method to improve the approximation of binomial

probabilities.

The modification is referred to a CONTINUITY CORRECTION




——> Example:

In a digital communication channel, assume that the number of bits received in error can
be modeled by a binomial random variable, and assume that the probability that a bit is
received in error is 1X10- . If 16 million bits are transmitted, what is the probability that
150 or fewer errors occur?

P(x = 150) = >

=10

'-*“( 16.000.000
X

)[:I.”_q}m(l - I{_]—F')llfw,fllllll,l_lhu__.l.

+*» Normal Approximation to the Binomial Distribution:

If X is a binomial random wvariable,

X — np
vViap(l — p)

is approximately a standard normal random variable. The approximation is good for

;S =

np =5 and n(l —p) =S5




/M//"—-——

To approxmmate a binomial probability with a normal distribution a contimuity correction is apphed as
follows:

P =x)=PX=x+0.5)=P(Z < (x + 0.5 - np)/[np(1-p)])
and

Px<X)=Px-05<X)=P(x- 05 - np)[np(1-p)] =Z)

» Example:

The digital communication problem in the previous example is solved as follows:

150 T — - 150.5 —
P(X < 150)= P(X < 150.5) = p[ 2 — 160 - > — 160
V160(1 — 107°) Ry 160(1 — 1077)

— P(Z<=—075) = 0227




> Example:

Again consider the transmission of bits. To judge how well the normal approximation
works, assume only n = 50 bits are to be transmitted and that the probability of an error

1s p = 0.1. The exact probability that 2 or less errors occur is

50 ‘. 5 ¥ - o
PX=2)= 0 uuﬂ+lFGMﬂWﬂ+ ; 0.1°(0.9%*) = 0.112
_ _ 24+ 05—5
PX=2)=PX=25)~P|Z="77 = P(Z= —1.18) = 0.119
Find P( X > 9) = 777777
9 —05—-35

PO=X)=PB5=X)=P =Z|=P(1.65=Z) = 0.05



~Conditions for approximating hypergeometric and binomial probabilities:

l

hypergometric binomial = normal

distribution n distribution np =3 distribution

**Recall that the Poisson distribution was developed as the limit of a binomial distribution
as the number of trials increased to infinity. So that, the normal distribution can also be
used to approximate probabilities of a Poisson random variable.

s Normal Approximation to the Poisson Distribution:

If X is a Poisson random variable with E(X) = A and V(X)) = A,

1s approximately a standard normal random variable. The approximation is good for

A=

n




> Example:

Assume that the number of asbestos particles in a squared meter of dust on a surface
follows a Poisson distribution with a mean of 1000. If a squared meter of dust is
analyzed, what 1s the probability that less than 950 particles are found?

Q50— 1000 1000
& X

P(X = 950) =

_"I_':“ .li:-!




1.8 EXPONENTIAL DISTRIBUTION:

+¢» The discussion of the Poisson distribution defined a random variable to be the number
of flaws along a length of copper wire.

+¢» The distance between flaws is another random variable that is often of interest.

¢ Let the random variable X denote the length from any starting point on the wire until a
flaw is detected.

¢ The distribution of X can be obtained from knowledge of the distribution of the number
of flaws. For example:

The distance to the first flaw exceeds 3 millimeters if and only if there are no flaws within
a length of 3 millimeters

¢ In general, let the random variable N denote the number of flaws in x millimeters of
wire. If the mean number of flaws 1s A per millimeter, N has a Poisson distribution with

mean AX.
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¢ The derivation of the distribution of X depends only on the assumption that the flaws
in the wire follow a Poisson process.




istribution:

The random variable X that equals the distance between successive counts of a
Poisson process with mean A > 0 is an exponential random variable with parame-
ter A. The probability density function of X is

fix) =Ae™ for 0=x<o

2.0

1.6

1.2

flax)

0.8




wExponential Distribution Mean and Variance:

If the random variable X" has an exponential distribution with parameter A,

l ) I
w=EX)= x and o = V(X)) = —=

» Example:

In a large corporate computer network, user log-ons to the system can be modeled as a
Poisson process with a mean of 25 log-ons per hour. What is the probability that there are no

logons 1n an interval of 6 minutes?

Let X denote the time in hours from the start of the interval until the first log-on.
X has an exponential distribution with A =25 log-ones/hr

Find the probability of X exceeds 6 min or 0.1 hour



0.1 x

—20 = 0.082

75
25e =% dx = ¢

=)
';:-.<
l"l.. 7
=
|
-

—25(0.1)

V
|

5

X =0 — Fl0.1) =

What is the probability that the time until the next log-on 1s between 2 and 3 minutes?

0.05 )
g (.05
R = —25¢ o —25x _
PO.0O33 < X = 0.05) = 25¢ dy = —e¢ = 0.152
J 0033
0.033
P(0.033 < 05) = 05) — 033) = 0.152



Determine the interval of time such that the probability that no log-on occurs in the
interval 1s 0.90.

PX =x) =e 5% =0.90

¥y = 0.00421 hour = 0.25 minute

Furthermore, the mean time until the next log-on i1s

i = 1/25 = 0.04 hour = 2.4 minutes

The standard deviation of the time until the next log-on 1s

o = 1/25 hours = 2.4 minutes



