2.1 ~ Quadratic Functions \& Parabolas

Graphing Parabolas:

1. Standard Form: $f(x)=a(x-h)^{2}+k \quad$ Find vertex (h, k) and make a t-chart.
*Note: if $a>0$, the parabola opens \qquad and the vertex is a \qquad .
if $a<0$, the parabola opens \qquad and the vertex is a \qquad .
2. Quadratic Function: $f(x)=a x^{2}+b x+c \quad$ Use $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$ to find the vertex and make a t-chart.
3. Identify the vertex and axis of symmetry. Find the $x \& y$ intercepts to use as additional points.

Ex 1: Graph $f(x)=2(x-3)^{2}+4$
Vertex: \qquad

Ex 2: Graph $f(x)=x^{2}-4 x+3$ use $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$ to find the vertex.

Ex 3: From example 2: $f(x)=x^{2}-4 x+3$ use vertex (\qquad , \qquad) and find the following.

What if the equation is not in standard form?!?
** Then change it into standard form... by \qquad

In examples 4-7, change each quadratic into standard form and find the vertex of each. Ex 4: $f(x)=x^{2}+12 x+9$

Ex 5: $\quad f(x)=2 x^{2}+8 x+7$

Ex 6: $\quad f(x)=-x^{2}+6 x-8$

Ex 7: $f(x)=-3 x^{2}-12 x-16$

Ex 8: Write an equation of the quadratic given the vertex $(3,4)$ and point that passes through $(1,2)$.

Ex 10: Write an equation of the quadratic given the vertex $(-2,5)$ and point that passes through ($-1,7$).

Ex 12: Write the equation from the graph.

Ex 9: Write an equation of the quadratic given the vertex $(2,3)$ and point that passes through $(0,2)$.

Ex 11: Write an equation of the quadratic given the vertex ($-1,4$) and point that passes through (3,0).

Ex 13: Write the equation from the graph.

Ex 14: Maximum Revenue: Find the number of units sold that yields a maximum annual revenue for a sporting goods manufacturer. The total revenue R (in dollars) is given by $R=1000 x-0.0002 x^{2}$, where x is the number of units sold. Hint: To answer this question, the vertex of the parabola is needed.

$$
\begin{array}{ll}
R=1000 x-0.0002 x^{2} & \mathbf{X}=\text { \# of units sold } \\
& \mathbf{R}=\text { total Revenue }
\end{array}
$$

Ex 15: A baseball is hit at a point 3 feet above the ground at a velocity of 100 feet per second and at an angle of 45° with respect to the ground. The path of the baseball is given by the function $f(x)=-0.0032 x^{2}+x+3$, where $f(x)$ is the height of the baseball (in feet) and x is the horizontal distance from home plate (in feet). What is the maximum height reached by the baseball?

Ex 16: A small local soft-drink manufacturer has daily production costs of $C=70,000-120 x+0.075 x^{2}$ where C is the total cost (in dollars) and x is the number of units produced. How many units should be produced each day to yield a minimum cost?

2.2 ~ Polynomial Functions

I. Polynomial Functions:

- Must be \qquad (no breaks, holes or gaps in the graph)
- Would be classified as \qquad or \qquad depending on the degree* of the polynomial.

1. Even functions

2. Odd functions

II. Leading Coefficient Test:

*You will look at the leading coefficient to classify the function as even or odd, then determine what the graph will resemble depending on if a is positive or negative.
a) $f(x)=x^{2}$
b) $f(x)=-x^{2}$
c) $f(x)=x^{3}$
d) $f(x)=-x^{3}$

degree: even a is \qquad starts \qquad ends \qquad

degree: even a is \qquad starts \qquad ends \qquad

degree: odd a is starts___ ends
\qquad
\qquad
degree: odd a is \qquad starts ___ ends \qquad

* *Remember that all even functions will resemble the \qquad and odd functions will resemble the \qquad .

III. Zeros of a Polynomial Function:

* The zeros of a function are the \qquad or the \qquad .
* The degree of your polynomial helps you to know...

*Multiplicity -

- Solutions that have even multiplicity will \qquad the x - axis at that point and bounce away.
- Solutions that have odd multiplicity will \qquad the x-axis at that point.

Ex 1: Find the zeros of: $f(x)=-2 x^{4}+2 x^{2}$ touches or crosses the graph.

Determine the multiplicity of each zero and whether it

Steps to Sketch a Polynomial

1. Apply the leading coefficient test.
2. Find the zeros by factoring.
3. Plot a few additional points-use points that are between each of the zeros.
4. Sketch the graph.

Ex 2: Sketch the graph of $f(x)=-2 x^{4}+2 x^{2}$

For examples 3-6, find the zeros. Then determine the multiplicity of each zero and whether it touches or crosses the graph.
Ex 3: $f(x)=2 x^{2}+11 x-21$

Ex. 4: $f(x)=t^{3}-3 t$

$$
\text { Ex. } 5 f(x)=x(x+3)^{2}
$$

$$
\text { Ex. } 6 f(x)=x^{4}-3 x^{3}-2 x^{2}
$$

Ex 7: Find a polynomial function that has the given zeros.
a) -4 and 5
b) 0,2 , and 5

Ex 8: Find a polynomial of degree 3 with given zeros:
a) -2, 3, and 5
b) 3

For example 9 and 10, determine the multiplicity of each zero and whether it touches or crosses the graph. Then sketch each graph.
Ex 9: $f(x)=2 x^{3}-6 x^{2}+\frac{9}{2} x$

Ex 10: $f(x)=x^{4}-x^{3}-2 x^{2}$

Ex 11: $f(x)=x^{5}+x^{3}-6 x$

2.3 ~ Polynomial and Synthetic Division

**Use synthetic division or long division to show that x is a zero of the equation.
Ex 1: Use Long Division: a) $\frac{4 x^{3}-8 x^{2}+x+3}{2 x-3}$
b) $\frac{3 x^{3}-16 x^{2}-72}{x-6}$

Ex 2: Use synthetic division: a) $\frac{4 x^{3}+16 x^{2}-23 x-15}{x+\frac{1}{2}} \quad$ b) $\frac{5-3 x+2 x^{2}-x^{3}}{x+1}$
**NOTE: You will not always get zero as a remainder! You only get zero if it is a \qquad .

Ex 3: Use synthetic division to find each function value of $f(x)=x^{6}-4 x^{4}+3 x^{2}+2$
a) $f(2)=$ \qquad b) $f(-1)=$ \qquad

Ex 4: List all the zeros of $6 x^{3}-19 x^{2}+16 x-4=0$ given $x=2$.
\qquad

Ex 5: List all the zeros of $x^{3}-x^{2}-13 x-3=0$ given $x=2-\sqrt{5} \rightarrow$ \qquad (always comes with conjugate)

Ex 6: A. Verify the given factors of the function f.
B. Find the remaining factors
C. List all real zeros of f.

Function:
$f(x)=6 x^{3}+23 x^{2}-39 x-140$

Factors:	Factors:
$(2 x-5)(x+4)$	Zeros:

**NOTE: If a quadratic does not factor, we should use the \qquad .

$$
X=
$$

Ex 7: Find the remaining zeros given one zero. $x^{3}-28 x-48=0 \quad x=6$

2.4 ~ Complex Numbers

Imaginary Unit " i ":
$i=$ \qquad $i^{2}=$ \qquad

Ex 1: Complete the following. What is the pattern that you find?
$i^{0}=1$

$$
i^{1}=
$$

\qquad

$$
i^{2}=
$$

\qquad
$i^{3}=$ \qquad
$i^{4}=$ \qquad
$i^{8}=$ \qquad
$i^{5}=$ \qquad
$i^{6}=$ \qquad
$i^{7}=$ \qquad
\qquad $i^{10}=$ \qquad $i^{11}=$ \qquad Simplify the following:
a) $i^{23}=$ \qquad
b) $i^{37}=$ \qquad
c) $i^{32}=$ \qquad

Complex numbers:

Standard Form:

Ex 2: Adding and Subtracting Complex Numbers
a) $(4+7 i)+(1-6 i)$
b) $(1+2 i)-(4+2 i)$
c) $3 i-(-2+3 i)-(2+5 i)$

Ex 3: Multiplying Complex Numbers
a) $4(-2+3 i)$
b) $(2+i)(4+3 i)$
c) $(3+2 i)^{2}$
d) $(3+2 i)(3-2 i)$

Complex Conjugates:

Ex 4: Writing the quotient of complex numbers in standard form $(a+b i)$.
a) $\frac{6}{i}$
b) $\frac{2}{3-i}$
c) $\frac{2+3 i}{4-2 i}$
d) $\frac{2}{1+i}-\frac{3}{1-i}$

Complex Solutions of Quadratic Equations

In section 2.2 we used the quadratic formula to find x -intercepts and often obtained a solution such as $\sqrt{-5}$, which meant no "real" solutions. By factoring out $i=\sqrt{-1}$, you can write the number in standard form:

$$
\sqrt{-5}=\sqrt{5(-1)}=\sqrt{5} \sqrt{-1}=5 i \quad 5 i \text { is considered the principal square root }
$$

Ex 5: Write the complex numbers in standard form.
a) $\sqrt{-3} \sqrt{-12}$
b) $\sqrt{-48}-\sqrt{-27}$
c) $(-1+\sqrt{-3})^{2}$

Ex 6) Use the quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ to solve the quadratic equation $5 x^{2}-4 x+7=0$.

2.5 ~ Zeros of Polynomial Functions

I. Writing the equation of functions given the roots: R_{1} and R_{2}.

Ex 1: Roots: 3, -2
$(x-\quad)(x-\quad)=0$
-OR-

Ex 2: Roots: $\frac{2}{3}, \frac{-3}{8}$

Ex 3: Roots: $1+2 i, 1-2 i$

EX 4: Roots: $1+\sqrt{3}, \quad 1-\sqrt{3}, \quad-2$
** Complex Roots come in Conjugate Pairs: $1+\sqrt{2}$ and \qquad 4-2i and \qquad , etc.

II. The Zeros of the Polynomial

To determine the possible Rational Zeros $=\frac{p}{q}=\frac{\text { all the factors of the constant term }}{\text { all the factors of the leading coefficient }}$
Ex 5: $f(x)=2 x^{3}+3 x^{2}-8 x+3 \quad$ degree $=$ \qquad , which means there are \qquad .
$\mathrm{p}=$ q

Ex 6: $f(x)=-10 x^{3}+15 x^{2}+16 x-12$
degree= \qquad , which means

Ex 7: Find all the zeros, given that $1+3 i$, is one of the given roots of: $f(x)=x^{4}-3 x^{3}+6 x^{2}+2 x-60$ If $\underline{1+3 i}$ is a factor, so is \qquad . How many zeros are we looking for? \qquad

Zeros: \qquad

Ex 8: Find the zeros: $f(x)=x^{5}+x^{3}+2 x^{2}-12 x+8$
a) List all the factors and b) list all the zeros.

Zeros: \qquad

Ex 9: Find all the zeros, given that $1-i \sqrt{3}$, is one of the given roots of: $f(x)=3 x^{3}-4 x^{2}+8 x+8$

Ex 10: Find the zeros: $f(x)=x^{4}-625$
a) List all the factors and b) list all the zeros.

Ex 11: Find the zeros: $f(x)=x^{3}-3 x^{2}+4 x-2$
a) List all the factors and b) list all the zeros.

Proving Upper and Lower Bounds

Ex. 12 Use synthetic division to verify the upper and lower bounds of the real zeros of \boldsymbol{f}.

$$
f(x)=2 x^{3}-3 x^{2}-12 x+8
$$

a) Upper $x=4$
b) lower $x=-3$

Ex. 13 Use synthetic division to verify the upper and lower bounds of the real zeros of \boldsymbol{f}.

$$
f(x)=2 x^{4}-8 x+3
$$

b) Upper $x=3$
b) lower $x=-4$

2.6 ~ Rational Functions

Rational function:

Ex 1: Find the domain of the following rational functions:
A. $f(x)=\frac{x+4}{x^{2}-9}$
B. $f(x)=\frac{x^{2}+5 x+4}{x^{3}+3 x^{2}-4 x-12}$

Asymptotes of a Rational Function

Let f be the rational function given by: $f(x)=\frac{N(x)}{D(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots . .}{b_{d} x^{d}+b_{d-1} x^{d-1}+\ldots . .}$

1. The graph of f has vertical asymptotes at the zeros of $D(x)$.
2. The graph of f has either one or no horizontal asymptote determined by comparing the degrees of $N(x)$ and $D(x)$.
a. If the degree of the numerator is the same as the degree of the denominator, the graph of f has the line $y=\frac{a_{n}}{b_{d}}$ as a horizontal asymptote. (The coefficients of leading term.)
b. If the degree of the numerator is less than the degree of the denominator, then the graph of f has the line $y=0$ as a horizontal asymptote. (The x-axis.)
c. If the degree of the numerator is the greater than the degree of the denominator, the graph has no horizontal asymptote. (It may have a slant asymptote)

Horizontal and Vertical Asymptotes

For the graph at the left: $f(x)=\frac{2 x+1}{x+1}$, there are two asymptotes.

Vertical Asymptote (Domain)
Horizontal Asymptote Degree of top (look at leading $=$ \qquad so $y=$ \qquad
Degree of bottom coefficients)

Ex 2: Find the domain, list any holes, horizontal and vertical asymptotes of the graph of each rational function.
A. $f(x)=\frac{3 x+1}{x^{2}+x-2}$
B. $f(x)=\frac{3 x^{2}-5}{2 x^{2}-9 x+7}$

Domain: \qquad
Vertical Asymptote(s): \qquad
Domain: \qquad
Vertical Asymptote(s): \qquad
Horizontal Asymptote:
Horizontal Asymptote: \qquad
C. $f(x)=\frac{2 x-4}{x^{2}-4}$
D. $f(x)=\frac{3 x^{2}+5 x}{1 x-x^{2}}$

Domain: \qquad Domain: \qquad
Vertical Asymptote(s): \qquad Vertical Asymptote(s): \qquad
Horizontal Asymptote: \qquad Horizontal Asymptote: \qquad
Hole(s): \qquad Hole(s): \qquad

Oblique (Slant) Asymptote

State the domain of the function and identify any holes, vertical, horizontal, or slant asymptotes.
A. $f(x)=\frac{x^{3}+x^{2}}{x^{2}-1}$
B. $f(x)=\frac{x^{2}-x+4}{x+1}$

2.6 ~ Graphing Rational Functions

For each function below:
(a) State the domain
(b) Identify any vertical, horizontal, or slant asymptotes
(c) Identify all intercepts
(d) Plot additional solutions as needed to sketch the graph
A) $f(x)=\frac{t^{2}-2 t-8}{t^{2}-9}$

B) $f(x)=\frac{2 x^{2}-5 x-3}{x-2}$

Ex 5: Graph the following rational function:
A) $f(x)=\frac{x^{2}-4}{x^{2}-3 x+2}$

Domain: \qquad
x-intercepts: \qquad _,
y - intercepts: \qquad
Vert: \qquad
Horizontal: \qquad
Slant: \qquad
Holes: \qquad
B) $f(x)=\frac{x^{2}-16}{x-4}$

Domain: \qquad
x-intercepts: \qquad _,
y - intercepts: \qquad
Vert: \qquad
Horizontal: \qquad
Slant: \qquad
Holes: \qquad

