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Abstract 

This paper describes capabilities of a model-

based analysis and automatic test generation 

system. Model checking ensures that automatically 

generated code is free from contradictions that are 

difficult to identify manually in complex models. It 

generates test vectors and test drivers that can 

execute against model simulations or auto-

generated code, and produces test sequence vectors 

for testing dynamic system behavior that support 

feedback, such as integrators or time delays, which 

are common in control systems. The paper briefly 

describes tool qualification support, and processes 

for using this model-based testing tool with 

modeling and code coverage tools to produce 

verification evidence that meets the FAA standards 

for certification of these systems, while reducing 

the verification costs by as much as 50%. 

Introduction 

A growing number of mission critical systems 

are being developed using model-based 

development systems. These systems support 

complex modeling with simulation capabilities that 

help modelers better understand the dynamic 

aspects of the system, as well as code generation 

capabilities for various environments. However, 

when used in flight critical applications, there is 

still a need to provide a level of independent 

verification. The cost to comply with guidelines 

such as the Federal Aviation Administration’s 

(FAA) DO-178B can contribute from 50 to 70% of 

the overall effort and cost of development. 

To address this need the Test Automation 

Framework (TAF) approach for model-based 

analysis and test automation was developed. TAF 

integrates various government and commercially 

available model development and test generation 

tools to support defect prevention and automated 

testing of systems and software as shown in Figure 

1. TAF supports modeling methods that focus on 

representing requirements, like the Software Cost 

Reduction (SCR) method, as well as methods that 

focus on representing design information, like 

Simulink® or MATRIXx, which supports control 

system modeling for aircraft and automotive 

systems. 
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Figure 1. TAF Integrated Components Background



Through the use of model translation, 

requirement-based or design-based models are 

converted into a form where T-VEC, the test 

generation component of TAF, produces tests 

vectors. Test vectors include inputs as well as the 

expected outputs with requirement-to-test 

traceability information. T-VEC also supports test 

driver generation, requirement test coverage 

analysis, and test results checking and reporting. 

The test driver mappings and test vectors are inputs 

to the test driver generator to produce test drivers. 

The test drivers are then executed against the 

implemented system during test execution. TAF is 

also integrated with requirement management tools, 

such as DOORS to provide full traceability from a 

DOORS requirement to a generated test case. 

Additionally, TAF is also integrated with code 

coverage-based tools such as LDRA that allows the 

generated tests to be measured for code-based tests 

coverage. 

Background 

The core capabilities of TAF were developed 

in the late 1980s and proven through use in support 

of FAA certifications for flight critical avionics 

systems [1]. The approach supports requirement-

based test coverage mandated by the FAA with 

significant life cycle cost savings [2; 3; 4]. 

The process and tools described in this paper 

have been used for modeling and testing systems, 

software integration, software unit, and 

hardware/software integration functionality. It has 

been applied to critical applications in medical and 

aerospace, supporting automated test driver 

generation in most languages (e.g., C, C++, Java, 

Ada, Perl, PL/I, SQL), as well as in proprietary 

languages, and test environments. The T-VEC tools 

have tool qualification packages that can be used to 

support FAA and FDA certifications. The 

qualification packages are compliant with FAA 

Software Approval Guidelines, Qualification Of 

Software Tools Using RTCA/DO-178B [5]. 

Requirement-based Models and 

Automatic Test Generation 

This section briefly describes the typical 

scenario for using the TAF to support requirement-

based modeling and automatic test generation. A 

model is developed for a components requirements 

and interfaces, and tests are generated from it. The 

test cases are then automatically transformed into 

test scripts (aka test drivers) for automated test 

execution. Test engineers work in parallel with 

requirement and design engineers to refine the 

requirements and model them to support automated 

test design and test execution. The following 

outlines the process, as depicted in Figure 2:  

1. Working from whatever requirements artifacts are 

available, testers or modelers create models using 

a tool based on the SCR method [6], such as the 

SCRtool [7] or T-VEC Tabular Modeler (TTM). 

Tables in the model represent each output, 

specifying the relationship between input values 

and resulting output values. Models are 

automatically checked for inconsistencies. The 

tester interacts with the requirements engineers or 

analysts to validate the model as a complete and 

correct interpretation of the requirements. 

2. The tester maps the variables (inputs and outputs) 

of the model to the interfaces of the system in 

object mappings. The nature of these interfaces 

depends on the level of testing performed. At the 

system level, the interfaces may include graphical 

user interface widgets, database APIs, or hardware 

interfaces. At the lowest level, they can include 

class interfaces or library APIs. The tester uses 

these object mappings with a test driver pattern to 

support automated test script generation. The tester 

works with the designers to ensure the validity of 

the interface mappings from model to 

implementation. 

3. The T-VEC tool generates a set of test vectors for 

testing each (alternative) path in the model. These 

test vectors include test inputs and expected test 

outputs, as well as model-to-test traceability. 

4. T-VEC generates the test drivers using the object 

mappings and schema. A schema is created once 

for each test environment. The schema defines the 

algorithmic pattern to carry out the execution of 

the test cases. The test driver executes in the target 

or host environment. The test drivers typically are 

designed as an automated test script that sets up 

the test inputs enumerated in each test vector, 

invokes the element under test, and captures the 

results.  



5. Finally, T-VEC analyzes the test results. It 

compares the actual test results to the expected 

results and highlights any discrepancies in a 

summary report. 

This conceptual process has been applied to 

modeling many different types of application in 

various application domains. More details on the 

process can be found in “Interface-Driven, Model-

Based Test Automation,” [8].
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Figure 2. Model-Based Test Automation 

Automated Test Generation, Execution, and 

Coverage 

TAF uses the model to traverse the logical 

paths through the program, determining the 

locations of boundaries defined by constraints in the 

model and identifying reachability problems, where 

a particular thread through a model may not be 

achievable in the program itself. TAF uses test 

selection criteria based on domain testing and 

equivalence classes represented by the model 

constraints. These tests have been shown to uncover 

errors not identified by manually developed tests 

cases. The test vectors are used to verify the code 

that implements the model and to identify three 

main categories of model error: 

• Mathematical error, e.g. division by a 

domain that spans zero, such as +/-

1.0e+03; the division operation will be 

flagged as being a potential divide-by-

zero hazard; 

• Range overflow/underflow, i.e. signals 

which at some point in the model have 

values outside the specified bounds of 

the type of that signal;  

• Logical contradiction, e.g. (x > 0) & (x 

< 0). Program errors often occur at 

boundaries or equivalence classes, 

logical points in software at which 

decisions are made [9; 10; 11; 12]. 

T-VEC generates input test vectors and 

predicts output results from the model. The tool 

subsequently generates a test harness to wrap the 

implementation code or interface to a system under 

test. Executing the test harness verifies that the 

input test vectors, when applied to the 

implementation, give the predicted output. Either an 

autocode generator or a programmer can provide 

the tested implementation code. T-VEC can provide 

test coverage measurements of the implementation 

in terms meaningful to the model. 

Another benefit is that the test vectors can be 

exported to a dynamic test code tool, such as LDRA 



Testbed, to obtain coverage statistics that are 

meaningful measurements in implementation terms 

(e.g., 100% modified condition decision coverage 

(MC/DC) code coverage). Thus, the test vectors can 

be used for unit and integration testing of the 

implementation and this can also provide further 

evidence to support the implementation verification. 

Improved Requirements 

Another unexpected benefit achieved is better 

understanding of the requirements, improved 

consistency, completeness, and most importantly, 

early requirement defect identification and removal. 

Models provide a means for stakeholders to better 

understand the requirements and assist in 

recognizing omissions. Tests automatically derived 

from the model support requirement validation 

through manual inspection or execution within 

simulation or host environments. 

In order to be testable, a requirement must be 

complete, consistent and unambiguous. While any 

potential misinterpretation of the requirement due to 

incompleteness is a defect, TAF focuses on another 

form of requirement defect, referred to as a 

contradiction or feature interaction defect. These 

types of defects arise from inconsistencies or 

contradictions within requirements or between 

them. Such defects can be introduced when more 

than one individual develops or maintains the 

requirements. Often the information necessary to 

diagnose requirement contradictions spans many 

pages of one or more documents. Such defects are 

difficult to identify manually when requirements are 

documented in informal or semi-formal manners, 

such as textual documents. Although rigorous 

manual inspection techniques have been developed 

to minimize incompleteness and contradictions, 

there are practical limits to their effectiveness. 

These limits relate to human cognition and depend 

on the number and experience of people involved. 

TAF supports more thorough requirement 

testability analysis, allowing developers to 

iteratively refine and clarify models until they are 

free of defects. 

Several companies, as described below, have 

recognized how defect discovery using model-

based test automation is both more effective and 

more efficient than using only manual inspection 

methods. One pilot study, conducted by a company, 

comparing formal Fagan inspections with TAF 

requirement verification, revealed that Fagan 

inspections uncovered 33 defects. In comparison, 

TAF uncovered all 33 of the Fagan inspection 

defects plus 56 more. Attempting to repeat the 

Fagan inspection did not improve its results. The 

improved defect detection of TAF prevented nearly 

two-thirds more defects from entering the rest of the 

development lifecycle. 

Rockwell Collins had similar results when they 

applied TAF to a Flight Guidance System (FGS) for 

a General Aviation class aircraft [13]. As reflected 

in Figure 3, the FGS was first specified by hand 

using the Consortium Requirement Engineering 

Method (CoRE). It was then inspected, and about a 

year later it entered into a tool supporting the SCR 

method provided by the Naval Research Laboratory 

(NRL). Despite careful review and correction of 33 

errors in the CoRE model, the SCRtool’s analysis 

capabilities revealed an additional 27 errors. 

Statezni later used an early TAF translator and the 

T-VEC toolset to analyze the SCR model, generate 

test vectors and test drivers [3]. The test drivers 

were executed against a java implementation of the 

FGS requirements and revealed six errors. Offutt 

applied his tool to the FGS model and found two 

errors [14]. The latest TAF toolset, described in this 

paper, identified 25 errors more than the original 27 

errors. 
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Figure 3. Model Evolution and Analysis 

Following manual test generation practices, 

defects are not identified until late in the process, 

sometimes after release, when they are most 

expensive to fix. By automating test generation 

based on models, defects are found earlier in the 



process and faster. The rate of defect discovery 

increases early in the process, but quickly curtails. 

Many defects are found in the requirements phase, 

before they propagate to later development phases. 

Defect prevention is most effective during the 

requirements phase when it costs two orders of 

magnitude less than after the coding process. 

Figure 4 represents the conceptual differences 

between manual and automatic test generation. The 

existing process of discovering and eliminating 

software defects is represented by the curve labeled 

“Old” while the effects of early defect discovery 

aided by automation is illustrated by the trend curve 

labeled “New.” Industrial applications have 

demonstrated that TAF directly supports early 

defect identification and defect prevention through 

the use of requirement testability analysis [4]. 
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Figure 4. Early Defect Identification 

Defect Analysis Concepts 

Requirement clarification during model 

development can uncover requirement problems 

such as ambiguities and inconsistencies. However, 

subtle errors or errors resulting from inherent 

system complexity can hide defects in a model or 

implementation. This section briefly describes 

defect types and how automated model analysis 

identifies them.  

Defect Types 

There are two types of errors: computation 

errors and domain errors. As defined by Howden, a 

computation error occurs when the correct path 

through the program is taken, but the output is 

incorrect due to faults in the computation along the 

path. A domain error occurs when an incorrect 

output is generated due to executing the wrong path 

through a program [11]. Such errors can be 

introduced in a model as a result of errors in the 

requirements or during the requirement clarification 

process.  

Domain Error Example 

The concept of a program path and its related 

output computation is analogous to a requirement or 

design thread of a model. A domain error for a 

model thread means that there is no input set that 

satisfies the model constraints. Consider the 

following trivial example:

x: Integer with domain from 0 to 10

y: Integer with domain from 0 to 10

z: Integer with domain from 0 to 10

If there is a requirement that 

specifies 

z = 0 when

x < 3 AND 

y < 4 AND 

x + y > 7

x < 3 & y < 4

then 

maximum value for x < 3 is 2 

maximum value for y < 4 is 3

minimum value for x + y > 7 is 8

x

(10,10)

(0,0)

y

x < 3

y < 4

x + y > 7  

x < 3 & y < 4            

Constraint Key

x < 3x < 3

y < 4y < 4

x + y > 7  x + y > 7  

x < 3 & y < 4            x < 3 & y < 4            

Constraint Key

 
Figure 5. Example of Inconsistent Constraints



The region represented by the intersection of x 

& y does not overlap the constraint region defined 

by x + y > 7. The constraint expression is 

contradictory and cannot be satisfied. The 

contradiction results in a domain error, because the 

variable z will never be assigned a value of 0 

through this requirement. Thus, the requirement is 

untestable. Real-world problems typically include 

complex constraints that span many modules, 

subsystems or components of an application. Model 

problems can be hidden when constraints reference 

common variables that are distributed throughout 

several model subsystems as reflected in Figure 6. 

In these situations it can be difficult to isolate these 

types of errors through manual processes. 

Automated model analysis provides a tool for 

locating these errors. 
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Figure 6. Constraints Span Hierarchy of 

Subsystems 

Computational Error 

Computational errors can result from various 

root causes such as an expression with incorrect 

variables, incorrect operators (+ instead of -), 

missing or incorrect parenthesis, or incorrect 

constants. Erroneous expressions can result in range 

errors, either underflows or overflows for the data 

type of the object. During test generation, low-

bound and high-bound values are selected for the 

variables used in the computation in an attempt to 

stimulate range errors that can be traced to an 

expression with a defect. Blackburn provides 

examples of several computational errors that result 

from common errors in developing expressions for 

scaled arithmetic [15]. 

Design-based Models and Verification 

For design-based modeling approaches, the 

process resembles the illustration shown in Figure 

7. Simulink/Stateflow and MATRIXx are hybrid, 

control system modeling and code generation tools. 

In this scenario, models undergo translation and 

static analysis to verify their integrity. The T-VEC 

system can identify model defects, and model 

checking ensures all paths through the model are 

valid, which means that code generated from the 

model is reachable. Without this capability, models 

can be used to generate code automatically, but the 

results of executing that code under certain 

conditions are undefined. This capability provides 

increased confidence as to the integrity of the 

model. Model problems are reported to the engineer 

responsible for constructing the model for 

immediate correction. Once modeling is complete, 

the model is used as the basis for developing tests. 

Through dynamic analysis of the system, anomalies 

in the model and implementation can be identified 

and corrected. 

Design models used for simulation and/or 

automatic code generation often include input-to-

output relationships involving multiple cycles of 

execution. This is due to the use of primitive 

operators that have “state memory” feedback 

semantics in the manner of sequential logic designs 

described above (e.g., the TimeDelay block in 

Simulink). These types of operators are often used 

to design digital signal processing applications such 

as signal frequency sensitive filters and feedback-

loop control law mechanisms for digital control 

applications. Such applications are very dependent 

on exhibiting a dynamic response to their input 

signal values. 

When an application’s design includes dynamic 

response characteristics, it is often difficult to 

predict the expected output value response for a 

given set of input values when only considering a 

single cycle’s inputs. Consequently, verifying the 

correct operation of such a design is a non-trivial 

task and compiling verification evidence of proper 

functionality with traditional software testing 

approaches can be problematic. However, 

verification evidence typical of these approaches is 

often required by customers and certifying 

agencies, such as the FAA in the commercial 

aerospace domain. 
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Figure 7. Simulink/MATRIXx Modeling Process 

Traditional software testing approaches are 

generally centered around developing and applying 

suites of test cases, where each test case is 

comprised of a set of input values and an expected 

output value. These values are geared towards 

verifying the required static response of a system. 

The system under test (SUT) is initialized with the 

input values and is executed from a specific start 

point to specific end point in the application’s 

instruction space. The actual value of one or more 

output variables is extracted and compared to the 

expected output values, and the results of these 

comparisons determine the pass or fail status of the 

test. Each such test is the examination of a single 

input-to-output execution cycle, essentially one 

state transition of the overall system. Tests of this 

type are expected to be repeatable any number of 

times in sequence – the same input values expected 

to result in the same output values. However, the 

use of operators with “state memory” can render 

such single state transition test cases totally non-

repeatable. Each successive execution of the test 

can result in a unique output result. It should be 

apparent that such an approach to testing is 

inadequate at best for fully verifying the time-wise 

non-linear or state-machine-based characteristics 

found in such models.  

It is possible to test a SUT’s dynamic response 

using the “test case” approach by modeling “state 

memory” variables as additional input variables. 

However, it can be difficult to determine what 

values these “state memory” inputs should be for a 

given test case because they depend directly on the 

history of inputs. The complexity of the mechanism 

providing such “state-memory” semantics, and the 

mathematical relationships characterizing system 

response in terms of inputs and this state memory, 

are primarily responsible for this difficulty.  

The requirements governing dynamic response 

are often expressed in terms of output value 

tendencies, such as rise time, over shoot, and 

settling time rather than functional value mappings 

between a single input value set and an associated 

output value.  

Requirements describing a system’s static 

response can be formally expressed in terms of pre-

condition/post-condition pairs. The pre-condition 

characterizes the system states under which the 

post-condition’s input-values-to-output-value 



mapping is required to hold. The requirements 

governing a given output can be said to be 

“complete” if there is at least one pre-

condition/post-condition pair describing the value 

of the output in terms of input values for all points 

in time for all modes of operation of the system. 

They can be said to be “consistent” if there is at 

most only one such pre-condition/post-condition 

pair for a given output variable for any given point 

in time.  

A set of test cases is associated with a 

complete and consistent set of pre-condition/post-

condition pairs that can be shown to produce 

MC/DC-complete requirements-based tests. A suite 

of such test cases, when used to drive an 

implementation intended to satisfy these 

requirements, provides sufficient evidence that the 

implementation does indeed effectively satisfy 

them, at least from a functional point of view. The 

T-VEC system has demonstrated that the automatic 

generation of a set of such tests can be 

accomplished.  

Testing a Model With Feedback Semantics 

An example of a model that uses both time-

wise non-linear computational feedback elements as 

well as state-machine-like elements is the Flow 

Control model shown in Figures 8, 9, and 10.  

The Flow Control Model design employs a 

simple first-order lag filter (temperatureSensor 

subsystem), applied to the temperature input data 

signal In1, and a small “hysteresis” based threshold 

detection state machine (flowControlLogic 

subsystem). Each of the two primary subsystems 

includes a TimeDelay primitive operator block. 

This operator is used to retain the value of an 

intermediate computation result from one cycle of 

execution and provide that same value as an input 

to the next cycle’s computation. The TimeDelay 

block provides a generic closed-loop feedback 

mechanism useful for constructing simple state 

machines and also for implementing digital signal 

processing algorithms such as filters and digital 

control law algorithms.  

The required operation of the Flow Control 

model is the following: 

1. The flowControlLogic state machine (Figure 9) is 

required to output the value of 0 during the current 

cycle if it had output a 0 during the previous cycle 

and the value being output from the 

temperatureSensor subsystem during the current 

cycle is less than or equal to 180 degrees. When 

flowControlLogic outputs a 0 during the current 

cycle the flowControl system should also output 

the value of 0, regardless of the specific value 

being input to, and output from, the 

temperatureSensor subsystem. 

 

Figure 8 - Flow Control Model



2. The flowControlLogic state machine is required to 

output the value of 1 during the current cycle if the 

value output from the temperatureSensor 

subsystem during the current cycle is greater than 

180 degrees, no matter what value it output during 

the previous cycle. While flowControlLogic 

outputs the value of 1, the main flowControl 

system is required to output a value based on the 

value produced by temperatureSensor, after being 

scaled through addition and multiplication 

operations. 

3. The flowControlLogic state machine is required to 

output the value of 1 during the current cycle if its 

previous cycle output was 1 and the value being 

output from the temperatureSensor subsystem 

during the current cycle is greater than or equal to 

120 degrees. While flowControlLogic outputs the 

value of 1, the main flowControl system is 

required to output a value based on the value being 

output by temperatureSensor after being scaled 

through addition and multiplication operations. 

4. The flowControlLogic state machine is required to 

output the value of 0 during the current cycle if its 

previous cycle output was 1 and the current value 

being output from the temperatureSensor 

subsystem during the current cycle is below 120 

degrees. This results in the main flowControl 

system outputting the value of 0 during the current 

cycle, regardless of the specific value being output 

by temperatureSensor. 

5. The temperatureSensor subsystem block (Figure 

10) is required to provide simple first order 

filtering. If the filtered value of temperature is 

between the saturation limits of –100.0 to 300.0 

degrees, the output is required to be equal to a 

“filtered” temperature value. This “filtering” 

results in an averaging effect, preventing spurious 

“noise” spikes in the value of temperature from 

being passed through to the flowControlLogic 

state machine and thus causing it to trigger an 

undesired state change. This effect can be seen in a 

graph of the dynamic input response to a standard 

step input signal in Figure 11. 

6. The temperatureSensor subsystem block is 

required to saturate at low bound and high bound 

value limits. If the filtered value of the temperature 

signal input is below –100.0 degrees, 

temperatureSensor will output –100.0 degrees 

(6a). If the filtered value of the temperature signal 

input is above 300.0 degrees, temperatureSensor 

will output 300.0 degrees (6b). (Note: in the case 

of the overall Flow Control model (Figure 8), the 

flowControlLogic state machine will prevent any 

value of filtered temperature below 120 degrees 

from ever being output from the system.)  

 

Figure 9 – FlowControlLogic State Machine 



 

Figure 10 - First Order Filter

From this description of the required 

operational semantics of the Flow Control model, it 

should be clear that the traditional black-box testing 

approach that sets input values, executes the code 

through one execution cycle, extracting output 

values, and comparing the results, would be 

inadequate. For example, the dynamic response 

curve of Figure 11 clearly indicates that it takes 

nearly 0.4 of a second (with a sample period of 0.1 

seconds) for the output of temperatureSensor to rise 

to from 0.0 to its full value of 100.0 degrees in 

response to a step input signal of 100 degrees that 

takes place at t=0.0 in the simulation run 

 

Figure 11 - temperatureSensor Response to Step 

Input 

To verify that a given implementation of this 

model correctly provides such a response to a step 

input signal, one would need to test the 

implementation’s response over a period of time, 

(i.e., numerous cycles of execution). Consequently, 

test cases that include an association between a 

single set of input values and a single expected 

output value cannot adequately verify such 

performance. What is required is a new concept in 

specification-based software test generation: test 

sequence vectors (TSVs).  

Informally, a TSV is a test specification that 

includes all of the input values for a sequence of 

execution cycles (i.e., invocations) of the system 

being tested. A TSV includes values for each 

independent input variable (e.g. temperature, in the 

Flow Control model) for each invocation of the 

model. It also contains initial condition values for 

the closed-loop feedback variables used by the first 

invocation in the sequence. A TSV includes 

expected output values for each individual system 

invocation in the sequence, as well as the final 

expected output values for the overall sequence. A 

TSV for a 4-step sequence of the flowRegulator 

model is conceptually depicted by Figure 12. This 

represents 4 sample periods of execution of the 

cyclic flowRegulator model. Sequence values can 

be specified explicitly or using functions, such as 

step, ramp and impulse. 

Process for High Integrity Systems 

Depending on the software level of the system 

being considered for certification, the decision flow 

shown in Figure 13 may be required to provide 

evidence that the model is defect free and that the 

generated tests provide the required level of code 

coverage. Details associated with several of these 

steps are provided below. 
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Figure 12. Sequences Includes Feedback of Unit 

Delay 

The process is a follows: 

• Construct a model in Simulink, 

MATRIXx, or TTM. 

• Check model for defects and iteratively 

correct the model if there are defects. 

• Construct the code. This can be a 

manual process or supported using 

automatic code generation capabilities 

supported by tools like Simulink and 

MATRIXx. 

• Generate the tests. 

• Execute the tests through instrumented 

code.  

• Check to ensure that the tests provide 

adequate coverage (e.g., MC/DC 

coverage); if adequate coverage is not 

achieved, additional tests must be 

generated. 

• Check to ensure that all tests pass. 

• Execute tests against target code. 

• Check to ensure that all tests pass. 

• If tests do not pass, perform test failure 

analysis, and correct the code or model.

Generate

tests

ModelModel

CodeCode

Model
defect?yes

no

Test
instrumented

code

Meets test
coverage?

Test

code

yes
All tests
pass?

no

yes

All tests
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Success

Code
defect?
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no
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Figure 13. Verification Decision Flow

Summary 

A growing number of mission critical systems 

are being developed using model-based 

development systems. These systems support 

complex modeling with simulation capabilities that 

help modelers better understand the dynamic 

aspects of the system, as well as code generation 

capabilities for various environments. However, 

when used in flight critical applications, there is 

still a need to provide a level of independent 

verification and the cost to comply with guidelines 

such as the FAA’s DO-178B can contribute from 50 



to 70% of the overall effort and cost of 

development. 

The paper describes how the use of model-

based development and test automation can be 

effectively used in the development and verification 

of systems that must meet the highest standards of 

safety, reliability, and quality. It describes 

capabilities of a model-based analysis and 

automatic test generation system. The model 

analysis identifies defects in a model. This type of 

model checking ensures that automatically 

generated code is free from contradictions that are 

difficult to identify manually in complex 

hierarchical models. It generates test vectors and 

test drivers providing modified condition decision 

(MCDC) level test coverage that can execute 

against model simulations or auto-generated code. 

It also produces test sequence vectors for testing 

dynamic system behavior that support feedback that 

are common in control system models. The paper 

briefly describes tool qualification support, and 

describes recommended processes for using this 

model-based testing tool with modeling and other 

independent code coverage tools to produce 

verification evidence that meets the FAA standards 

for certification of these systems, while reducing 

the verification costs by as much as 50%. 
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