
REDUCING COST OF HIGH INTEGRITY SYSTEMS THROUGH MODEL-

BASED TESTING

Robert D. Busser, Mark R. Blackburn, Aaron M. Nauman, Travis R. Morgan

Software Productivity Consortium/T-VEC Technologies, Herndon, VA

Abstract

This paper describes capabilities of a model-

based analysis and automatic test generation

system. Model checking ensures that automatically

generated code is free from contradictions that are

difficult to identify manually in complex models. It

generates test vectors and test drivers that can

execute against model simulations or auto-

generated code, and produces test sequence vectors

for testing dynamic system behavior that support

feedback, such as integrators or time delays, which

are common in control systems. The paper briefly

describes tool qualification support, and processes

for using this model-based testing tool with

modeling and code coverage tools to produce

verification evidence that meets the FAA standards

for certification of these systems, while reducing

the verification costs by as much as 50%.

Introduction

A growing number of mission critical systems

are being developed using model-based

development systems. These systems support

complex modeling with simulation capabilities that

help modelers better understand the dynamic

aspects of the system, as well as code generation

capabilities for various environments. However,

when used in flight critical applications, there is

still a need to provide a level of independent

verification. The cost to comply with guidelines

such as the Federal Aviation Administration’s

(FAA) DO-178B can contribute from 50 to 70% of

the overall effort and cost of development.

To address this need the Test Automation

Framework (TAF) approach for model-based

analysis and test automation was developed. TAF

integrates various government and commercially

available model development and test generation

tools to support defect prevention and automated

testing of systems and software as shown in Figure

1. TAF supports modeling methods that focus on

representing requirements, like the Software Cost

Reduction (SCR) method, as well as methods that

focus on representing design information, like

Simulink® or MATRIXx, which supports control

system modeling for aircraft and automotive

systems.

Execution and

Results

Analysis

Model-based

Coverage

Analysis

Test

Generation

T-VEC Test Vector

Generation System

Test Driver

Generation

Modeling

Environment

MATRIXx

T-VEC

Tabular Modeler
Simulink

Functional Tabular Control System/State Machine/Hybrids

T-VEC Graphical

User Interface

Console

Interface

Requirement-based Design-based

Requirement

Management

Code

Coverage

Figure 1. TAF Integrated Components Background

Through the use of model translation,

requirement-based or design-based models are

converted into a form where T-VEC, the test

generation component of TAF, produces tests

vectors. Test vectors include inputs as well as the

expected outputs with requirement-to-test

traceability information. T-VEC also supports test

driver generation, requirement test coverage

analysis, and test results checking and reporting.

The test driver mappings and test vectors are inputs

to the test driver generator to produce test drivers.

The test drivers are then executed against the

implemented system during test execution. TAF is

also integrated with requirement management tools,

such as DOORS to provide full traceability from a

DOORS requirement to a generated test case.

Additionally, TAF is also integrated with code

coverage-based tools such as LDRA that allows the

generated tests to be measured for code-based tests

coverage.

Background

The core capabilities of TAF were developed

in the late 1980s and proven through use in support

of FAA certifications for flight critical avionics

systems [1]. The approach supports requirement-

based test coverage mandated by the FAA with

significant life cycle cost savings [2; 3; 4].

The process and tools described in this paper

have been used for modeling and testing systems,

software integration, software unit, and

hardware/software integration functionality. It has

been applied to critical applications in medical and

aerospace, supporting automated test driver

generation in most languages (e.g., C, C++, Java,

Ada, Perl, PL/I, SQL), as well as in proprietary

languages, and test environments. The T-VEC tools

have tool qualification packages that can be used to

support FAA and FDA certifications. The

qualification packages are compliant with FAA

Software Approval Guidelines, Qualification Of

Software Tools Using RTCA/DO-178B [5].

Requirement-based Models and

Automatic Test Generation

This section briefly describes the typical

scenario for using the TAF to support requirement-

based modeling and automatic test generation. A

model is developed for a components requirements

and interfaces, and tests are generated from it. The

test cases are then automatically transformed into

test scripts (aka test drivers) for automated test

execution. Test engineers work in parallel with

requirement and design engineers to refine the

requirements and model them to support automated

test design and test execution. The following

outlines the process, as depicted in Figure 2:

1. Working from whatever requirements artifacts are

available, testers or modelers create models using

a tool based on the SCR method [6], such as the

SCRtool [7] or T-VEC Tabular Modeler (TTM).

Tables in the model represent each output,

specifying the relationship between input values

and resulting output values. Models are

automatically checked for inconsistencies. The

tester interacts with the requirements engineers or

analysts to validate the model as a complete and

correct interpretation of the requirements.

2. The tester maps the variables (inputs and outputs)

of the model to the interfaces of the system in

object mappings. The nature of these interfaces

depends on the level of testing performed. At the

system level, the interfaces may include graphical

user interface widgets, database APIs, or hardware

interfaces. At the lowest level, they can include

class interfaces or library APIs. The tester uses

these object mappings with a test driver pattern to

support automated test script generation. The tester

works with the designers to ensure the validity of

the interface mappings from model to

implementation.

3. The T-VEC tool generates a set of test vectors for

testing each (alternative) path in the model. These

test vectors include test inputs and expected test

outputs, as well as model-to-test traceability.

4. T-VEC generates the test drivers using the object

mappings and schema. A schema is created once

for each test environment. The schema defines the

algorithmic pattern to carry out the execution of

the test cases. The test driver executes in the target

or host environment. The test drivers typically are

designed as an automated test script that sets up

the test inputs enumerated in each test vector,

invokes the element under test, and captures the

results.

5. Finally, T-VEC analyzes the test results. It

compares the actual test results to the expected

results and highlights any discrepancies in a

summary report.

This conceptual process has been applied to

modeling many different types of application in

various application domains. More details on the

process can be found in “Interface-Driven, Model-

Based Test Automation,” [8].

Global init;

Forall tests

init target;

set inputs;

execute SUT;

get outputs;

store output;

endforall

Test Vector
Generator

Test Driver
Generator

TAF Model
Translator

Model

Test Environment

Tester

(Modeler)

Requirements

Engineer

Designer/

Implementer

Design

spec

Requirements

specification

Test Result
Analyzer

Test

Analysis

Test results

compared

against

expected

results

Test Script is Generated

from Translated Model

and Generated Tests

Test engineer builds

model to capture

required behavior and

logical variations of data

and control

Test driver schemas

define a pattern for

generating test scripts

Test Driver

Object

mapping

Schema

Test Driver

Object

mapping

Schema

Figure 2. Model-Based Test Automation

Automated Test Generation, Execution, and

Coverage

TAF uses the model to traverse the logical

paths through the program, determining the

locations of boundaries defined by constraints in the

model and identifying reachability problems, where

a particular thread through a model may not be

achievable in the program itself. TAF uses test

selection criteria based on domain testing and

equivalence classes represented by the model

constraints. These tests have been shown to uncover

errors not identified by manually developed tests

cases. The test vectors are used to verify the code

that implements the model and to identify three

main categories of model error:

• Mathematical error, e.g. division by a

domain that spans zero, such as +/-

1.0e+03; the division operation will be

flagged as being a potential divide-by-

zero hazard;

• Range overflow/underflow, i.e. signals

which at some point in the model have

values outside the specified bounds of

the type of that signal;

• Logical contradiction, e.g. (x > 0) & (x

< 0). Program errors often occur at

boundaries or equivalence classes,

logical points in software at which

decisions are made [9; 10; 11; 12].

T-VEC generates input test vectors and

predicts output results from the model. The tool

subsequently generates a test harness to wrap the

implementation code or interface to a system under

test. Executing the test harness verifies that the

input test vectors, when applied to the

implementation, give the predicted output. Either an

autocode generator or a programmer can provide

the tested implementation code. T-VEC can provide

test coverage measurements of the implementation

in terms meaningful to the model.

Another benefit is that the test vectors can be

exported to a dynamic test code tool, such as LDRA

Testbed, to obtain coverage statistics that are

meaningful measurements in implementation terms

(e.g., 100% modified condition decision coverage

(MC/DC) code coverage). Thus, the test vectors can

be used for unit and integration testing of the

implementation and this can also provide further

evidence to support the implementation verification.

Improved Requirements

Another unexpected benefit achieved is better

understanding of the requirements, improved

consistency, completeness, and most importantly,

early requirement defect identification and removal.

Models provide a means for stakeholders to better

understand the requirements and assist in

recognizing omissions. Tests automatically derived

from the model support requirement validation

through manual inspection or execution within

simulation or host environments.

In order to be testable, a requirement must be

complete, consistent and unambiguous. While any

potential misinterpretation of the requirement due to

incompleteness is a defect, TAF focuses on another

form of requirement defect, referred to as a

contradiction or feature interaction defect. These

types of defects arise from inconsistencies or

contradictions within requirements or between

them. Such defects can be introduced when more

than one individual develops or maintains the

requirements. Often the information necessary to

diagnose requirement contradictions spans many

pages of one or more documents. Such defects are

difficult to identify manually when requirements are

documented in informal or semi-formal manners,

such as textual documents. Although rigorous

manual inspection techniques have been developed

to minimize incompleteness and contradictions,

there are practical limits to their effectiveness.

These limits relate to human cognition and depend

on the number and experience of people involved.

TAF supports more thorough requirement

testability analysis, allowing developers to

iteratively refine and clarify models until they are

free of defects.

Several companies, as described below, have

recognized how defect discovery using model-

based test automation is both more effective and

more efficient than using only manual inspection

methods. One pilot study, conducted by a company,

comparing formal Fagan inspections with TAF

requirement verification, revealed that Fagan

inspections uncovered 33 defects. In comparison,

TAF uncovered all 33 of the Fagan inspection

defects plus 56 more. Attempting to repeat the

Fagan inspection did not improve its results. The

improved defect detection of TAF prevented nearly

two-thirds more defects from entering the rest of the

development lifecycle.

Rockwell Collins had similar results when they

applied TAF to a Flight Guidance System (FGS) for

a General Aviation class aircraft [13]. As reflected

in Figure 3, the FGS was first specified by hand

using the Consortium Requirement Engineering

Method (CoRE). It was then inspected, and about a

year later it entered into a tool supporting the SCR

method provided by the Naval Research Laboratory

(NRL). Despite careful review and correction of 33

errors in the CoRE model, the SCRtool’s analysis

capabilities revealed an additional 27 errors.

Statezni later used an early TAF translator and the

T-VEC toolset to analyze the SCR model, generate

test vectors and test drivers [3]. The test drivers

were executed against a java implementation of the

FGS requirements and revealed six errors. Offutt

applied his tool to the FGS model and found two

errors [14]. The latest TAF toolset, described in this

paper, identified 25 errors more than the original 27

errors.

Analysis

Technique

/Tool

FGS

Textual

Requirements

1995

CoRE

Text

Model

Inspections

33

1997

27

U
n
iq

u
e
 D

e
fe

c
ts

SCRtool

Analysis

SCR

Model V1

1998

SCR

Model V9

6

TAF 1.0/

T-VEC

Offutt

Tool

2

2001

TAF 2.0/

T-VEC

25

1999

Figure 3. Model Evolution and Analysis

Following manual test generation practices,

defects are not identified until late in the process,

sometimes after release, when they are most

expensive to fix. By automating test generation

based on models, defects are found earlier in the

process and faster. The rate of defect discovery

increases early in the process, but quickly curtails.

Many defects are found in the requirements phase,

before they propagate to later development phases.

Defect prevention is most effective during the

requirements phase when it costs two orders of

magnitude less than after the coding process.

Figure 4 represents the conceptual differences

between manual and automatic test generation. The

existing process of discovering and eliminating

software defects is represented by the curve labeled

“Old” while the effects of early defect discovery

aided by automation is illustrated by the trend curve

labeled “New.” Industrial applications have

demonstrated that TAF directly supports early

defect identification and defect prevention through

the use of requirement testability analysis [4].

New

Defect

Prevention

Time

R
a
te

 o
f

D
is

c
o

v
e
ry

Defects

100X Decrease in Cost of Removing Defects

Old

Requirements Design &

Build

Release

to Test

Release

to Field

Source: Safford, Software Technology Conference, 2000.

Late Defect

Discovery Results in

Significant Rework

Figure 4. Early Defect Identification

Defect Analysis Concepts

Requirement clarification during model

development can uncover requirement problems

such as ambiguities and inconsistencies. However,

subtle errors or errors resulting from inherent

system complexity can hide defects in a model or

implementation. This section briefly describes

defect types and how automated model analysis

identifies them.

Defect Types

There are two types of errors: computation

errors and domain errors. As defined by Howden, a

computation error occurs when the correct path

through the program is taken, but the output is

incorrect due to faults in the computation along the

path. A domain error occurs when an incorrect

output is generated due to executing the wrong path

through a program [11]. Such errors can be

introduced in a model as a result of errors in the

requirements or during the requirement clarification

process.

Domain Error Example

The concept of a program path and its related

output computation is analogous to a requirement or

design thread of a model. A domain error for a

model thread means that there is no input set that

satisfies the model constraints. Consider the

following trivial example:

x: Integer with domain from 0 to 10

y: Integer with domain from 0 to 10

z: Integer with domain from 0 to 10

If there is a requirement that

specifies

z = 0 when

x < 3 AND

y < 4 AND

x + y > 7

x < 3 & y < 4

then

maximum value for x < 3 is 2

maximum value for y < 4 is 3

minimum value for x + y > 7 is 8

x

(10,10)

(0,0)

y

x < 3

y < 4

x + y > 7

x < 3 & y < 4

Constraint Key

x < 3x < 3

y < 4y < 4

x + y > 7 x + y > 7

x < 3 & y < 4 x < 3 & y < 4

Constraint Key

Figure 5. Example of Inconsistent Constraints

The region represented by the intersection of x

& y does not overlap the constraint region defined

by x + y > 7. The constraint expression is

contradictory and cannot be satisfied. The

contradiction results in a domain error, because the

variable z will never be assigned a value of 0

through this requirement. Thus, the requirement is

untestable. Real-world problems typically include

complex constraints that span many modules,

subsystems or components of an application. Model

problems can be hidden when constraints reference

common variables that are distributed throughout

several model subsystems as reflected in Figure 6.

In these situations it can be difficult to isolate these

types of errors through manual processes.

Automated model analysis provides a tool for

locating these errors.

Subsystem B

x < 3

Subsystem B

x < 3

Subsystem A

x < 3 & y < 4

Subsystem A

x < 3 & y < 4 x < 3 & y < 4

Subsystem Z

x + y > 7

Subsystem Z

x + y > 7 x + y > 7

Subsystem C

y < 4

Subsystem C

y < 4y < 4

Figure 6. Constraints Span Hierarchy of

Subsystems

Computational Error

Computational errors can result from various

root causes such as an expression with incorrect

variables, incorrect operators (+ instead of -),

missing or incorrect parenthesis, or incorrect

constants. Erroneous expressions can result in range

errors, either underflows or overflows for the data

type of the object. During test generation, low-

bound and high-bound values are selected for the

variables used in the computation in an attempt to

stimulate range errors that can be traced to an

expression with a defect. Blackburn provides

examples of several computational errors that result

from common errors in developing expressions for

scaled arithmetic [15].

Design-based Models and Verification

For design-based modeling approaches, the

process resembles the illustration shown in Figure

7. Simulink/Stateflow and MATRIXx are hybrid,

control system modeling and code generation tools.

In this scenario, models undergo translation and

static analysis to verify their integrity. The T-VEC

system can identify model defects, and model

checking ensures all paths through the model are

valid, which means that code generated from the

model is reachable. Without this capability, models

can be used to generate code automatically, but the

results of executing that code under certain

conditions are undefined. This capability provides

increased confidence as to the integrity of the

model. Model problems are reported to the engineer

responsible for constructing the model for

immediate correction. Once modeling is complete,

the model is used as the basis for developing tests.

Through dynamic analysis of the system, anomalies

in the model and implementation can be identified

and corrected.

Design models used for simulation and/or

automatic code generation often include input-to-

output relationships involving multiple cycles of

execution. This is due to the use of primitive

operators that have “state memory” feedback

semantics in the manner of sequential logic designs

described above (e.g., the TimeDelay block in

Simulink). These types of operators are often used

to design digital signal processing applications such

as signal frequency sensitive filters and feedback-

loop control law mechanisms for digital control

applications. Such applications are very dependent

on exhibiting a dynamic response to their input

signal values.

When an application’s design includes dynamic

response characteristics, it is often difficult to

predict the expected output value response for a

given set of input values when only considering a

single cycle’s inputs. Consequently, verifying the

correct operation of such a design is a non-trivial

task and compiling verification evidence of proper

functionality with traditional software testing

approaches can be problematic. However,

verification evidence typical of these approaches is

often required by customers and certifying

agencies, such as the FAA in the commercial

aerospace domain.

Test

Drivers

Test

Vectors

Model

Analysis &

Coverage

Test Results

Analysis

Simulink

Model

T-VEC

Specifications

Execution

Environment

Test

Outputs

Autocode

Source Code

Source Code

Created by Hand

Signal

Ranges

Model Translator

Configurations

Test Sequence

Configurations

MATLAB®/

Simulink®/

Stateflow®

Similar process for MATRIXx®

Figure 7. Simulink/MATRIXx Modeling Process

Traditional software testing approaches are

generally centered around developing and applying

suites of test cases, where each test case is

comprised of a set of input values and an expected

output value. These values are geared towards

verifying the required static response of a system.

The system under test (SUT) is initialized with the

input values and is executed from a specific start

point to specific end point in the application’s

instruction space. The actual value of one or more

output variables is extracted and compared to the

expected output values, and the results of these

comparisons determine the pass or fail status of the

test. Each such test is the examination of a single

input-to-output execution cycle, essentially one

state transition of the overall system. Tests of this

type are expected to be repeatable any number of

times in sequence – the same input values expected

to result in the same output values. However, the

use of operators with “state memory” can render

such single state transition test cases totally non-

repeatable. Each successive execution of the test

can result in a unique output result. It should be

apparent that such an approach to testing is

inadequate at best for fully verifying the time-wise

non-linear or state-machine-based characteristics

found in such models.

It is possible to test a SUT’s dynamic response

using the “test case” approach by modeling “state

memory” variables as additional input variables.

However, it can be difficult to determine what

values these “state memory” inputs should be for a

given test case because they depend directly on the

history of inputs. The complexity of the mechanism

providing such “state-memory” semantics, and the

mathematical relationships characterizing system

response in terms of inputs and this state memory,

are primarily responsible for this difficulty.

The requirements governing dynamic response

are often expressed in terms of output value

tendencies, such as rise time, over shoot, and

settling time rather than functional value mappings

between a single input value set and an associated

output value.

Requirements describing a system’s static

response can be formally expressed in terms of pre-

condition/post-condition pairs. The pre-condition

characterizes the system states under which the

post-condition’s input-values-to-output-value

mapping is required to hold. The requirements

governing a given output can be said to be

“complete” if there is at least one pre-

condition/post-condition pair describing the value

of the output in terms of input values for all points

in time for all modes of operation of the system.

They can be said to be “consistent” if there is at

most only one such pre-condition/post-condition

pair for a given output variable for any given point

in time.

A set of test cases is associated with a

complete and consistent set of pre-condition/post-

condition pairs that can be shown to produce

MC/DC-complete requirements-based tests. A suite

of such test cases, when used to drive an

implementation intended to satisfy these

requirements, provides sufficient evidence that the

implementation does indeed effectively satisfy

them, at least from a functional point of view. The

T-VEC system has demonstrated that the automatic

generation of a set of such tests can be

accomplished.

Testing a Model With Feedback Semantics

An example of a model that uses both time-

wise non-linear computational feedback elements as

well as state-machine-like elements is the Flow

Control model shown in Figures 8, 9, and 10.

The Flow Control Model design employs a

simple first-order lag filter (temperatureSensor

subsystem), applied to the temperature input data

signal In1, and a small “hysteresis” based threshold

detection state machine (flowControlLogic

subsystem). Each of the two primary subsystems

includes a TimeDelay primitive operator block.

This operator is used to retain the value of an

intermediate computation result from one cycle of

execution and provide that same value as an input

to the next cycle’s computation. The TimeDelay

block provides a generic closed-loop feedback

mechanism useful for constructing simple state

machines and also for implementing digital signal

processing algorithms such as filters and digital

control law algorithms.

The required operation of the Flow Control

model is the following:

1. The flowControlLogic state machine (Figure 9) is

required to output the value of 0 during the current

cycle if it had output a 0 during the previous cycle

and the value being output from the

temperatureSensor subsystem during the current

cycle is less than or equal to 180 degrees. When

flowControlLogic outputs a 0 during the current

cycle the flowControl system should also output

the value of 0, regardless of the specific value

being input to, and output from, the

temperatureSensor subsystem.

Figure 8 - Flow Control Model

2. The flowControlLogic state machine is required to

output the value of 1 during the current cycle if the

value output from the temperatureSensor

subsystem during the current cycle is greater than

180 degrees, no matter what value it output during

the previous cycle. While flowControlLogic

outputs the value of 1, the main flowControl

system is required to output a value based on the

value produced by temperatureSensor, after being

scaled through addition and multiplication

operations.

3. The flowControlLogic state machine is required to

output the value of 1 during the current cycle if its

previous cycle output was 1 and the value being

output from the temperatureSensor subsystem

during the current cycle is greater than or equal to

120 degrees. While flowControlLogic outputs the

value of 1, the main flowControl system is

required to output a value based on the value being

output by temperatureSensor after being scaled

through addition and multiplication operations.

4. The flowControlLogic state machine is required to

output the value of 0 during the current cycle if its

previous cycle output was 1 and the current value

being output from the temperatureSensor

subsystem during the current cycle is below 120

degrees. This results in the main flowControl

system outputting the value of 0 during the current

cycle, regardless of the specific value being output

by temperatureSensor.

5. The temperatureSensor subsystem block (Figure

10) is required to provide simple first order

filtering. If the filtered value of temperature is

between the saturation limits of –100.0 to 300.0

degrees, the output is required to be equal to a

“filtered” temperature value. This “filtering”

results in an averaging effect, preventing spurious

“noise” spikes in the value of temperature from

being passed through to the flowControlLogic

state machine and thus causing it to trigger an

undesired state change. This effect can be seen in a

graph of the dynamic input response to a standard

step input signal in Figure 11.

6. The temperatureSensor subsystem block is

required to saturate at low bound and high bound

value limits. If the filtered value of the temperature

signal input is below –100.0 degrees,

temperatureSensor will output –100.0 degrees

(6a). If the filtered value of the temperature signal

input is above 300.0 degrees, temperatureSensor

will output 300.0 degrees (6b). (Note: in the case

of the overall Flow Control model (Figure 8), the

flowControlLogic state machine will prevent any

value of filtered temperature below 120 degrees

from ever being output from the system.)

Figure 9 – FlowControlLogic State Machine

Figure 10 - First Order Filter

From this description of the required

operational semantics of the Flow Control model, it

should be clear that the traditional black-box testing

approach that sets input values, executes the code

through one execution cycle, extracting output

values, and comparing the results, would be

inadequate. For example, the dynamic response

curve of Figure 11 clearly indicates that it takes

nearly 0.4 of a second (with a sample period of 0.1

seconds) for the output of temperatureSensor to rise

to from 0.0 to its full value of 100.0 degrees in

response to a step input signal of 100 degrees that

takes place at t=0.0 in the simulation run

Figure 11 - temperatureSensor Response to Step

Input

To verify that a given implementation of this

model correctly provides such a response to a step

input signal, one would need to test the

implementation’s response over a period of time,

(i.e., numerous cycles of execution). Consequently,

test cases that include an association between a

single set of input values and a single expected

output value cannot adequately verify such

performance. What is required is a new concept in

specification-based software test generation: test

sequence vectors (TSVs).

Informally, a TSV is a test specification that

includes all of the input values for a sequence of

execution cycles (i.e., invocations) of the system

being tested. A TSV includes values for each

independent input variable (e.g. temperature, in the

Flow Control model) for each invocation of the

model. It also contains initial condition values for

the closed-loop feedback variables used by the first

invocation in the sequence. A TSV includes

expected output values for each individual system

invocation in the sequence, as well as the final

expected output values for the overall sequence. A

TSV for a 4-step sequence of the flowRegulator

model is conceptually depicted by Figure 12. This

represents 4 sample periods of execution of the

cyclic flowRegulator model. Sequence values can

be specified explicitly or using functions, such as

step, ramp and impulse.

Process for High Integrity Systems

Depending on the software level of the system

being considered for certification, the decision flow

shown in Figure 13 may be required to provide

evidence that the model is defect free and that the

generated tests provide the required level of code

coverage. Details associated with several of these

steps are provided below.

125.0

130.0

122.0

119.0

87.49

0

117.24

87.49

120.47

117.24

119.42

120.47

Figure 12. Sequences Includes Feedback of Unit

Delay

The process is a follows:

• Construct a model in Simulink,

MATRIXx, or TTM.

• Check model for defects and iteratively

correct the model if there are defects.

• Construct the code. This can be a

manual process or supported using

automatic code generation capabilities

supported by tools like Simulink and

MATRIXx.

• Generate the tests.

• Execute the tests through instrumented

code.

• Check to ensure that the tests provide

adequate coverage (e.g., MC/DC

coverage); if adequate coverage is not

achieved, additional tests must be

generated.

• Check to ensure that all tests pass.

• Execute tests against target code.

• Check to ensure that all tests pass.

• If tests do not pass, perform test failure

analysis, and correct the code or model.

Generate

tests

ModelModel

CodeCode

Model
defect?yes

no

Test
instrumented

code

Meets test
coverage?

Test

code

yes
All tests
pass?

no

yes

All tests
pass?

yes
Success

Code
defect?

yes
no

no

Figure 13. Verification Decision Flow

Summary

A growing number of mission critical systems

are being developed using model-based

development systems. These systems support

complex modeling with simulation capabilities that

help modelers better understand the dynamic

aspects of the system, as well as code generation

capabilities for various environments. However,

when used in flight critical applications, there is

still a need to provide a level of independent

verification and the cost to comply with guidelines

such as the FAA’s DO-178B can contribute from 50

to 70% of the overall effort and cost of

development.

The paper describes how the use of model-

based development and test automation can be

effectively used in the development and verification

of systems that must meet the highest standards of

safety, reliability, and quality. It describes

capabilities of a model-based analysis and

automatic test generation system. The model

analysis identifies defects in a model. This type of

model checking ensures that automatically

generated code is free from contradictions that are

difficult to identify manually in complex

hierarchical models. It generates test vectors and

test drivers providing modified condition decision

(MCDC) level test coverage that can execute

against model simulations or auto-generated code.

It also produces test sequence vectors for testing

dynamic system behavior that support feedback that

are common in control system models. The paper

briefly describes tool qualification support, and

describes recommended processes for using this

model-based testing tool with modeling and other

independent code coverage tools to produce

verification evidence that meets the FAA standards

for certification of these systems, while reducing

the verification costs by as much as 50%.

References

[1] Blackburn, M.R., R.D. Busser, T-VEC: A Tool

for Developing Critical System. In Proceeding of

the Eleventh International Conference on Computer

Assurance, June, 1996.

[2] Statezni, David, Industrial Application of

Model-Based Testing, 16th International

Conference and Exposition on Testing Computer

Software, June 1999.

[3] Statezni, David. Test Automation Framework,

State-based and Signal Flow Examples, Twelfth

Annual Software Technology Conference, May

2000.

[4] Safford, Ed, L. Test Automation Framework,

State-based and Signal Flow Examples, Twelfth

Annual Software Technology Conference, May

2000.

[5] U.S. Department Of Transportation, Federal

Aviation Administration, Order 8110.83 -

Guidelines For The Qualification Of Software Tools

Using RTCA/DO-178B, April, 1999.

[6] Alspaugh, T.A., S.R. Faulk, K.H. Britton, R.A.

Parker, D.L. Parnas, and J.E. Shore. Software

requirements for the A-7E aircraft, Tech. Rep.

NRL/FR/5546-92-9194. Washington, D.C.: Naval

Research Lab, 1992.

[7] Heitmeyer, C., R. Jeffords, B. Labaw,

Automated Consistency Checking of Requirements

Specifications. ACM TOSEM, 5(3):231-261, 1996.

[8] Blackburn, M.R., R.D. Busser, A.M., Nauman,

Interface-Driven, Model-Based Test Automation,

CrossTalk, The Journal of Defense Software

Engineering, May 2003.

[9] Weyuker, E., B. Jeng, Analyzing Partition

Testing Strategies, IEEE Transactions on Software

Engineering, 17(7):703-711, 1991.

[10] White, L.J., E.I. Cohen, A Domain Strategy for

Computer Program Testing. IEEE Transactions on

Software Engineering, 6(3):247-257,May, 1980.

[11] Howden, W.E., Reliability of the Path Analysis

Testing Strategy, IEEE Transactions on Software

Engineering, 2(9):208-215, 1976.

[12] Zeil, S.J., Perturbation Techniques for

Detecting Domain Errors, IEEE Transactions on

Software Engineering, 15(6):737-746, 1989.

[13] Miller, S. P., Specifying the Mode Logic of a

Flight Guidance System in CoRE and SCR. Second

Workshop on Formal Methods in Software Practice

(FMSP'98), Clearwater Beach, Florida, March,

1998.

[14] Offutt, A.J., Generating Test Data From

Requirements/Specifications: Phase III Final

Report, George Mason University, November 24,

1999.

[15] Blackburn, M. R., Using Models For Test

Generation And Analysis, Digital Avionics System

Conference, October, 1998.

