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Power Plant Emissions: Particulate Matter-Related Health Damages 

and the Benefits of Alternative Emission Reduction Scenarios

 1 Introduction

Power plants are significant emitters of sulfur dioxide (SO2) and nitrogen oxides (NOx).  In many

parts of the country, especially the Midwest, power plants are the largest contributors.  These gases are

harmful themselves, and they contribute to the formation of acid rain and particulate matter.  Particulate

matter (PM) reduces visibility, often producing a milky haze that blankets wide regions, and it is a serious

public health problem. Over the past decade and more, hundreds of studies worldwide have linked

particulate matter to a wide range of adverse health effects in people of all ages, including premature

death, chronic bronchitis, hospital admissions and asthma.  While this large body of research cannot

establish a cause-and-effect relationship between PM and adverse health effects, the research does

provide strong evidence that reducing ambient PM concentrations will lead to improvements in human

health.  The US EPA developed analytical methods that draw on this health research, combined with

estimates of future air pollution emissions and air quality models, to prepare quantified estimates of the

avoidable health effects from improving ambient PM levels.  The EPA used these analytical methods to

estimate the health benefits of a wide variety of actual or proposed individual federal air programs,

including programs that reduce emissions from power plants, cars, and both on-road and off-road diesel

engines.

This report estimates the avoidable health effects of each of a series of alternative regulatory

scenarios for power plants, focusing on the adverse human health effects due to exposure to fine

particulate matter (PM2.5, which are particles less than 2.5 microns in diameter).  This report uses the

same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an

analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003).  This report conducts

an analysis of the impacts in 2010 and 2020 of three  policy alternatives to the proposed Clear Skies Act:  

• Carper/Gregg/Chaffee “The Clean Air Planning Act”, S. 834 (henceforth “Carper”)

• The Jeffords/Lieberman/Collins “The Clean Power Act”, S. 366 (henceforth “Jeffords”)

• The EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the

announcement of the Clear Skies Initiative in 2002).  Henceforth “Straw”

For comparison purposes, this report includes the results of the EPA 2003 analysis of the Clear Skies Act

(henceforth “CSA”).

In addition, this report also examines the health impacts associated with the total amount of

emissions from coal fired electricity generating units (power plants) in 2010.  This “No EGU” analysis is

clearly not a policy option, but rather helps gain a better understanding of the total magnitude of the health

effects associated with the total emissions from this major sources of pollutants that lead to the formation

of PM.  It also helps put into better context the health improvements associated with each of the policy

option scenarios examined in this report.

Following the methods used in the 2003 EPA analysis of the proposed Clear Skies Act,

 this study  estimates the health impacts from various policy options for reducing power plant air pollution

emissions.  Using the same emissions estimates and air quality forecasting methods as EPA used in the
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Clear Skies Act analysis, we prepare detailed future  ambient air quality estimates for each of the nine

scenarios described above.  We then used the same health assessment methods as EPA to estimate the

avoidable health effects associated with the changes in ambient air quality.  Because we used the same

methods and data as the 2003 EPA analysis, the results here are directly comparable with EPA’s

estimates of the future baselines for 2010 and 2020, as well as EPA’s estimates of the potential

improvements if the proposed Clear Skies Act is implemented.  EPA has made extensive details of the

technical details of their analysis available via the internet at www.epa.gov/clearskies/technical.html.  The

technical background materials on the methods and data sources for the EPA analysis are applicable to

this analysis.  In particular, the background paper on the models used in the EPA analysis (“Section H:

2003 Summary of the Models Used for this Analysis”, at

www.epa.gov/clearskies/03technical_package_sectionh.pdf)  contains many details concerning the

models used to estimate the electricity generation (IPMTM), air quality (REMSAD) and the health analysis

model (BenMAP) in both the EPA analysis and this report.

Chapter 2 describes the emissions inventory estimates, and the changes in the emissions

associated with each scenario analyzed.  Chapter 3 describes the methods used to estimate changes in

particulate matter concentrations.  Chapter 4 describes general issues arising in estimating and valuing

changes in adverse health effects associated with changes in particulate matter.  Chapter 5 describes in

some detail the methods used for estimating and valuing adverse health effects, and in Chapter 6 we

present the results of these analyses.  Chapter 7 presents estimates of the impact of these alternative

policy options on the PM non-attainment status.

This study has several  appendices.  Appendix A presents a derivation of  the particulate matter 

concentration-response functions used in all the analyses.  Appendix B presents additional detail on the

results in Chapter 6, including statistical uncertainty analysis.  Appendix C presents additional details about 

the non-attainment analysis in Chapter 7.
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2 Emissions Inventory

The detailed estimates of the future emissions inventory used in this analysis is the same inventory

EPA used in their analysis of the Clear Skies Act.  In order to conduct an analysis of changes in the

levels of ambient PM2.5 in the atmosphere from changes in emissions from power plants, it is necessary

to have an estimate of the complete inventory from all sources of precursor emissions, not just the

emissions from the source categories.  EPA prepared the complete estimated emissions inventory for both

2010 and 2020 necessary to conduct a PM air quality analysis.  This inventory includes emissions from not

only power plants, but also other large industrial sources, all mobile sources, smaller “Area” emission

sources ranging from gasoline stations to household emissions, agricultural emissions, and naturally

occurring emissions from forests, grasslands, etc.  The location and timing of emissions have an important

impact on PM formation, so the emissions inventory includes extensive detail on the location and timing of

the estimated emissions.  Canadian and Gulf of Mexico sources are included in the inventory as well, as

these pollutants effect PM levels in the continental US.

The emissions inventory estimates the quantity of emissions of six pollutants that will occur in

specific future years (2010 and 2020 in this analysis) as future base case.  For many emission source

categories these future base cases have lower emissions in the future than occur now, as the impact of

already enacted federal and state programs will increase over time.  In particular, as older cars and trucks

are replaced with newer, cleaner, vehicles the emissions from mobile sources decreases.  Similarly older

industrial equipment will be replaced by cleaner new equipment.  In aggregate, total emissions are lower

in the future base cases than in the 2001 emission inventory.  Eventually, however, the improvements

from existing programs will diminish as the programs are fully implemented.  In addition to the forces that

will decrease emissions , there are also forces that will increase emissions.  Both a growing population

and expanding economy tend to increase emissions.  These forces generally grow stronger over time. 

Eventually the decreasing emissions from existing federal programs are overwhelmed by the increasing

emissions from growth, and the total amount of emissions begins to increase.

Modeling the emission from power plants ICF Consulting used the IPMTM to forecast emissions

from  power plants for the policy options examined in this report.   ICF Consulting used the same version

of IPMTM, with the same data and modeling assumptions, for the analysis in this report as they used for

EPA’s analysis of the Clear Skies Act. 

IPMTM is an industry-leading energy modeling system that simulates the deregulated wholesale

market for electricity.  The EPA has used IPMTM to evaluate the economic, operational and emission

impacts of a wide variety of policies and rulemakings affecting the power sector. 

IPMTM is a multi-region linear programming model that determines the least-cost capacity

expansion and dispatch strategy for operating the power system over specified future periods, under

specified operational, market, and regulatory constraints.  Constraints include emissions caps, transmission

constraints, regional reserve margins, and meeting regional electric demand. Given a specified set of

parameters and constraints, IPMTM develops an optimal capacity expansion plan, dispatch order, and air

emissions compliance plan for the power generation system based on factors such as fuel prices, capital

costs and operation and maintenance (O&M) costs of power generation, etc.  Additional details about the

EPA IPM™ model are available at EPA’s Clear Skies Website, www.epa.gov/clearskies/technical.html. 

The model is dynamic: it makes decisions based on expectations of future conditions, such as fuel

prices, and technology costs. Decisions are made on the basis of minimizing the net present value of
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capital plus operating costs over the full planning horizon. The model draws on a database containing

information on the characteristics of each power plant (such as unit ID, unit type, unit location, fuel used,

heat rate, emission rate, existing emission control technology, etc.) in the U.S.

Summary of the National Emissions Inventory

There are six air pollutant emissions that are used to model PM concentrations.  The are:

Oxides of Nitrogen (NOx)

Volatile Organic Compounds (VOC)

Ammonia (NH3)

Sulfur Dioxide (SO2)

Direct fine particle emissions (PM25)

Direct coarse particle emissions (PM10)

Primary Elemental Carbon (PMC)

Table 2.1 summarizes the estimated total emissions in the continental United States in 2010 for

the six precursor air pollutants.  Table 2.2 summarizes the total emissions in 2020.

Table 2.1 2010 Baseline Emissions Inventory (Tons/Year)

Source NOx VOC NH3 SO2 PM10 PM2.5 PMC

EGU 3,943,438 32,660 1,783 9,856,926 217,623 109,983 107,640

Other

Industrial
3,221,605 1,707,062 284,824 3,799,164 1,015,052 605,692 409,359

On Road 4,931,951 2,824,715 322,961 29,780 178,649 113,771 64,879

Non Road 3,409,824 2,016,276 49,964 252,924 286,189 243,085 43,104

Area 2,225,898 7,221,877 4,341,905 1,367,643 7,693,802 2,285,814 5,407,988

Total US 17,732,716 13,802,589 5,001,437 15,306,437 9,391,315 3,358,345 6,032,971

Canada &

Gulf of

Mexico

1,972,010 2,550,200 555,496 1,901,396 1,887,887 419,719 1,468,168

Total

Modeled
19,704,726 16,352,789 5,556,933 17,207,833 11,279,202 3,778,064 7,501,139
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Table 2.2 2020 Baseline Emissions Inventory (Tons/Year)

Source NOx VOC NH3 SO2 PM10 PM2.5 PMC

EGU 4,056,026 35,389 1,478 8,956,475 227,727 116,895 110,832

Other

Industrial
3,393,215 1,894,870 314,898 4,044,693 1,180,614 704,229 476,385

On Road 1,989,951 2,061,066 378,887 35,421 143,600 72,595 71,005

Non Road 2,842,794 2,192,851 59,548 228,308 227,336 186,359 40,977

Area 2,295,578 7,714,354 4,475,040 1,413,461 7,788,908 2,297,748 5,491,160

Total US 14,577,565 13,898,530 5,229,851 14,678,358 9,568,185 3,377,825 6,190,360

Canada &

Gulf of

Mexico

1,972,010 2,550,200 555,496 1,901,396 1,887,887 419,719 1,468,168

Total

Modeled
16,549,575 16,448,730 5,785,347 16,579,754 11,456,072 3,797,545 7,658,528

Each of the policy options examined in this report keep hold the emissions constant from all

emissions categories except for the EGU category.  The EGU emissions in each policy scenario (including

the Baseline scenarios) were modeled using IPMTM, combined with additional methods developed by EPA

to estimate the unit-specific emissions from each power plant unit.  The IPMTM analysis incorporated the

targeted emission caps for sulfur (SO2) and nitrogen (NOx) (as well as carbon and mercury if included in

the scenario) from EGUs in modeling the emissions from each power plant.  The targeted emission caps

(referred to as the “nominal caps”) are not necessarily met however, because of emissions trading

provisions incorporated in each scenario.  “Banking” of emission credits allows the modeled  emissions to

exceed the nominal caps in most policy option scenarios.   Because the policy options provide power plant

operators some discretion to “bank” emission reduction credits in one year by reducing emissions below

that facility’s mandatory levels, and in a later year use the banked credits as part of meeting their

mandatory levels that year, the total emissions from power plants in a given year can exceed the nominal

caps.  Banked emission credits can also be sold, and used by another power plant operator.  Banking is

considered by the IPMTM model, so the air quality analysis (and subsequent health analysis) in both 2010

or 2020 can include emissions in excess of the nominal caps.  The health effects estimated in this report

therefore reflect the impact of the modeled emission changes, not the changes that would occur if the

nominal emission caps are met.

In order to quantify the total contribution from all power plants in the No EGU analysis, we

conducted the air quality analysis by eliminating the emissions from all fossil fueled electricity generation

units, and calculate the resulting air quality.  This identifies the total air quality “footprint” of  power plants

on fine particulate matter concentrations.

The nominal emission targets and the modeled emissions from electricity generating units are

presented in Table 2.3 
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Table 2.3 Nominal and Modeled Emissions from Electricity Generating Stations

Scenario Nitrogen Sulfur

2010 Analysis

Baseline  Modeled Emissions in 2010 3.9 million tons 9.9 million tons

Clear Skies Act
Nominal Cap

2.1 million ton cap

by 2008

4.5 million ton cap

by 2008

Modeled Emissions in 2010 2.2 million tons 6.3 million tons

Straw Proposal
Nominal Cap

1.87 million tons

by 2008 

2 million ton cap

by 2010

Modeled Emissions in 2010 1.67 million tons 4.53 million tons

Carper Bill
Nominal Cap

1.87 million tons

by 2008 

4.5 million ton cap

by 2009

Modeled Emissions in 2010 1.83 million tons 4.77 million tons

Jeffords Bill
Nominal Cap

1.51 million tons

by 2009

2.25 million ton

cap by 2009

Modeled Emissions in 2010 1.18 million tons 2.3 million tons

2020 Analysis

Baseline Modeled Modeled Emissions in 2020 4.06 million tons 8.96 million tons

Clear Skies Act
Nominal Cap

1.7 million ton cap

by 2018

3 million ton cap

by 2018

Modeled Emissions in 2020 1.8 million tons 4.35 million tons

Straw Proposal
Nominal Cap

1.25 million ton

cap by 2012

2 million ton cap

by 2010

Modeled Emissions in 2020 1.31 million tons 2.87 million tons

Carper Bill
Nominal Cap

1.7 million ton cap

by 2013

2.25 million ton

cap by 2016

Modeled Emissions in 2020 1.76 million tons 3.39 million tons

Jeffords Bill
Nominal Cap

1.51 million tons

by 2009

2.25 million ton

cap by 2009

Modeled Emissions in 2020 0.91 million tons 2.1 million tons
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3 Air Quality Modeling

 The analysis used results from the Regulatory Modeling System for Aerosols and Acid Deposition

(REMSAD, ver 7.06) to forecast changes in the ambient concentration of both PM10 and PM2.5 at the

REMSAD grid cell level. Because it accounts for spatial and temporal variations as well as differences in

the reactivity of emissions, REMSAD is ideal for evaluating the air-quality effects of emission control

scenarios.

Modeling future air quality anticipated to result from policy-driven emissions changes is extremely

difficult and inherently uncertain.  Alternative air quality models inevitably produce differing results. 

Scientific understanding of the complex atmospheric processes involved with PM formation and transport

is increasing rapidly.  The new PM2.5  monitoring data now being collected nationwide, and improvements

in the estimates of emissions from all sources,  will help calibrate and verify the performance of air quality

models.  Existing air quality models are being improved constantly, and the next generation of PM air

quality models are under development.

Particulate Matter Formation

Ambient concentrations of PM are composed of directly emitted particles and of secondary

aerosols of sulfate, nitrate, and organics.  Particulate matter is the generic term for the mixture of

microscopic solid particles and liquid droplets found in the air.  The particles are either emitted directly

from these combustion sources or are formed in the atmosphere through reactions involving gases, such

as SO2 and NOx.

REMSAD Air Quality Model

REMSAD was used to simulate estimates of particulate matter concentration for three future-

year scenarios.  Computer Sciences Corporation (CSC) performed the REMSAD modeling for both the

EPA analysis and this report.  Subsequently we used the modeling results to estimate the health-related

costs for each of the scenarios in the primary analysis.

The REMSAD model is designed to simulate the effects of changes in emissions on PM

concentrations and deposition.  REMSAD calculates concentrations of pollutants by simulating the

physical and chemical processes in the atmosphere.  The basis for REMSAD is the atmospheric diffusion

or species continuity equation.  This equation represents a mass balance that includes all of the relevant

emissions, transport, diffusion, chemical reactions, and removal processes in mathematical terms.

Because it accounts for spatial and temporal variations as well as differences in the reactivity of

emissions, REMSAD can evaluate the air-quality effects of specific emission control scenarios.  This is

achieved by first replicating a historical ozone episode to establish a base-case simulation. CSC  prepared

model inputs from observed meteorological, emissions, and air quality data for selected episode days using

various input preparation techniques.  They apply the REMSAD model with these inputs, and the results

are evaluated to determine model performance.  Once the model results have been evaluated and

determined to perform within prescribed levels, they combine the same base-case meteorological inputs
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with modified or projected emission inventories to simulate possible alternative/future emission

scenarios.

The PM levels estimated by REMSAD were not directly used in EPA’s health analysis of the

Clear Skies Act, nor are the directly used here.  Instead of using the REMSAD results directly, we use

the REMSAD results to estimate the relative change in PM levels.  We combine the REMSAD results

with actual PM2.5 monitor readings from 2001 to estimate the PM2.5  levels actually used in the health

analysis.  This same procedure was used in the EPA Clear Skies Act health analysis.  EPA believes this

provides a better estimate of future PM2.5 levels than the REMSAD modeling data itself. 

At the location of each PM2.5  monitor, we quantified the relationship between REMSAD

estimated levels of PM2.5  at the monitor for a base year (2001) and the future year (2010 or 2020). These

REMSAD-based adjustment ratios are applied to the actual monitoring data to generate estimates of 

PM2.5  levels at each monitor for each of the future scenarios. 

In order to provide estimates of ambient PM2.5 levels everywhere in the country, and not just at

the monitors, an additional analytical step is required.  To calculate population exposure to PM, each

REMSAD grid cell was assigned a distance-weighted average of adjusted PM levels from a set of

monitors that best surrounds the cell. This approach is a generalization of planar interpolation that is

technically referred to as enhanced Voronoi Neighbor Averaging (eVNA) spatial interpolation (See Abt

Associates, 2000 for a more detailed description).

The estimated future baseline PM2.5 levels estimated using the REMSAD and eVNA method,

and the change in PM2.5 levels associated with each policy option, are shown in the Exhibits 3.1 to 3.11. 

The maps depict annual mean PM2.5 levels (in :g/m3) Exhibits 3.1 and 3.2 show the future baseline  PM2.5

conditions in 2010 and 2020.  Exhibits 3.3 through 3.7 show the estimated 2010 changes in the annual

mean PM2.5 level for the policy options and the No EGU scenario.  Exhibits 3.8 through 3.11 show the

estimated changes in 2020 for the policy options.
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Annual PM 2.5 (ug/m3)
0 - 5       (Min = 1.87)
5 - 7.5
7.5 - 10
10 - 15
15 - 30  (Max = 28.73)

Exhibit 3.1 2010 Baseline Annual Mean PM 2.5 Levels
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Annual PM 2.5 (ug/m3)
0 - 5      (Min = 1.81)
5 - 7.5
7.5 - 10
10 - 15
15 - 30  (Max = 29.27)

Exhibit 3.2 2020 Baseline Annual Mean PM 2.5 Levels
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Change in Annual PM 2.5 (ug/m3)
0 - 0.5 (Min = 0)
0.5 - 1
1 - 1.5
1.5 - 2 (Max = 1.91)

Exhibit 3.3 Change in 2010 Annual Mean PM 2.5 Levels with Clear Skies Act
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Change in Annual PM 2.5 (ug/m3)
< 0     (Min = -3.29)
0 - 0.5

0.5 - 1
1 - 1.5
1.5 - 2
> 2      (Max = 3.58)

Exhibit 3.4 Change in 2010 Annual Mean PM 2.5 Levels with Carper Bill
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Change in Annual PM 2.5 (ug/m3)
0 - 0.5 (Min = 0)
0.5 - 1
1 - 1.5
1.5 - 2
> 2      (Max = 2.46)

Exhibit 3.5 Change in 2010 Annual Mean PM 2.5 Levels with EPA Straw Proposal
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Change in Annual PM 2.5 (ug/m3)
0 - 0.5 (Min = 0)
0.5 - 1
1 - 1.5
1.5 - 2
> 2      (Max = 3.28)

Exhibit 3.6 Change in 2010 Annual Mean PM 2.5 Levels with Jeffords Bill
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Change in Annual PM 2.5 (ug/m3)
0 - 0.5 (Min = 0.01)
0.5 - 1
1 - 1.5
1.5 - 2
2 - 3.5
3.5 - 5 (Max = 4.49)

Exhibit 3.7 Change in 2010 Annual Mean PM 2.5 Levels for “No EGU” Scenario
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Change in Annual PM 2.5 (ug/m3)
0 - 0.5 (Min = -0.01)
0.5 - 1
1 - 1.5
1.5 - 2
> 2      (Max = 2.30)

Exhibit 3.8 Change in 2020 Annual Mean PM 2.5 Levels with Clear Skies Act
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Change in Annual PM 2.5 (ug/m3)
0 - 0.5 (Min = 0)
0.5 - 1
1 - 1.5
1.5 - 2
> 2      (Max = 2.82)

Exhibit 3.9 Change in 2020 Annual Mean PM 2.5 Levels with EPA Straw Proposal
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Change in Annual PM 2.5 (ug/m3)
0 - 0.5 (Min = 0)
0.5 - 1
1 - 1.5
1.5 - 2
> 2      (Max = 2.58)

Exhibit 3.10 Change in 2020 Annual Mean PM 2.5 Levels with Carper Bill
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Change in Annual PM 2.5 (ug/m3)
0 - 0.5 (Min = 0.01)
0.5 - 1
1 - 1.5
1.5 - 2
> 2      (Max = 3.17)

Exhibit 3.11 Change in 2020 Annual Mean PM 2.5 Levels with Jeffords Bill



1The log-linear form used in the epidemiological literature on PM-related health effects is often

referred to as “Poisson regression” because the underlying dependent variable is a count (e.g., number of

deaths), assumed to be Poisson distributed.  The model may be estimated by regression techniques but is

often estimated by maximum likelihood techniques.  The form of the model, however, is still log-linear.
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4 Issues in Estimating Health Benefits

Changes in PM levels result in changes in a number of health effects, or “endpoints,” that society

values.  This chapter discusses key issues in the estimation of adverse health effects and in the valuation

of health benefits.  Section 1 describes general issues that particularly affect the estimation of changes in

health effects.  Section 2 describes general issues in valuing health changes.  Finally, Section 3 discusses

how uncertainty is characterized in this analysis.

Estimating Adverse Health Effects

This section reviews issues that arise in the estimation of adverse health effects.  It reviews the

derivation of C-R functions, and it reviews how BenMAP combines air quality data and C-R functions. 

In addition, we discuss how we handle overlapping health effects, thresholds, estimating the baseline

incidence rates for the C-R functions, and other issues.

Basic Concentration-Response Model

While several health endpoints have been associated with exposure to ambient PM, the discussion

below refers only to a generic “health endpoint,” denoted as y.  The discussion refers to estimation of

changes in the incidence of the health endpoint at a single location (the population cell, which is equivalent

to the REMSAD gridcell).  Region-wide changes are estimated by summing the estimated changes over

all population cells in the region.

Different epidemiological studies may have estimated the relationship between PM and a

particular health endpoint in different locations.  The C-R functions estimated by these different studies

may differ from each other in several ways.  They may have different functional forms; they may have

measured PM concentrations in different ways; they may have characterized the health endpoint, y, in

slightly different ways; or they may have considered different types of populations.  For example, some

studies of the relationship between ambient PM concentrations and mortality have excluded accidental

deaths from their mortality counts; others have included all deaths.  One study may have measured daily

(24-hour) average PM concentrations while another study may have used two-day averages.  Some

studies have assumed that the relationship between y and PM is best described by a linear form (i.e., the

relationship between y and PM is estimated by a linear regression in which y is the dependent variable

and PM is one of several independent variables).  Other studies have assumed that the relationship is best

described by a log-linear form (i.e., the relationship between the natural logarithm of y and PM is

estimated by a linear regression).1  Finally, one study may have considered changes in the health endpoint

only among members of a particular subgroup of the population (e.g., individuals 65 and older), while other

studies may have considered the entire population in the study location.



2 The International Classification Codes are described at the website of the Medical Center

Information Systems: Duke University Health Systems (1999).

3 Other covariates besides pollution clearly affect mortality.  The parameter B might be thought of

as containing these other covariates, for example, evaluated at their means.  That is, B = Boexp{$1x1 + ...

+ $nxn}, where Bo is the incidence of y when all covariates in the model are zero, and x1, ... , xn are the

other covariates evaluated at their mean values.  The parameter B drops out of the model, however, when

changes in incidences are calculated, and is therefore not important.
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The estimated relationship between PM and a health endpoint in a study location is specific to the

type of population studied, the measure of PM used, and the characterization of the health endpoint

considered.  For example, a study may have estimated the relationship between daily average PM

concentrations and daily hospital admissions for “respiratory illness,” among individuals age 65 and older,

where “respiratory illness” includes International Classification of Disease (ICD) codes A, B, and C.2  If

any of the inputs had been different (for example, if the entire population had been considered, or if

“respiratory illness” had consisted of a different set of ICD codes), the estimated C-R function would

have been different.  When using a C-R function estimated in an epidemiological study to estimate

changes in the incidence of a health endpoint corresponding to a particular change in PM in a population

cell, then, it is important that the inputs be appropriate for the C-R function being used -- i.e., that the

measure of PM, the type of population, and the characterization of the health endpoint be the same as (or

as close as possible to) those used in the study that estimated the C-R function.  

Estimating the relationship between PM and a health endpoint, y, consists of (1) choosing a

functional form of the relationship and (2) estimating the values of the parameters in the function

assumed.  The two most common functional forms in the epidemiological literature on PM and health

effects are the log-linear and the linear relationship.  The log-linear relationship is of the form:

or, equivalently,

where the parameter B is the incidence of y when the concentration of PM is zero, the parameter $ is the

coefficient of PM, ln(y) is the natural logarithm of y, and " = ln(B).3  If the functional form of the C-R

relationship is log-linear, the relationship between )PM and )y is:

where y is the baseline incidence of the health effect (i.e., the incidence before the change in PM).  For a

log-linear C-R function, the relative risk (RR) associated with the change )PM is:
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Epidemiological studies often report a relative risk for a given )PM, rather than the coefficient, $, in the

C-R function.  The coefficient can be derived from the reported relative risk and )PM, however, by

solving for $:

The linear relationship is of the form:

where " incorporates all the other independent variables in the regression (evaluated at their mean values,

for example) times their respective coefficients.  When the C-R function is linear, the relationship

between a relative risk and the coefficient, $, is not quite as straightforward as it is when the function is

log-linear.  Studies using linear functions usually report the coefficient directly.

If the functional form of the C-R relationship is linear, the relationship between )PM and )y is

simply:

A few epidemiological studies, estimating the relationship between certain morbidity endpoints and

PM, have used functional forms other than linear or log-linear forms.  Of these, logistic regressions are

the most common.  Abt Associates (1999, Appendix A) provides further details on the derivation of dose-

response functions.

Calculation of Adverse Health Effects with BenMAP

The health effects analysis in this report was prepared using BenMAP, which is being developed

by Abt Associates Inc. for the US EPA.  Although BenMAP is still being revised and expanded, the

same version of BenMAP was used in this analysis as was used for EPA’s analysis in 2003 of the Clear

Skies Act.  BenMAP is a population-based system for modeling exposure to ambient levels of criteria air

pollutants and estimating the adverse health effects associated with this exposure.  BenMAP uses the

same grid cell configuration as REMSAD ver 7.06 (36km x 36km), and estimates the changes in

incidence of adverse health effects associated with given changes in air quality in each grid cell.  The

national incidence change (or the changes within individual states or counties) is then calculated as the

sum of grid-cell-specific changes.  

To reflect the uncertainty surrounding predicted incidence changes resulting from the uncertainty

surrounding the pollutant coefficients in the C-R functions used, BenMAP produces a distribution of

possible incidence changes for each adverse health, rather than a single point estimate.  To do this, it uses

both the point estimate of the pollutant coefficient ($ in the above equation) and the standard error of the

estimate to produce a normal distribution with mean equal to the estimate of $ and standard deviation



4The Latin Hypercube method is used to enhance computer processing efficiency.  It is a

sampling method that divides a probability distribution into intervals of equal probability, with an

assumption value for each interval assigned according to the interval’s probability distribution.  Compared

with conventional Monte Carlo sampling, the Latin Hypercube approach is more precise over a fewer

number of trials because the distribution is sampled in a more even, consistent manner (Decisioneering,

1996, pp. 104-105).

5Pneumonia is often classified with the International Classification of Diseases (ICD) codes of

480-486, while all respiratory admissions are classified with ICD codes 460-519.
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equal to the standard error of the estimate.  Using a Latin Hypercube method,4 we take the nth percentile

value of $ from this normal distribution, for n = 0.5, 1.5, ..., 99.5, and follow the procedure outlined in the

section above to produce an estimate of the incidence change, given the $ selected.  Repeating the

procedure for each value of $ selected results in a distribution of incidence changes in the BenMAP grid

cell.  This distribution is stored, and BenMAP proceeds to the next grid cell, where the process is

repeated.  We calculate the distribution of the national change (or change in a designated geographical

area) by summing the nth percentile grid cell-specific changes, for n = 0.5, 1.5, ..., 99.5. 

Overlapping Health Effects

Several endpoints reported in the health effects literature overlap with each other.  For example,

hospital admissions for single respiratory ailments (e.g. pneumonia) overlap with estimates of hospital

admissions for “all respiratory” ailments.5  Similarly, several studies quantify the occurrence of respiratory

symptoms where the definitions of symptoms are not unique (e.g., shortness of breath or upper respiratory

symptoms).  In choosing studies to include in the aggregated benefits estimate (discussed below), this

analysis carefully considers the issue of double-counting benefits that might arise from overlapping health

effects.

Baseline Incidences 

As noted above, most of the relevant C-R functions are log-linear, and the estimation of incidence

changes based on a log-linear C-R function requires a baseline incidence.  The baseline incidence for a

given REMSAD/BenMAP population cell is the baseline incidence rate in that location multiplied by the

relevant population.  County mortality rates are used in the estimation of air pollution-related mortality, and

all BenMAP population cells in the county are assumed to have the same mortality rate.  Hospital

admissions are only available at the national level, so all areas are assumed to have the same incidence

rate for a given population age group.  For some endpoints, such as respiratory symptoms and illnesses

and restricted activity days, baseline incidence rates are not available even at the national level.  The only

sources of estimates of baseline incidence rates in such cases are the studies reporting the C-R functions

for those health endpoints.  The baseline incidence rate and its source are given for each C-R function in

Appendix A.

Thresholds
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A very important issue in applied modeling of changes in PM is whether to apply the C-R

functions to all predicted changes in ambient concentrations, even small changes occurring at levels

approaching the concentration in which they exist in the natural environment (without interference from

humans), referred to as “anthropogenic background.” Different assumptions about whether to model

thresholds, and if so, at what levels, can have a major effect on the resulting benefits estimates.

None of the epidemiological functions relating PM to various health endpoints incorporate

thresholds.  Instead, all of these functions are continuous and differentiable down to zero pollutant levels. 

A threshold may be imposed on these models, however, in several ways, and there are various points at

which the threshold could be set.  (A threshold can be set at any point. There are some points, however,

that may be considered more obvious candidates than others.)  One possible threshold might be the

background level of the pollutant.  Another might be a relevant standard for the pollutant.  Whatever the

threshold, the implication is that there are no effects below the threshold.

A threshold model can be constructed in more than one way.  One method is to simply truncate

the C-R function at the threshold (i.e., to not include any physical effect changes associated with PM

concentrations below the designated threshold).  This method uses the original C-R function, but

calculates the change in PM as [max(T,baseline PM) - max(T, regulatory alternative PM)], where T

denotes the designated threshold.  This threshold model will predict a smaller incidence of the health

effect than the original model without a threshold.  Clearly, as T increases, the predicted incidence of the

health effect will decrease.

An alternative method is to replace the original C-R function with a “hockey stick” model that

best approximates the original function  estimated using actual data.  The hockey stick model is horizontal

up to a designated threshold PM level, T, and is linear with a positive slope for PM concentrations greater

than T.  Recall the log-linear C-R function:

Assuming that the value of the coefficient, $, depends on the level of PM, we get:

Ideally, the coefficients would be estimated based on the data in the original study – that is, a

hockey stick model would be fit to the original data, so that the threshold model that is most consistent

with the available information would be chosen.  If a threshold model could be estimated from the original

data, it is unlikely that "’ would equal " or that $’ would equal $, because such a hockey stick model

would be consistently below the original model (equation (6)), except at PM=0 (where the two models

would coincide).  If that were the hockey stick model that best fit the data, then it is unlikely that the best

fitting linear model would be consistently above it.  Instead, the hockey stick model that best fits the same

data would most likely have "’>" and $’>$.  A graph of this model would therefore cross the graph of the

linear model at two points.  Whether such a hockey stick threshold model predicted a greater or smaller

incidence of the health effect than the linear model would depend on the distribution of PM levels.  It is

worth noting that the graph of the first type of threshold model, in which the C-R function is simply
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truncated at the threshold, would be discontinuous at the threshold.  This is highly unlikely to be a good

model of the actual relationship between PM and any health endpoint. 

There is some evidence that, at least for particulate matter, not only is there no threshold, but the

PM coefficient may actually be larger at lower levels of PM and smaller at higher levels.  Examining the

relationship between particulate matter (measured as TSP) and mortality in Milan, Italy during the ten

year period 1980-1989, Rossi et al. (1999) fitted a model with one slope across the entire range of TSP

and an additional slope for TSP greater than 200 :g/m3 .  The second slope was statistically significant

(p<0.0001) and negative, indicating a lower slope at higher TSP levels.

 

Application of a Single C-R Function Everywhere 

Whether the C-R relationship between a pollutant and a given health endpoint is estimated by a

single function from a single study or by a pooled function of C-R functions from several studies, that

same C-R relationship is applied everywhere in the benefits analysis.  Although the C-R relationship may

in fact vary somewhat from one location to another (for example, due to differences in population

susceptibilities or differences in the composition of PM), location-specific C-R functions are available only

for those locations in which studies were conducted.  While a single function applied everywhere may

result in overestimates of incidence changes in some locations and underestimates of incidence changes in

other locations, these location-specific biases will to some extent cancel each other out when the total

incidence change is calculated.  It is not possible to know the extent or direction of the bias in the total

incidence change based on application of a single C-R function everywhere.

Estimating Pollutant-Specific Benefits Using Single Pollutant vs. Multi-Pollutant Models

Many studies include multiple pollutants, like ozone and particulate matter, in their final models. 

For this analysis, however, we are estimating benefits for only particulate matter.  This presents a

challenge because it is often difficult to separate out the effect of a single pollutant from the effects of

other pollutants in the mix.  Multi-pollutant models have the advantage that the coefficient for a single

pollutant in such a model will be unbiased (so that the effects of other pollutants will not be attributed

falsely to the single pollutant).  However, the variance of the estimator of the coefficient of the pollutant

of interest will increase as the correlations between the other pollutants in the model and that pollutant

increase.  If the other pollutants in the model are highly correlated with the pollutant of interest, we would

have an unbiased but unstable (high variance) estimator.  However, while single pollutant models have the

advantage of more stable estimators, the coefficient estimate in a single pollutant model could be biased in

such a model.  We could consider the single pollutant as an “indicator pollutant” – i.e., an indicator of a

pollution mix – if we use single pollutant models.  However, there is no guarantee that the composition of

the pollution mix will remain the same under a control scenario that targets only a single pollutant.  

This analysis uses both single pollutant and multi-pollutant models to derive PM-specific benefit

estimates.  When more than one study has estimated the relationship between a given endpoint and a

given pollutant, information from both single-pollutant and multi-pollutant models may be pooled to derive

pollutant-specific benefits estimates.  For example, the benefits predicted by a model with only PM may

be pooled with the benefits predicted by a model with both PM and ozone to derive an estimate of the

PM-related benefits associated with a given endpoint.  



6 In studies of the effects of PM10 on mortality, for example, if the composition of PM10 varies

among study locations the underlying relationship between mortality and PM10 may be different from one

study location to another.  For example, fine particles make up a greater fraction of PM10 in Philadelphia

County than in Southeast Los Angeles County.  If fine particles are disproportionately responsible for

mortality relative to coarse particles, then one would expect the true value of $ for PM10 in Philadelphia

County to be greater than the true value of $ for PM10 in Southeast Los Angeles County.  This would
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Though this analysis estimates the benefits associated with reductions in PM alone, it is worth

mentioning that there is the possibility of mis-characterizing benefits if some of the studies used are single

pollutant models.  Suppose, for example, that only ozone is actually associated with a given endpoint, but

PM appears to be associated only because it is correlated with ozone.  The benefits predicted by a single

pollutant PM model would, in that case, actually reflect the benefits of reducing ozone, to the extent that

PM and ozone are correlated.  If only one pollutant is being associated with the endpoint in this analysis

(e.g., chronic bronchitis is associated only with PM in this analysis), this is not a problem.

Pooling Study Results

When only a single study estimated the C-R relationship between a pollutant and a given health

endpoint, the estimation of a population cell-specific incidence change, )y, is straightforward, as noted

above.  When several studies have estimated C-R relationships between a pollutant and a given health

endpoint, the results of the studies can be pooled to derive a single estimate of the function.  If the

functional forms, pollutant averaging times, and study populations are all the same (or very similar), a

pooled, “central tendency” C-R function can be derived from multiple study-specific C-R functions.  Even

if there are differences among the studies, however, that make a pooled C-R function infeasible, a pooled

estimate of the incidence change, )y, and/or the monetary benefit of the incidence change can be

obtained by incorporating the appropriate air quality data into the study-specific C-R functions and pooling

the resulting study-specific predictions of incidence change.  Similarly, study-specific predictions of

incidence change can be combined with unit dollar values to produce study-specific predictions of

benefits. 

Whether the pooling is done in “coefficient space,” “incidence change space,” or “dollar space,”

the question of the relative weights assigned to the estimates (of coefficients, incidence changes, or dollar

benefits) from each input study must be addressed.  One possibility is simply averaging the estimates from

all the studies.  This has the advantage of simplicity, but the disadvantage of not taking into account the

measured uncertainty of each of the estimates.  Estimates with great uncertainty surrounding them are

given the same weight as estimates with very little uncertainty. 

An alternative approach to pooling incidence estimates from different studies is to give more

weight to studies with little estimated variance than to studies with a great deal of estimated variance. 

The exact way in which weights are assigned to estimates from different studies in a pooled analysis

depends on the underlying assumption about how the different estimates are related to each other.  Under

the assumption that there is actually a distribution of true effect coefficients, or $’s, that differ by location

and/or study (referred to as the random effects model), the different coefficients reported by different

studies may be estimates of different underlying coefficients, rather than just different estimates of the

same coefficient.  In contrast to the “fixed-effects” model (which assumes that there is only one $

everywhere), the random-effects model allows the possibility that different studies are estimating different

parameters.6 



violate the assumption of the “fixed effects” model.  However, applying a random effects model assumes

that the observed set of coefficients is representative of coefficients in the policy region.
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A third approach to pooling studies is to apply subjective weights to the studies, rather than

conducting a random effects pooling analysis.  If the analyst is aware of specific strengths and

weaknesses of the studies involved, this prior information may be used as input to the calculation of

weights which reflect the relative reliability of the estimates from the studies.

In those cases in which pooling of information from multiple studies was an option in this analysis,

pooling was done in both “incidence change space” and “dollar benefit space.”  The hypothesis of fixed

effects was tested.  If this hypothesis was rejected, an underlying random effects model was used as the

basis for weighting of studies.  A more detailed description of the pooling procedure used is given below

in the section on hospital admissions.

Valuing Changes in Health Effects

This section discusses a number of issues that arise in valuing changes in health effects.  The first

section provides some background on willingness to pay (WTP).  The second section discusses the

possibility that as income changes then WTP would also change.  The third section describes inflation

issues are addressed.  The WTP estimates were originally calculated in a variety of different years, and

hence reflect values in values expressed in the a variety of different inflation amounts.  The fourth section

describes how we adjust  the original WTP estimates dollars to correct for inflation to get estimates in

1999 dollars.  In the last section, we briefly review how we aggregate benefits estimates.

Willingness To Pay Estimation

WTP is a measure of value an individual places on gaining an outcome viewed as desirable, be it

something that can be purchased in a market or not.  The WTP measure, therefore,  is the amount of

money such that the individual would be indifferent between having the good (or service) and having the

money.  An alternative measure of economic value is willingness to accept (WTA) a monetary

compensation to offset a deterioration in welfare, such that the individual would be indifferent between

having the money and not having the deterioration.  Whether WTP or WTA is the appropriate measure

depends on how property rights are assigned.  Consider an increase in air pollution.  If society has

assigned property rights so that people have a right to clean air, then they must be compensated for an

increase in the level of air pollution.  The appropriate measure of the value of avoiding an increase in air

pollution, in this case, would be the amount people would be willing to accept in compensation for the

more polluted air.  If, on the other hand, society has not assigned people the right to clean air, then the

appropriate measure of the value of avoiding an increase in air pollution would be what people are willing

to pay to avoid it.  The assignment of property rights in our society is unclear.  WTP is by far the more

common measure used in benefits analyses, however, reflecting the fact that this is a much more common

measure in the empirical valuation literature.  In this analysis, wherever possible, the valuation measures

are in terms of WTP.  Where such estimates are not available, alternative measures are used, such as

cost-of-illness and wage-risk studies.  These are discussed for each endpoint where applicable.
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For both market and non-market goods, WTP reflects individuals’ preferences.  Because

preferences are likely to vary from one individual to another, WTP for both market (e.g., the purchase of

a new automobile) and non-market goods (e.g., health-related improvements in environmental quality) is

likely to vary from one individual to another.  In contrast to market goods, non-market goods such as

environmental quality improvements, are public goods, whose benefits are shared by many individuals. 

The individuals who benefit from the environmental quality improvement may have different WTPs for

this non-market good.  The total social value of the good is the sum of the WTPs of all individuals who

“consume” (i.e., benefit from) the good.  

In the case of health improvements related to pollution reduction, it is not certain specifically who

will receive particular benefits of reduced pollution.  For example, the analysis may predict 100 hospital

admissions for respiratory illnesses avoided, but the analysis does not estimate which individuals will be

spared those cases of respiratory illness that would have required hospitalization.  The health benefits

conferred on individuals by a reduction in pollution concentrations are, then, actually reductions in the

risk of having to endure certain health problems.  These benefits (reductions in risk) may not be the same

for all individuals (and could be zero for some individuals).  Likewise, the WTP for a given benefit is likely

to vary from one individual to another.  In theory, the total social value associated with the decrease in

risk of a given health problem resulting from a given reduction in pollution concentrations is:

where Bi is the benefit (i.e., the reduction in risk of having to endure the health problem) conferred on the

ith individual (out of a total of N) by the reduction in pollution concentrations, and WTPi(Bi) is the ith

individual’s WTP for that benefit.  

If a reduction in pollution concentrations affects the risks of several health endpoints, the total

health-related social value of the reduction in pollution concentrations is:

 

where Bij is the benefit related to the jth health endpoint (i.e., the reduction in risk of having to endure the

jth health problem) conferred on the ith individual by the reduction in pollution concentrations, and

WTPi(Bij) is the ith individual’s WTP for that benefit.  

The reduction in risk of each health problem for each individual is not known, nor is each

individual’s WTP for each possible benefit he or she might receive known.  Therefore, in practice,

benefits analysis estimates the value of a statistical health problem avoided.  For example, although a

reduction in pollutant concentrations may save actual lives (i.e., avoid premature mortality), whose lives

will be saved cannot be known ex ante.  What is known is that the reduction in air pollutant

concentrations results in a reduction in mortality risk.  It is this reduction in mortality risk that is valued in a

monetized benefit analysis.  Individual WTPs for small reductions in mortality risk are summed over

enough individuals to infer the value of a statistical life saved.  This is different from the value of a
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particular, identified life saved.  Rather than  “WTP to avoid a death,” then, it is more accurate to use the

term “the value of a statistical life.”   

Suppose, for example, that a given reduction in PM concentrations results in a decrease in

mortality risk of 1/10,000.  Then for every 10,000 individuals, one individual would be expected to die in

the absence of the reduction in PM concentrations (who would not die in the presence of the reduction in

PM concentrations).  If WTP for this 1/10,000 decrease in mortality risk is $500 (assuming, for now, that

all individuals’ WTPs are the same), then the value of a statistical life is 10,000 x $500, or $5 million. 

A given reduction in PM concentrations is unlikely, however, to confer the same risk reduction

(e.g., mortality risk reduction) on all exposed individuals in the population.  (In terms of the expressions

above, Bi is not necessarily equal to Bj , for i …j).  In addition, different individuals may not be willing to

pay the same amount for the same risk reduction.  The above expression for the total social value

associated with the decrease in risk of a given health problem resulting from a given reduction in pollution

concentrations may be rewritten to more accurately convey this.  Using mortality risk as an example, for

a given unit risk reduction (e.g., 1/1,000,000), the total mortality-related benefit of a given pollution

reduction can be written as:

where marginal WTPi(x) is the ith individual’s marginal willingness to pay curve, ni is the number of units

of risk reduction conferred on the ith exposed individual as a result of the pollution reduction, and N is the

total number of exposed individuals.  

The values of a statistical life implied by the value-of-life studies were derived from specific risk

reductions.  Implicit in applying these values to a situation involving possibly different risk reductions is the

assumption that the marginal willingness to pay curve is horizontal – that is, that WTP for n units of risk

reduction is n times WTP for one unit of risk reduction.  If the marginal willingness to pay curve is horizontal,

the integral in the above expression becomes a simple product of the number of units of risk reduction times

the WTP per unit.  The total mortality-related benefit (the expression above) then becomes:

If different subgroups of the population have substantially different WTPs for a unit risk reduction

and substantially different numbers of units of risk reduction conferred on them, then estimating the total social

benefit by multiplying the population mean WTP (MWTP) to save a statistical life times the predicted number

of statistical lives saved could yield a biased result.  Suppose, for example, that older individuals’ WTP per

unit risk reduction is less than that of younger individuals (e.g., because they have fewer years of expected

life to lose).  Then the total benefit will be less than it would be if everyone’s WTP were the same.  In

addition, if each older individual has a larger number of units of risk reduction conferred on him (because a

given pollution reduction results in a greater absolute reduction in risk for older individuals than for younger

individuals), this, in combination with smaller WTPs of older individuals, would further reduce the total benefit.

 



7 Some health effects, such as technical measures of pulmonary functioning (e.g., forced

expiratory volume in one second) are frequently studied by epidemiologists, but there has been very little

work by economists on valuing these changes (e.g., Ostro et al., 1989).
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While the estimation of WTP for a market good (i.e., the estimation of a demand schedule) is not a

simple matter, the es timation of WTP for a non-market good, such as a decrease in the risk of having a

particular health problem, is substantially more difficult.  Estimation of WTP for decreases in very specific

health risks (e.g., WTP to decrease the risk of a day of coughing or WTP to decrease the risk of admission

to the hospital for respiratory illness) is further limited by a paucity of information.7  Derivation of the dollar

value estimates discussed below was often limited by available information. 

Change Over Time in WTP in Real Dollars

The WTP for health-related environmental improvements (in real dollars) could change between now

and the years 2010 and 2020.  If real income increases between now and the year 2010, for example, it is

reasonable to expect that WTP, in real dollars, would also increase.  Below we summarize the evidence

regarding this effect, however we do not adjust our results in this analysis, because of the uncertainty

regarding the size of the effect.

Based on historical trends, the U.S. Bureau of Economic Analysis projects that, for the United States

as a whole as well as for regions and states within the U.S., mean per capita real income will increase.  For

the U.S. as a whole, for example, mean per capita personal income is projected to increase by about 16

percent from 1993 to 2005 (U.S. Bureau of Economic Analysis, 1995).  

The mean WTP in the population is the correct measure of the value of a health problem avoided,

and that WTP is a function of income.  If the mean per capita real income rises by the year 2010, the mean

WTP would probably rise as well.  While this is most likely true, the degree to which mean WTP rises with

a rise in mean per capita income is unclear unless the elasticity of WTP with respect to changes over time

in real income is 1.0.

There is some evidence (Loehman and De, 1982; Mitchell and Carson, 1986; Alberini et al., 1997)

that the elasticity of WTP for health-related environmental improvements with respect to real income is less

than 1.0, possibly substantially so.  If this is the case, then changes in mean income cannot be readily

translated into corresponding changes in mean WTP.  Although an increase in mean income is likely to imply

an increase in mean WTP, the degree of the increase cannot be ascertained from information only about the

means.

Several factors, in addition to real income,  that could affect the estimated benefit associated with

reductions in air pollution concentrations could also change in the future  Demographic characteristics of

exposed populations could change.  Technological advances could change both the nature of precursor

emissions to the ambient air and the susceptibility of individuals to air pollution.  Any such changes would be

reflected in C-R functions that differ from those that describe current relationships between ambient

concentrations and the various health endpoints.  While adjustments of WTP to reflect changes in real income

are of interest, such adjustments would by no means necessarily reflect all possible changes that could affect

the future benefits of reduced air pollution.
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Adjusting Benefits Estimates to Year 1999 Dollars

This section describes the methods used to convert benefits estimates to constant 1999 dollars.  This

is necessary because some of the WTP estimates that we use are measured in dollars from different years.

The method that we use depends on the basis of the benefits estimates.  Table 4-1 delineates these bases.

Table 4-1  Bases of Benefits Estimation

Basis of Benefit Estimation Benefit Endpoints

Cost of illness Hospital admissions avoided

Direct estimates of WTP Statistical lives saved

Chronic bronchitis

Morbidity endpoints using WTP

Earnings Work loss days (WLDs) avoided

Benefits estimates based on cost-of-illness have been adjusted by using the consumer price indexes

(CPI-Us) for medical care.  Because increases in medical costs have been significantly greater than the

general rate of inflation, using a general inflator (the CPI-U for “all items” or some other general inflator) to

adjust from previous year dollars to 1999 dollars would downward bias cost-of-illness estimates in 1999

dollars.

Benefits estimates based directly on estimates of WTP have been adjusted using the CPI-U for “all

items.”  The CPI-Us, published by the U.S. Dept. of Labor, Bureau of Labor Statistics, can be found in

Council of Economic Advisers (2004, Table B-58).  An overview of the adjustments from 1990 to 1999 dollars

for WTP-based and cost-of-illness based valuations is given in Table 4-2.
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Table 4-2  Consumer Price Indexes Used to Adjust WTP-Based and Cost-of-Illness-Based

Benefits Estimates from 1990 Dollars to 1999 Dollars

1990

(1)

1999

(2)

Adjustment Factor a

(2)/(1)

Relevant Endpoints

CPI-U for “All Items”  b 130.7 166.6 1.275 WTP-based valuation:

1. Statistical lives saved c

2. Chronic bronchitis

3.  Morbidity endpoints using WTP
d

CPI-U for Medical Care b 162.8 250.6 1.539 Cost-of-illness based valuation:

Hospital admissions avoided e

a Benefits estimates in 1990 dollars are multiplied by the adjustment factor to derive benefits estimates in 1999

dollars.

b Source: Dept. of Labor, Bureau of Labor Statistics; reported in Council of Economic Advisers (2000, Table B-

58)

c Adjustments to 1990 $ were originally made by Industrial Economics Inc. using the CPI-U for “all items”

(IEc1992).

d Adjustments of WTP-based benefits for morbidity endpoints to 1990 $ were originally made by Industrial

Economics Inc. (1993) using the CPI-U for “all items.”

e Adjustments of cost-of-illness based estimates of all hospital admissions avoided to 1990 $ were made by

Abt Associates Inc. in previous analyses, such as the NAAQS RIA (U.S. EPA, 1997).  

Benefit estimates for work loss days (WLDs) avoided have in past analyses been based on either

the mean or median daily wage. For this analysis, the valuation of the benefit of avoiding a work loss day used

the median daily income rather than the mean, consistent with economic  welfare theory.  The income

distribution in the United States is highly skewed, so that the mean income is substantially larger than the

median income.  However, the incomes of those individuals who lose work days due to pollution are not likely

to be a random sample from this income distribution.  In particular, the probability of being drawn from the

upper tail of the distribution is likely to be substantially less than the probability mass in that tail.  To reflect

this likelihood, we used the median income rather than the mean income as the value of a work loss day.  This

is explained more fully below in the section on valuing work loss days.  

The benefits estimates for WLDs avoided can be put into 1999 dollars in several ways.  One

approach is to obtain the 1998 median weekly earnings (the most up-to-date measure of earnings available),

divide by five to derive the median daily earnings, and adjust the median earnings from 1998 to 1999 dollars.

This is an alternative to relying on adjustments from 1990 to 1999 dollars.  The median weekly earnings of

full-time wage and salary workers in 1998 was $523 (U.S. Bureau of the Census 1998, Table 696).  This

implies a median daily earnings of $104.6, or rounded to the nearest dollar, $105.  Alternatively, we can adjust

the median daily wage for 1990 to 1999 dollars, using the CPI-U for “all items.”  The result turns out to be

the same.  The adjustment factor (the ratio of the 1999 CPI-U to the 1990 CPI-U) is 1.275.  Applied to the

median daily earnings of $82.4 in 1990, the median daily earnings in 1997 would be $105.1, or rounded to the

nearest dollar, $105.



8The population of interest has not been defined.  In a location-specific analysis, the population of

interest is the population in that location.  The MWTP is ideally the mean of the WTPs of all individuals in

the location.  There is insufficient information, however, to estimate the MWTP for any risk reduction in

any particular location.  Instead, estimates of MWTP for each type of risk reduction will be taken to be

estimates of the MWTP in the United States as a whole, and it will be assumed that MWTPi, i=1, ..., N in

each location is approximately the same as in the United States as a whole.   
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Aggregation of Monetized Benefits

The total monetized benefit associated with attaining a given set of pollution changes in a given

location is just the sum of the non-overlapping benefits associated with these changes.  In theory, the total

health-related social value of the reduction in pollution concentrations is:

 

where Bij is the benefit related to the jth health endpoint (i.e., the reduction in probability of having to endure

the jth health problem) conferred on the ith individual by the reduction in pollution concentrations, and

WTPi(Bij) is the ith individual’s WTP for that benefit. 

As stated earlier, the reduction in probability of each health problem for each individual is not known,

nor do we know each individual’s WTP for each possible benefit he or she might receive.  Therefore, in

practice, benefits analysis estimates the value of a statistical health problem avoided.  The benefit in the kth

location associated with the jth health endpoint is just the change in incidence of the jth health endpoint in the

kth location, )yjk, times the value of an avoided occurrence of the jth health endpoint. 

Assuming that WTP to avoid the risk of a health effect varies from one individual to another, there

is a distribution of WTPs to avoid the risk of that health effect.  This population distribution has a mean.  It

is this population mean of WTPs to avoid or reduce the risk of the jth health effect, MWTP j, that is the

appropriate value in the benefit analysis.8  The monetized benefit associated with the jth health endpoint

resulting from attainment of standard(s) in the kth location, then, is:

and total monetized benefit in the kth location (TMBk) may be written as the sum of the monetized benefits

associated with all non-overlapping endpoints: 

The location- and health endpoint-specific incidence change, )yjk, is modeled as the population

response to the change in pollutant concentrations in the kth location.  Assuming a log-linear C-R function, the

change in incidence of the jth health endpoint in the kth location corresponding to a change in PM, )PMk, in

the kth location is:
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where yjk is the baseline incidence of the jth health endpoint in the kth location and $jk is the value of  $j , the

coefficient of PM in the C-R relationship between PM and the jth health endpoint, in the kth location.  

This approach assumes that there is a distribution of $j’s across the United States, that is, that the

value of $j in one location may not be the same as the value of $j in another location.  The value of $j in the

kth location is denoted as $jk .

The total PM-related monetized benefit for the kth location can now be rewritten as:

The total monetized PM-related benefit to be estimated for a location is thus a function of 2N parameters:

the coefficient of PM, $jk , in the C-R function for the jth health endpoint, for j=1, ..., N, specific to the kth

location, and the population mean WTP to reduce the risk of the jth health endpoint, MWTPj , j=1, ..., N. 

The above model assumes that total monetized benefit is the sum of the monetized benefits from all

non-overlapping endpoints.  If two or more endpoints were overlapping, or if one was contained within the

other (as, for example, hospital admissions for Chronic  Obstructive Pulmonary Disease (COPD) is contained

within hospital admissions for “all respiratory illnesses”), then adding the monetized benefits associated with

those endpoints would result in double (or multiple) counting of monetized benefits.  If some endpoints that

are not contained within endpoints included in the analysis are omitted, then the aggregated monetized benefits

will be less than the total monetized benefits.

The total monetized benefit (TMB) is the sum of the total monetized benefits achieved in each

location:

where TMBk denotes the total monetized benefit achieved in the kth location, and K is the number of

locations.

Theoretically, the nation-wide analysis could use location-specific C-R functions to estimate location-

specific  benefits.  Total monetized benefits (TMB), then, would just be the sum of these location-specific

benefits:



9This may also be true of the yij’s.  It may be desirable to apply the uncertainty analysis used for

the $’s to these population parameters as well.  In the current discussion, however, it is assumed that the

location-specific incidences are known and therefore have no uncertainty associated with them.  It is also

assumed that MWTPi is the same in all locations.
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There are many locations in the United States, however, and the individual location-specific  values of $j (the

$jk’s)  are not known.9  Since the national incidence of the jth health endpoint attributed to PM, Ij , is a

continuous function of the set of $jk’s, that is, since:

is a continuous function of the set of $jk’s, there is some value of $j , which can be denoted $j*, that, if applied

in all locations, would yield the same result as the proper set of location-specific $jk’s.  This follows from the

Intermediate Value Theorem.  While $j* will result in overestimates of incidence in some locations, it will

result in underestimates in others.  If $j* is applied in all locations, however, the total regional change in

incidence will be correct.  That is,

The total regional monetized PM-related benefit can now be rewritten as:

The total regional monetized (PM-related) benefit is thus a function of 2N population means: the $* for the

jth health endpoint ($j* , for j=1, ..., N) and the population mean WTP to reduce the risk of the jth health

endpoint (MWTPj , j=1, ..., N).  

Both the endpoint-specific  coefficients (the ÿj’s) and the endpoint-specific  mean WTPs (the

MWTPj’s) are uncertain.  One approach to estimating the total monetized benefit is to simply use the mean

values of the endpoint-specific  coefficients and mean WTPs in the above formula.  We term this approach

the “simple mean.”  Alternatively, we can characterize not only the mean total monetized benefit but the

distribution of possible values of total monetized benefit, using a Monte Carlo approach.  The Monte Carlo

approach has three steps.  First, in each of 5000 iterations, we randomly select a value from the distribution

of (national) incidence change of the health effect.  Second, we randomly select a value from the distribution
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of unit dollar values for that health effect.  And third, we multiply the two values.  The result is a distribution

of (5000) monetized benefits associated with the given health effect.  From this distribution, we present the

mean as well as the 5th and 95th percentiles.  We discuss the background of the Monte Carlo in the following

sub-section.

Characterization of Uncertainty

In any complex analysis using estimated parameters and inputs from numerous different models, there

are likely to be many sources of uncertainty.  This analysis is no exception.  There are many inputs that are

used to derive the final estimate of benefits, including emission inventories, air quality models (with their

associated parameters and inputs), epidemiological estimates of C-R functions, estimates of values (both from

WTP and cost-of-illness studies), population estimates, income estimates, and estimates of the future state

of the world, i.e. regulations, technology, and human behavior.  Each of these inputs may be uncertain, and

depending on their location in the benefits analysis, may have a disproportionately large impact on final

estimates of total benefits.  For example, emissions estimates are used in the first stage of the analysis.  As

such, any uncertainty in emissions estimates will be propagated through the entire analysis.  When

compounded with uncertainty in later stages, small uncertainties in emissions can lead to much larger impacts

on total benefits.

Table 4-3 summarizes the wide variety of sources for uncertainty in this analysis.  Some key sources

of uncertainty in each stage of the benefits analysis are:

•  gaps in scientific data and inquiry

•  variability in estimated relationships, such as C-R functions, introduced through differences in study

design and statistical modeling

•  errors in measurement and projection for variables such as population growth rates

•  errors due to misspecification of model structures, including the use of surrogate variables, such

as using PM10 when PM2.5 is not available, excluded variables, and simplification of complex

functions

•  biases due to omissions or other research limitations.

In some cases, it was not possible to quantify uncertainty.  For example, many benefits categories,

while known to exist, do not have enough information available to provide a quantified or monetized estimate.

The uncertainty regarding these endpoints is such that we could determine neither a primary estimate nor a

plausible range of values.  Of the primary endpoints we do quantify, a number of alternative measures of

mortality incidence can be calculated.  We present the full suite of alternative mortality calculations as a way

to address the range of plausible mortality incidence estimates. This is discussed in greater detail in Chapter

5.

A final approach to measuring uncertainty is through probabilistic  assessments where statistical

uncertainty bounds are calculated for each endpoint.  We discuss statistical uncertainty bounds in the

following section.
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Table 4-3  Key Sources of Uncertainty in the Benefit Analysis

1.  Uncertainties Associated With Concentration-Response Functions

-The value of the PM-coefficient in each C-R function.

-Application of a single C-R function to pollutant changes and populations in all locations.

-Similarity of future year C-R relationships to current C-R relationships. 

-Correct functional form of each C-R relationship. 

-Extrapolation of C-R relationships beyond the range of PM concentrations observed in the study. 

2.  Uncertainties Associated With PM Concentrations 

-Estimating future-year baseline daily PM concentrations.

-Estimating the change in PM resulting from the control policy.

3.  Uncertainties Associated with PM Mortality Risk

-No scientific literature supporting a direct biological mechanism for observed epidemiological evidence.

-Direct causal agents within the complex mixture of PM responsible for reported health effects have not been

identified.

-The extent to which adverse health effects are associated with low level exposures that occur many times in the

year versus peak exposures.

-Possible confounding in the epidemiological studies of PM2.5, effects with other factors (e.g., other air

pollutants, weather, indoor/outdoor air, etc.).

-The extent to which effects reported in the long-term studies are associated with historically higher levels of PM

rather than the levels occurring during the period of study.

-Reliability of the limited ambient PM2.5 monitoring data in reflecting actual PM2.5 exposures.

4.  Uncertainties Associated With Possible Lagged Effects

-What portion of the PM-related long-term exposure mortality effects associated with changes in annual PM

levels would occur in a single year, and what portion might occur in subsequent years.

5.  Uncertainties Associated With Baseline Incidence Rates

-Some baseline incidence rates are not location-specific (e.g., those taken from studies) and may therefore not

accurately represent the actual location-specific rates.

-Current baseline incidence rates may not well approximate what baseline incidence rates will be in the year

2030.

-Projected population and demographics -- used to derive incidences –  may not well approximate future-year

population and demographics.

6.  Uncertainties Associated With Economic Valuation

-Unit dollar values associated with health are only estimates of mean WTP and therefore have uncertainty

surrounding them. 

-Mean WTP (in constant dollars) for each type of risk reduction may differ from current estimates due to

differences in income or other factors.

7.  Uncertainties Associated With Aggregation of Monetized Benefits

-Health benefits estimates are limited to the available C-R functions.  Thus, unquantified benefit categories will

cause total benefits to be underestimated.

Statistical Uncertainty Bounds



10 Because this is a regional analysis in which, for each endpoint, a single C-R function is applied

everywhere, there are two sources of uncertainty about incidence: (1) statistical uncertainty (due to

sampling error) about the true value of the pollutant coefficient in the location where the C-R function

was estimated, and (2) uncertainty about how well any given pollutant coefficient approximates $*.

11 Although such an “uncertainty distribution” is not formally a Bayesian posterior distribution, it is

very similar in concept and function (see, for example, the discussion of the Bayesian approach in

Kennedy1990, pp. 168-172).

12 This method assumes that the incidence change and the unit dollar value for an endpoint are

stochastically independent.
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Although there are several sources of uncertainty affecting estimates of endpoint-specific benefits,

the sources of uncertainty that are most readily quantifiable in this analysis are the incidence changes

(deriving from uncertainty about the C-R relationships) and uncertainty about unit dollar values.  The total

dollar benefit associated with a given endpoint depends on how much the endpoint will change due to the final

standard (e.g., how many premature deaths will be avoided) and how much each unit of change is worth (e.g.,

how much a premature death avoided is worth).10  Based on these distributions, we provide estimates of the

5th and 95th percentile values of the distribution of estimated benefits.  However, we hasten to add that this

omits important sources of uncertainty, such as the contribution of air quality changes, baseline population

incidences, projected populations exposed, transferability of the C-R function to diverse locations, and

uncertainty about premature mortality.  Thus, a confidence interval based on the standard error would provide

a misleading picture about the overall uncertainty in the estimates.  The empirical evidence about uncertainty

is presented where it is available.

Both the uncertainty about the incidence changes and uncertainty about unit dollar values can be

characterized by  distributions.  Each “uncertainty distribution” characterizes our beliefs about what the true

value of an unknown (e.g., the true change in incidence of a given health effect) is likely to be, based on the

available information from relevant studies.11  Unlike a sampling distribution (which describes the possible

values that an estimator of an unknown value might take on), this uncertainty distribution describes our beliefs

about what values the unknown value itself might be.  Such uncertainty distributions can be constructed for

each underlying unknown (such as a particular pollutant coefficient for a particular location) or for a function

of several underlying unknowns (such as the total dollar benefit of a regulation).  In either case, an uncertainty

distribution is a characterization of our beliefs about what the unknown (or the function of unknowns) is likely

to be, based on all the available relevant information.  Uncertainty statements based on such distributions are

typically expressed as 90 percent credible intervals.  This is the interval from the fifth percentile point of the

uncertainty distribution to the ninety-fifth percentile point.  The 90 percent credible interval is a “credible

range” within which, according to the available information (embodied in the uncertainty distribution of

possible values), we believe the true value to lie with 90 percent probability.

The uncertainty about the total dollar benefit associated with any single endpoint combines the

uncertainties from these two sources, and is estimated with a Monte Carlo method.  In each iteration of the

Monte Carlo procedure, a value is randomly drawn from the incidence distribution and a value is randomly

drawn from the unit dollar value distribution, and the total dollar benefit for that iteration is the product of the

two.12  If this is repeated for many (e.g., thousands of) iterations, the distribution of total dollar benefits

associated with the endpoint is generated. 
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Using this Monte Carlo procedure, a distribution of dollar benefits may be generated for each

endpoint.  The mean and median of this Monte Carlo-generated distribution are good candidates for a point

estimate of total monetary benefits for the endpoint.  As the number of Monte Carlo draws gets larger and

larger, the Monte Carlo-generated distribution becomes a better and better approximation to the underlying

uncertainty distribution of total monetary benefits for the endpoint.  In the limit, it is identical to the underlying

distribution.

Unquantified Benefits

In considering the monetized benefits estimates, the reader should remain aware of the limitations.

One significant limitation of benefits analyses is the inability to quantify many of the PM adverse effects.  For

many effects, reliable C-R functions and/or valuation functions are not currently available such as infant

mortality.  In general, if it were possible to monetize these benefits categories, the benefits estimates

presented here would increase.
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5 Health Benefits

The most significant monetized benefits of reducing ambient concentrations of PM are attributable

to reductions in health risks associated with air pollution.  This Chapter describes individual effects and the

methods used to quantify and monetize changes in the expected number of incidences of various health

effects.

We estimate the incidence of adverse health effects using PM-based C-R functions.  The changes

in incidence of PM-related adverse health effects and corresponding monetized benefits associated with these

changes are estimated separately. Table 5-1 presents the PM-related health endpoints included in this

analysis, and Table 5-2 presents the unit monetary values for each of these endpoints and associated

uncertainty distributions.  Appendix A presents the functional forms for each C-R function and their

derivation.

 Below, we discuss for each endpoint issues relating to the calculation of changes in incidence, the

monetization of these changes, and the characterization of the uncertainty surrounding our estimates.  For

some of the endpoint-pollutant combinations, there are several epidemiological studies that have estimated

C-R functions.  In these cases, we pooled the information from the multiple studies.  That is, we based the

estimation of the change in incidence and the corresponding monetized value of that change on a synthesis

of the information from the available studies. 
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Table 5-1  PM-Related Health Endpoints

Endpoint Population PM

Measure

Study

Mortality

Associated with long-term exposure Ages 30+ PM2.5 (Krewski et al., 2000), reanalysis of

Pope et al., 1995, using the annual

mean and all-cause mortality, 63 city

Dichotomous samplers.

Chronic Illness

Chronic Bronchitis Ages 27+ PM2.5 Abbey et al. (1995c)

Heart Attacks

Acute Myocardial Infarction(Non-fatal) Ages 18+ PM2.5 Peters et al. (2001)

Hospital Admissions

 Chronic Lung Disease Less Asthma(ICD

codes 490-492, 494-496)

Ages 18-64 PM2.5 Moolgavkar (2000c)

Asthma (ICD code 493) < 65 PM2.5 Sheppard et al. (1999)

Pneumonia (ICD-9 codes 480-487)  Ages 65+ PM2.5  Lippmann et al. (2000, Detroit)

Chronic Lung Disease (ICD codes 490-

496)

Ages 65+ PM2.5 Pooled Estimate:  Lippmann et al.

(2000), 

Moolgavkar (2000b) 

Cardiovascular (ICD codes 390-409, 411-

429)

Ages 20-64 PM2.5 Moolgavkar (2000a, Los Angeles)

Cardiovascular ((ICD codes 390-409, 411-

429)

age 65+ PM2.5 Pooled Estimate:  Moolgavkar

(2000a),

Lippmann et al. (2000)

Asthma-related ER visits (ICD code 493) < 18 PM2.5 Norris et al. (1999)

Respiratory Symptoms/Illnesses Not Requiring Hospitalization

Acute bronchitis Ages 8-12 PM2.5 Dockery et al. (1996)

Lower respiratory symptoms (LRS) Ages 7-14 PM2.5 Schwartz et al. (1994)

Upper respiratory symptoms (URS) Asthmatics,

ages 9-11

PM10 Pope et al. (1991)

Minor restricted activity day (MRAD)

(adjusted for asthma attacks)

Ages 18-65 PM2.5

(estimated

)

Ostro and Rothschild (1989)

Work loss days (WLDs) Ages 18-65 PM2.5 Ostro (1987)

a The incidence changes, and the associated monetized benefits, predicted by two studies are pooled.  The separate studies and

the method of pooling are described below.  

b The pooled estimate, based on distributed lag models in each of 14 cities, is used because the estimated coefficients based on

pooling are substantially more stable than the individual city-specific estimates.
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Table 5-2  Unit Values for Economic Valuation of Health Endpoints (1999 $)

Health Endpoint Mean Estimate a Uncertainty Distribution a

Mortality

Value of a statistical life $6.12 million per statistical

life b

Weibull distribution, mean = $6.12 million;

std. dev. = $4.13 million.

Chronic Bronchitis

WTP approach $331,000 per case A Monte Carlo-generated distribution, based on

three underlying distributions.

Heart Attacks

Acute Myocardial Infarction

(Non-fatal)
Age        Per Case 

18-24     $63,325  

25-44     $71,755  

45-54     $75,751  

55-64     $135,148

65+        $63,325  

Hospital Admissions

Chronic Lung Disease Less

Asthma(ICD codes 490-492,

494-496) (Ages 20-64)

$11,333 per admission

Asthma (ICD code 493) $7,467 per admission

Pneumonia (ICD codes 480-

487) (Ages 65+)

$17,106 per admission

Chronic Lung Disease (ICD

codes 490-496) (Ages 65+)

$13,083 per admission

Cardiovascular(ICD codes

390-429)

Age

65+            $20,344

20-64         $21,864

Asthma-related ER visits

(Ages < 18)

$275  per visit

Respiratory Ailments Not Requiring Hospitalization

Acute bronchitis $344  per case

Lower resp. Symptoms $15.30 per symptom-day Continuous uniform distribution over [$6.37,

$24.22].

Upper resp. Symptoms $24.23 per symptom-day Continuous uniform distribution over

[$8.93,$42.06].

 Minor respiratory activity day

(MRAD)

$48.43 per day Triangular distribution centered at $48.43 over

[$20.34, $77.76].

Work loss days $106 per day None available

a The derivation of each of the estimates is discussed in the text.

b An adjustment for lagged mortality, discussed in the text, is used in this analysis.  The lag-adjusted value of a statistical life is

approximately 92% of the full value presented here.

c Standard errors were not available.  However, the sample sizes on which these estimates (from the Agency for Healthcare

Research and Policy’s Healthcare Cost and Utilization Project) are very large and the standard errors are therefore negligible.
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d Cost of illness unit dollar values were derived for each separate set of ICD codes for which a C-R model was estimated. 

These are given below.

Premature Mortality

Health researchers have consistently linked air pollution, especially PM, with excess mortality.

Although a number of uncertainties remain to be addressed by continued research (National Research

Council, 1998), a substantial body of published scientific  literature recognizes a correlation between elevated

PM concentrations and increased mortality rates.

There are two types of exposure to elevated levels of air pollution that may result in premature

mortality.  Acute (short-term) exposure (e.g., exposure on a given day) to peak pollutant concentrations may

result in excess mortality on the same day or within a few days of the elevated exposure.  Chronic (long-term)

exposure (e.g., exposure over a period of a year or more) to levels of pollution that are generally higher may

result in mortality in excess of what it would be if pollution levels were generally lower.  The excess mortality

that occurs will not necessarily be associated with any particular episode of elevated air pollution levels.

Both long and short-term exposures to ambient levels of air pollution have been associated with

increased risk of premature mortality.  It is clearly an important health endpoint because of the size of the

mortality risk estimates, the serious nature of the effect itself, and the high monetary value ascribed to

avoiding mortality risk.  Because of the importance of this endpoint and the considerable uncertainty among

economists and policymakers as to the appropriate way to estimate mortality risks, this section discusses some

of the issues surrounding the estimation of premature mortality.

Table 5-3 Alternative Mortality Concentration-Response Functions

Endpoint Population PM Indicator Study

Associated with long-term

exposure 

Ages 30+ PM2.5 (Krewski et al., 2000), reanalysis of Pope et

al., 1995, using the annual mean and all-

cause mortality, 63 city Dichotomous

sampler

Associated with long-term

exposure

Ages 25+ PM2.5  Krewski et al., 2000 - Reanalysis of

Dockery et al. (1993)

Associated with long-term

exposure(Lung Cancer)

Ages 30+ PM2.5 Pope et al., 2002 - Based on ACS Cohort:

Mean PM2.5

Short-Term Versus Long-Term Studies

Long-term studies (e.g., Krewski et al., 2000, and Pope et al., 1995) estimate the association between

long-term (chronic) exposure to air pollution and the survival of members of a large study population over an

extended period of time.  Such studies examine the health endpoint of concern in relation to the general long-

term level of the pollutant of concern, for example, relating annual mortality to some measure of annual



13Zeger et al. (1999, p.  171) reported that: “The TSP-mortality association in Philadelphia is

inconsistent with the harvesting-only hypothesis, and the harvesting-resistant estimates of the TSP relative

risk are actually larger – not smaller – than the ordinary estimates.”
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pollutant level.  Daily peak concentrations would impact the results only insofar as they affect the measure

of long-term (e.g., annual) pollutant concentration.  In contrast, short-term studies relate daily levels of the

pollutant to daily mortality.  By their basic design, daily studies can detect acute effects but cannot detect the

effects of long-term exposures.  A chronic exposure study design (a prospective cohort study, such as the

Pope study(1995) or the Krewski et al (2000)) is best able to identify the long-term exposure effects, and may

detect some of the short-term exposure effects as well.  Because a long-term exposure study may detect

some of the same short-term exposure effects detected by short-term studies, including both types of study

in a benefit analysis would likely result in some degree of double counting of benefits.  While the long-term

study design is preferred, these types of studies are expensive to conduct and consequently there are

relatively few well designed long-term studies.  To avoid double counting, as well as issues involving short-

term harvesting(discussed below in detail), we have used only long-term studies for this analysis.

Degree of Prematurity of Mortality 

It is possible that the short-term studies are detecting an association between PM and mortality that

is primarily occurring among terminally ill people.  Critics of the use of short-term studies for policy analysis

purposes correctly point out that an added risk factor that results in terminally ill people dying a few days or

weeks earlier than they otherwise would have (referred to as “short-term harvesting”) is potentially included

in the measured PM mortality “signal” detected in such a study.  While some of the detected excess deaths

may have resulted in a substantial reduction in lifespan, others may have resulted in a relatively small decrease

in lifespan.  However, there is little evidence to bear on this question.  Studies by Spix et al (1993) and Pope

et al. (1992) yield conflicting evidence, suggesting that harvesting may represent anywhere from zero to 50

percent of the deaths estimated in short-term studies.  A recent study by Zeger et al. (1999), that focused

exclusively on this issue, reported that short-term harvesting may be a quite small fraction of mortality.13  

It is not likely, however, that the excess mortality reported in a long-term prospective cohort studies

like Pope et al. (1995) or Krewski et al. (2000),  contain any significant amount of this short-term harvesting.

The Cox proportional hazard statistical model used in the Pope study examines the question of survivability

throughout the study period (ten years).  Deaths that are premature by only a few days or weeks within the

ten-year study period (for example, the deaths of terminally ill patients, triggered by a short duration PM

episode) are likely to have little impact on the calculation of the average probability of surviving the entire ten-

year interval.

In developing and improving the methods for estimating and valuing the potential reductions in

mortality risk over the years, EPA has consulted with a panel of the Science Advisory Board(SAB).  That

panel recommended use of long-term prospective cohort studies in estimating mortality risk reduction (U.S.

EPA, 1999a).   This recommendation has been confirmed by a recent report from the National Research

Council, which stated that “it is essential to use the cohort studies in benefits analysis to capture all important

effects from air pollution exposure (National Research Council, 2002, p. 108).  The Krewski et al. analysis

also includes a broader geographic scope than the original study (63 cities versus 50).  The SAB has recently

agreed with EPA's selection of this specification for use in analyzing mortality benefits of PM reductions

(U.S. EPA, 2001). 



Abt Associates Inc. June 20045-6

It is not possible to estimate with any degree of confidence how premature is the PM-related

mortality. Making such an estimate requires considerable more understanding of the relationships between

PM and human health than is currently available.  As the amount of prematurity is potentially a very important

issue for public  policy, however, EPA did develop an estimate.  Using an approach developed by the World

Health Organization, the EPA estimated that  "The average number of life-years lost by individuals dying

prematurely from exposure to PM is 14 years."  (Final Report to Congress on Benefits and Costs of the

Clean Air Act, 1970 to 1990",  EPA 410-R-97-002   p.  I-23.

Estimating PM-Related Premature Mortality

The benefits analysis estimates PM2.5 -related mortality using the C-R function estimated by Krewski

et al. (2000).  This study is a reanalysis of (Pope et al., 1995), which estimated the association between long-

term (chronic) exposure to PM2.5  and the survival of members of a large study population.  Our decision to

use Pope et al. (1995) in previous benefits analyses reflected the Science Advisory Board’s explicit

recommendation for modeling the mortality effects of PM in both the§812 Retrospective Report to Congress

and the §812 Prospective Report (U.S. EPA, 1999a, p. 12).  An advantage of Krewski et al. (2000) over

Pope et al. (1995) is that Krewski et al.’s (2000) reanalysis of the Pope data uses the annual mean PM2.5

concentration rather than the annual median. Because the mean is more readily affected by high PM values

than is the median, if high PM days are actually important in causing premature mortality, the annual mean

may be a preferable measure of long-term exposure than the median.  However, estimates of annual mean

levels are inherently less stable than annual median estimates, and are more sensitive to the estimates on the

highly polluted days.  Specifically, we use the Krewski results (Table 31, Krewski et al. (2000)) based on

dichotomous samplers in 63 cities (rather than the 50 cities used in the Pope et al. PM2.5 analysis).

The Krewski et al. (2000) long-term study is selected for use in the benefits analysis instead of short-

term (daily pollution) studies for a number of reasons.  It is used alone– rather than considering the total effect

to be the sum of estimated short-term and long-term effec ts– because summing creates the possibility of

double-counting a portion of PM-related mortality.  The Krewski et al. study and the Pope study it reanalyzes

are considered preferable to other available long-term studies because they use better statistical methods,

have a much larger sample size, and more locations (63 cities) in the United States, than other studies.  We

also consider the Krewski study preferable to the original Pope et al. (1995) study because it uses the annual

mean PM2.5 rather than the median.

It is unlikely that the Krewski et al. study contains any significant amount of short-term harvesting.

First, the health status of each individual tracked in the study is known at the beginning of the study period.

Persons with known pre-existing serious illnesses were excluded from the study population.  Second, the

statistical model used in the Krewski and Pope studies examines the question of survivability throughout the

study period (ten years).  Deaths that are premature by only a few days or weeks within the ten-year study

period (for example, the deaths of terminally ill patients, triggered by a short duration PM episode) are likely

to have little impact on the calculation of the average probability of surviving the entire ten year interval.  In

relation to the Krewski et al., 2000 - Reanalysis of Dockery et al. (1993), the Krewski et al. study 2000-

Reanalysis of Pope et al.(1995) study found smaller increases in excess mortality for a given PM air quality

change.

It is currently unknown whether there is a time lag (a delay between changes in PM exposures and

changes in mortality rates) in the chronic  PM/premature mortality relationship.  The existence of such a lag

is important for the valuation of premature mortality incidences because economic theory suggests that

benefits occurring in the future should be discounted.  Although there is no specific scientific evidence of the
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existence or structure of a PM effects lag, current scientific literature on adverse health effects, such as those

associated with PM (e.g., smoking related disease) and the difference in the effect size between chronic

exposure studies and daily mortality studies suggest that it is likely that not all incidences of premature

mortality reduction associated with a given incremental change in PM exposure would occur in the same year

as the exposure reduction.  This same smoking-related literature implies that lags of up to a few years are

plausible.  Following explicit advice from the SAB, we assume a five-year lag structure, with 25 percent of

premature deaths occurring in the first year, another 25 percent in the second year, and 16.7 percent in each

of the remaining three years (EPA-SAB-COUNCIL-ADV-00-001, 1999).  It should be noted that the

selection of a five-year lag structure is not directly supported by any PM-specific  literature.  Rather, it is

intended to be a best guess at the appropriate distribution of avoided incidences of PM-related mortality.

(1) Alternative Calculation: PM-Related Mortality Based on Krewski et al., 2000 - Reanalysis of

Dockery et al. (1993)

Krewski, et al. (2000) also reanalyzed the data from another prospective cohort study (the Harvard

“Six Cities Study”) authored by Dockery et al. (1993). The Dockery et al. study used a smaller sample of

individuals from fewer cities than the study by Pope et al. (1995); however, it features improved exposure

estimates, a slightly broader study population (adults aged 25 and older), and a follow-up period nearly twice

as long as that of Pope et al. The SAB has noted that “the [Harvard Six Cities] study had better monitoring

with less measurement error than did most other studies” (U.S. EPA, 1999e, p. 10).  

Some of the functions are based on changes in mean PM2.5 concentrations while others are based

on median PM2.5 concentrations.  Estimated reductions in premature mortality will depend on both the size

of the C-R coefficient and the change in the relevant PM2.5 metric  (mean or median).  We also estimated

alternative premature mortality incidence using both non-accidental and all-cause mortality rates.  In previous

benefit analyses conducted for the EPA, premature mortality was calculated using non-accidental mortality

rates.  For the sake of comparability to previous analyses, we included estimates of premature mortality based

on both rates.

(2) Alternative Calculation: Mortality, Lung Cancer (Pope et al., 2002) - Based on ACS Cohort:

Mean PM2.5

Pope et al. (2002) extends the original analysis by Pope et al. (1995) in a number of significant ways.

Pope et al. (2002) had fifteen years of cohort data, as opposed to the eight years of data in the original work,

and they used three different sets of years to measure mean PM2.5 levels, as opposed to a single measure.

The new set of results confirm the results of the earlier studies.  In addition, the new set of results includes

relative risk estimates for lung cancer and cardiopulmonary causes of death, in addition to all cause mortality.

Valuing Premature Mortality

The “statistical lives lost” approach to valuing premature mortality estimates the value of a statistical

death to be $6.12 million (in 1999 $).  We assume for this analysis that some of the incidences of premature

mortality related to PM exposures occur in a distributed fashion over the five years following exposure (the



14The choice of a five percent discount rate is based on the technical recommendation of the

SAB for computing the value of a statistical life-year (U.S. EPA, 1999c, p. 14).
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five-year mortality lag).  To take this into account in the valuation of reductions in premature mortalities, we

apply an annual five percent discount rate to the value of premature mortalities occurring in future years.14

• Statistical Lives Lost

The “statistical lives lost” value of $6.12 million represents an intermediate value from a variety of

estimates that appear in the economics literature, and is a value that EPA has frequently used.  This estimate

is the mean of a distribution fitted to the estimates from 26 value-of-life studies identified in the §812 study

as “applicable to policy analysis.”  The approach and set of selected studies mirrors that of Viscusi (1992)

(with the addition of two studies), and uses the same criteria used by Viscusi in his review of value-of-life

studies.  The $6.12 million estimate is consistent with Viscusi’s conclusion (updated to 1999 $) that “most of

the reasonable estimates of the value of life are clustered in the $3.84 to $8.93 million range.”  Uncertainty

associated with the valuation of premature mortality is expressed through a Weibull distribution with a

standard deviation of $4.13 million (IEc 1992, p.  2).

Five of the 26 studies are contingent valuation (CV) studies, which directly solicit WTP information

from subjects; the rest are wage-risk studies, which base WTP estimates on estimates of  the additional

compensation demanded in the labor market for riskier jobs.  The 26 studies are listed in Table 5-4.  The

references for all but Gegax et al. (1985) and V.K. Smith (1983) may be found in Viscusi (1992).  Although

each of the studies estimated the mean WTP (MWTP) for a given reduction in mortality risk, the amounts

of reduction in risk being valued were not necessarily the same across studies, nor were they necessarily the

same as the amounts of reduction in mortality risk that would actually be conferred by a given reduction in

ambient concentrations.  The transferability of estimates of the value of a statistical life from the 26 studies

to this analysis rests on the assumption that, within a reasonable range, WTP for reductions in mortality risk

is linear in risk reduction, or equivalently, that the marginal willingness to pay curve is horizontal within a

reasonable range.  For example, suppose a study estimates that the average WTP for a reduction in mortality

risk of 1/100,000 is $30.  Suppose, however, that the actual mortality risk reduction resulting from a given air

quality improvement is 1/10,000.  If WTP for reductions in mortality risk is linear in risk reduction, then a

WTP of $30 for a reduction of 1/100,000 implies a WTP of $300 for a risk reduction of 1/10,000 (which is

ten times the risk reduction valued in the study).  Under the assumption of linearity, the estimate of the value

of a statistical life does not depend on the particular amount of risk reduction being valued.
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Table 5-4  Summary of Mortality Valuation Estimates

Study Type of Estimate Valuation (millions 1999 $)

Kneisner and Leeth (1991) (US) Labor Market 0.7

Smith and Gilbert (1984) Labor Market 0.9

Dillingham (1985) Labor Market 1.1

Butler (1983) Labor Market 1.5

Miller and Guria (1991) Contingent Valuation 1.6

Moore and Viscusi (1988) Labor Market 3.2

Viscusi et al. (1991) Contingent Valuation 3.4

Gegax et al. (1985; 1991) Contingent Valuation 4.3

Marin and Psacharopoulos (1982) Labor Market 3.5

Kneisner and Leeth (1991) (Australia) Labor Market 4.3

Gerking et al. (1988) Contingent Valuation 4.4

Cousineau et al. (1988; 1992) Labor Market 4.6

Jones-Lee (1989) Contingent Valuation 4.9

Dillingham (1985) Labor Market 5.1

Viscusi (1978; 1979) Labor Market 5.2

R.S. Smith (1976) Labor Market 5.8

V.K. Smith (1983) Labor Market 6.0

Olson (1981) Labor Market 6.6

Viscusi (1981) Labor Market 8.3

R.S. Smith (1974) Labor Market 9.1

Moore and Viscusi (1988) Labor Market 9.3

Kneisner and Leeth (1991) (Japan) Labor Market 9.7

Herzog and Schlottman (1987; 1990) Labor Market 11.6

Leigh and Folson (1984) Labor Market 12.4

Leigh (1987) Labor Market 13.3

Garen (1988) Labor Market 17.2

Source: Viscusi (1992, Table 4.1).

Although the particular amount of mortality risk reduction being valued in a study may not affect the

transferability of the WTP estimate from the study to this analysis, the characteristics of the study subjects

and the nature of the mortality risk being valued in the study could be important.  Certain characteristics of

both the population affected and the mortality risk facing that population are believed to affect the MWTP

to reduce the risk.  The appropriateness of the MWTP estimates from the 26 studies for valuing the mortality-

related benefits of reductions in ambient air concentrations therefore depends not only on the quality of the

studies (i.e., how well they measure what they are trying to measure), but also on (1) the extent to which the
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subjects in the studies are similar to the population affected by changes in ambient air concentrations and (2)

the extent to which the risks being valued are similar. 

Focusing on the wage-risk studies, which make up the substantial majority of the 26 studies relied

upon, the likely differences between (1) the subjects in these studies and the population affected by changes

in air concentrations and (2) the nature of the mortality risks being valued in these studies and the nature of

air pollution-related mortality risk are considered. The direction of bias in which each difference is likely to

result is also considered.  

Compared with the subjects in wage-risk studies, the population believed to be most affected by air

pollution (i.e., the population that would receive the greatest mortality risk reduction associated with a given

reduction in air concentrations) is, on average, older and probably more risk averse.  For example, citing

Schwartz and Dockery (1992) and Ostro et al. (1996), Chestnut (1995) estimated that approximately 85

percent of those who die prematurely from ambient air pollution-related causes are over 65.  The average

age of subjects in wage-risk studies, in contrast, is well under 65.

There is also reason to believe that those over 65 are, in general, more risk averse than the general

population while workers in wage-risk studies are likely to be less risk averse than the general population.

Although Viscusi’s (1992) list of recommended studies excludes studies that consider only much-higher-than-

average occupational risks, there is nevertheless likely to be some selection bias in the remaining studies --

that is, these studies are likely to be based on samples of workers who are, on average, more risk-loving than

the general population.  In contrast, older people as a group exhibit more risk averse behavior.  

In addition, it might be argued that because the elderly have greater average wealth than those

younger, the affected population is also wealthier, on average, than wage-risk study subjects, who tend to be

blue collar workers.  It is possible, however, that among the elderly it is largely the poor elderly who are most

vulnerable to air pollution-related mortality risk (e.g., because of generally poorer health care).  If this is the

case, the average wealth of those affected by a reduction in air concentrations relative to that of subjects in

wage-risk studies is uncertain.  

The direction of bias resulting from the age difference is unclear, particularly because age is

confounded by risk aversion (relative to the general population).  It could be argued that, because an older

person has fewer expected years left to lose, his WTP to reduce mortality risk would be less than that of a

younger person.  This hypothesis is supported by one empirical study, Jones-Lee et al.(1985), that found the

value of a statistical life at age 65 to be about 90 percent of what it is at age 40.  Citing the evidence provided

by Jones-Lee et al., Chestnut (1995) assumed that the value of a statistical life for those 65 and over is 75

percent of what it is for those under 65.

The greater risk aversion of older people, however, implies just the opposite.  Citing Ehrlich and

Chuma (1990), Industrial Economics Inc. (1992) noted that “older persons, who as a group tend to avoid

health risks associated with drinking, smoking, and reckless driving, reveal a greater demand for reducing

mortality risks and hence have a greater implicit value of a life year.”  That is, the more risk averse behavior

of older individuals suggests a greater WTP to reduce mortality risk.

There is substantial evidence that the income elasticity of WTP for health risk reductions is positive

(Loehman and De, 1982; Jones-Lee et al., 1985; Mitchell and Carson, 1986; Gerking et al., 1988; Alberini et

al., 1997),  although there is uncertainty about the exact value of this elasticity).  Individuals with higher

incomes (or greater wealth) should, then, be willing to pay more to reduce risk, all else equal, than individuals
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with lower incomes or wealth.  Whether the average income or level of wealth of the population affected by

ambient air pollution reductions is likely to be significantly different from that of subjects in wage-risk studies,

however, is unclear.

Finally, although there may be several ways in which job-related mortality risks differ from air

pollution-related mortality risks, the most important difference may be that job-related risks are incurred

voluntarily whereas air pollution-related risks are incurred involuntarily.

There is some evidence that people will pay more to reduce involuntarily incurred risks than risks

incurred voluntarily (e.g., Violette and Chestnut, 1983).  Job-related risks are incurred voluntarily whereas

air pollution-related risks are incurred involuntarily.  If this is the case, WTP estimates based on wage-risk

studies may be downward biased estimates of WTP to reduce involuntarily incurred ambient air pollution-

related mortality risks.

The potential sources of bias in an estimate of MWTP to reduce the risk of air pollution related

mortality based on wage-risk studies are summarized in Table 5-5.  Although most of the individual factors

tend to have a downward bias, the overall effect of these biases is unclear.

Table 5-5  Potential Sources of Bias in Estimates of Mean WTP to Reduce the Risk of PM

Related Mortality Based on Wage-Risk Studies

Factor Likely Direction of Bias in Mean WTP Estimate

Age Uncertain

Degree of Risk Aversion Downward

Income Downward, if the elderly affected are a random sample of the

elderly. It is unclear, if the elderly affected are the poor elderly.

Risk Perception: Voluntary vs. Involuntary

risk

Downward

Chronic Illness

Researchers have linked air pollution with a variety of adverse health effects that have long-term,

or chronic implications.  The onset of bronchitis has been associated with exposure to air pollutants.  Studies

have linked the onset of chronic bronchitis in adults to particulate matter (Schwartz, 1993; Abbey et al.,

1995c). These results are consistent with research that has found chronic exposure to pollutants leads to

declining pulmonary functioning (Detels et al., 1991; Ackermann-Liebrich et al., 1997; Abbey et al., 1998).

Chronic Bronchitis

Chronic bronchitis is characterized by mucus in the lungs and a persistent wet cough for at least three

months a year for several years in a row, and affects roughly five percent of the U.S. population (American

Lung Association, 2002b, Table 4).  There are a limited number of studies that have estimated the impact of

air pollution on new incidences of chronic bronchitis.  Schwartz (1993) and Abbey et al.(1995c) provide

evidence that long-term PM exposure gives rise to the development of chronic bronchitis in the U.S. 
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We estimate the changes in the number of new cases of PM-related chronic bronchitis using a study

by Abbey et al. (1995c) which is based on a sample of California residents. The study by Abbey et al. (1995c)

examined the relationship between estimated PM2.5 (annual mean from 1966 to 1977), PM10 (annual mean

from 1973 to 1977) and TSP  (annual mean from 1973 to 1977) and the same chronic respiratory symptoms

in a sample population of 1,868 Californian Seventh-Day Adventists.  The initial survey was conducted in 1977

and the final survey in 1987.  To ensure a better estimate of exposure, the study participants had to have been

living in the same area for an extended period of time.  In single-pollutant models, there was a statistically

significant PM2.5 relationship with development of chronic bronchitis, but not for airway obstructive disease

(AOD) or asthma; PM10 was significantly associated with chronic  bronchitis and AOD; and TSP was

significantly associated with all cases of all three chronic symptoms.  Other pollutants were not examined.

Table 5-6  Chronic Bronchitis Study

Location Study Pollutants Used in Final

Model

Age of Study

Population

California Abbey et al. (1995c) PM2.5 >26

Valuing Chronic Bronchitis

PM-related chronic  bronchitis is expected to last from the initial onset of the illness throughout the

rest of the individual’s life.  WTP to avoid chronic bronchitis would therefore be expected to incorporate the

present discounted value of a potentially long stream of costs (e.g., medical expenditures and lost earnings)

and pain and suffering associated with the illness.  Two studies, Viscusi et al. (1991) and Krupnick and

Cropper (1992),  provide estimates of WTP to avoid a case of chronic bronchitis.

The Viscusi et al. (1991) and the Krupnick and Cropper (1992) studies were experimental studies

intended to examine new methodologies for eliciting values for morbidity endpoints.  Although these studies

were not specifically designed for policy analysis, we believe the studies provide reasonable estimates of the

WTP for chronic  bronchitis.  As with other contingent valuation studies, the reliability of the WTP estimates

depends on the methods used to obtain the WTP values.  The Viscusi et al. and the Krupnick and Cropper

studies are broadly consistent with current contingent valuation practices, although specific  attributes of the

studies may not be.

The study by Viscusi et al. uses a sample that is larger and more representative of the general

population than the study by Krupnick and Cropper (which selects people who have a relative with the

disease).  Thus, the valuation for the high-end estimate is based on the distribution of WTP responses from

Viscusi et al.  The WTP to avoid a case of pollution-related chronic bronchitis (CB) is derived by starting with

the WTP to avoid a severe case of chronic  bronchitis, as described by Viscusi et al. (1991), and adjusting it

downward to reflect (1) the decrease in severity of a case of pollution-related CB relative to the severe case

described in the Viscusi et al. study, and (2) the elasticity of WTP with respect to severity reported in the

Krupnick and Cropper study.  Because elasticity is a marginal concept and because it is a function of severity

(as estimated from Krupnick and Cropper, 1992), WTP adjustments were made incrementally, in one percent

steps.  A severe case of CB was assigned a severity level of 13 (following Krupnick and Cropper).  The

WTP for a one percent decrease in severity is given by:



15There is an indication in the Viscusi et al. (1991) paper that the dollar values in the paper are in

1987 dollars.  Under this assumption, the dollar values were converted to 1999 dollars.
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WTP WTP sevsev sev0 99 1 0 01 018. ( . . ) .= ⋅ − ⋅

WTP WTP WTP12 87 0 99 13 13 1 0 01 018 13. . ( . . )= = ⋅ − ⋅ ⋅⋅

WTP WTP WTP12 74 0 99 12 87 12 87 1 0 01 0 18 12 87. . . . ( . . . )= = ⋅ − ⋅ ⋅⋅

WTP WTP WTP12 61 0 99 12 74 12 74 1 0 01 018 12 74. . . . ( . . . )= = ⋅ − ⋅ ⋅⋅

WTP WTP esev sev0 99 1 0 01. ( . ) ,= ⋅ − ⋅

where sev is the original severity level (which, at the start, is 13) and e is the elasticity of WTP with respect

to severity.  Based on the regression in Krupnick and Cropper (1992) (see below), the estimate of e is

0.18*sev.  At the mean value of sev (6.47), e = 1.16.  As severity decreases, however, the elasticity

decreases.  Using the regression coefficient of 0.18, the above equation can be rewritten as:

For a given WTPsev and a given coefficient of sev (0.18), the WTP for a 50 percent reduction in severity can

be obtained iteratively, starting with sev =13, as follows:

and so forth.  This iterative procedure eventually yields WTP6.5, or WTP to avoid a case of chronic bronchitis

that is of “average” severity.

The derivation of the WTP to avoid a case of pollution-related chronic  bronchitis is based on three

components, each of which is uncertain: (1) the WTP to avoid a case of severe CB, as described in the

Viscusi et al. (1991) study, (2) the severity level of an average pollution-related case of CB (relative to that

of the case described by Viscusi et al.), and (3) the elasticity of WTP with respect to severity of the illness.

Because of these three sources of uncertainty, the WTP is uncertain.  Based on assumptions about the

distributions of each of the three uncertain components, a distribution of WTP to avoid a pollution-related case

of CB was derived by Monte Carlo methods.  The mean of this distribution, which was about $319,000

($331,000 in 1999$), is taken as the central tendency estimate of WTP to avoid a pollution-related case of CB.

Each of the three underlying distributions is described briefly below.  

1.  The distribution of WTP to avoid a severe case of CB was based on the distribution of WTP

responses in the Viscusi et al. (1991) study.  Viscusi et al. derived  respondents’ implicit WTP to avoid a

statistical case of chronic bronchitis from their WTP for a specified reduction in risk.  The mean response

implied a WTP of about $1,275,000 (1999 $)15; the median response implied a WTP of about $676,000 (1999



Abt Associates Inc. June 20045-14

$).  However, the extreme tails of distributions of WTP responses are usually considered unreliable.  Because

the mean is much more sensitive to extreme values, the median of WTP responses is often used rather than

the mean.  Viscusi et al. report not only the mean and median of their distribution of WTP responses,

however, but the decile points as well.  The distribution of reliable WTP responses from the Viscusi et al.

study could therefore be approximated by a discrete uniform distribution giving a probability of 1/9 to each

of the first nine decile points.  This omits the first five and the last five percent of the responses (the extreme

tails, considered unreliable).  This trimmed distribution of WTP responses from the Viscusi et al. study was

assumed to be the distribution of WTPs to avoid a severe case of CB.  The mean of this distribution is about

$918,000 (1999 $).  

2.  The distribution of the severity level of an average case of pollution-related CB was modeled as

a triangular distribution centered at 6.5, with endpoints at 1.0 and 12.0.  These severity levels are based on

the severity levels used in Krupnick and Cropper (1992), which estimated the relationship between ln(WTP)

and severity level, from which the elasticity is derived.  The most severe case of CB in that study is assigned

a severity level of 13.  The mean of the triangular distribution is 6.5.  This represents a 50 percent reduction

in severity from a severe case.  

3.  The elasticity of WTP to avoid a case of CB with respect to the severity of that case of CB is

a constant times the severity level.  This constant was estimated by Krupnick and Cropper (1992) in the

regression of ln(WTP) on severity, discussed above.  This estimated constant (regression coefficient) is

normally distributed with mean = 0.18 and standard deviation = 0.0669 (obtained from Krupnick and Cropper).

The distribution of WTP to avoid a case of pollution-related CB was generated by Monte Carlo

methods, drawing from the three distributions described above.  On each of 16,000 iterations (1) a value was

selected from each distribution, and (2) a value for WTP was generated by the iterative procedure described

above, in which the severity level was decreased by one percent on each iteration, and the corresponding

WTP was derived.  The mean of the resulting distribution of WTP to avoid a case of pollution-related CB was

$331,000 (1999$).

This WTP estimate is reasonably consistent with full COI estimates derived for chronic bronchitis,

using average annual lost earnings and average annual medical expenditures reported by Cropper and

Krupnick (1990)  Using a 5 percent discount rate and assuming that (1) lost earnings continue until age 65,

(2) medical expenditures are incurred until death, and (3) life expectancy is unchanged by chronic bronchitis,

the present discounted value of the stream of medical expenditures and lost earnings associated with an

average case of chronic  bronchitis is estimated to be about $113,000 for a 30 year old, about $109,000 for a

40 year old, about $100,000 for a 50 year old, and about $57,000 for a 60 year old.  A WTP estimate would

be expected to be greater than a full COI estimate, reflecting the willingness to pay to avoid the pain and

suffering associated with the illness.  The WTP estimate of $331,000 is from 2.9 times the full COI estimate

(for 30 year olds) to 5.8 times the full COI estimate (for 60 year olds). 
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Heart Attacks

Non-Fatal Myocardial Infarction (Heart Attacks)

Non-fatal heart attacks have been linked with short term exposures to PM2.5 in the U.S. (Peters et

al., 2001) and other countries (Poloniecki et al., 1997).  We used a recent study by Peters et al. as the basis

for the C-R function estimating the relationship between PM2.5 and non-fatal heart attacks.  It is the only

available U.S. study to provide a specific estimate for heart attacks.  Other studies, such as Samet et al.

(2000) and Moolgavkar et al. (2000a) reported a consistent relationship between all cardiovascular hospital

admissions, including for non-fatal heart attacks, and PM.  However, they did not focus specifically on heart

attacks.  Given the lasting impact of a heart attack on longer-term health costs and earnings, we chose to

provide a separate estimate for non-fatal heart attacks based on the single available U.S. C-R function.

The finding of a specific  impact on heart attacks is consistent with hospital admission and other

studies showing relationships between fine particles and cardiovascular effects both within and outside the

U.S.   These studies provide a weight of evidence for this type of effect.  Several epidemiologic studies (Liao

et al., 1999; Gold et al., 2000; Magari et al., 2001) have shown that heart rate variability (an indicator of how

much the heart is able to speed up or slow down in response to momentary stresses) is negatively related to

PM levels.  Lack of heart rate variability is a risk factor for heart attacks and other coronary heart diseases

(Tsuji et al., 1996; Liao et al., 1997; Dekker et al., 2000).  As such, the reduction in heart rate variability due

to PM is consistent with an increased risk of heart attacks.

Valuing Non-Fatal Myocardial Infarction (Heart Attack)

EPA has not previously estimated the impact of its programs on reductions in the expected number

of non-fatal heart attacks, although it has examined the impact of reductions in other related cardiovascular

endpoints.  We were not able to identify a suitable WTP value for reductions in the risk of non-fatal heart

attacks.  Instead, we have used a cost-of-illness unit value with two components: the direct medical costs and

the opportunity cost (lost earnings) associated with the illness event.  Because the costs associated with a

heart attack extend beyond the initial event itself, we considered costs incurred over several years.  For

opportunity costs, we used values derived from Cropper and Krupnick (1990), originally used in the 812

Retrospective Analysis of the Clean Air Act (U.S. EPA, 1997b).  For the direct medical costs, we found

three possible sources in the literature.

Wittels et al. (1990) estimated expected total medical costs of myocardial infarction over five years

to be $51,211 (in 1986$) for people who were admitted to the hospital and survived hospitalization.  (There

does not appear to be any discounting used.)  Using the CPI-U for medical care, the Wittels et al. estimate

is $109,474 in year 2000$.  This estimated cost is based on a medical cost model, which incorporated

therapeutic options, projected outcomes and prices (using “knowledgeable cardiologists” as consultants).  The

model used medical data and medical decision algorithms to estimate the probabilities of certain events and/or

medical procedures being used.  The authors noted that the average length of hospitalization for acute

myocardial infarction has decreased over time (from an average of 12.9 days in 1980 to an average of 11

days in 1983).  Wittels et al. used 10 days as the average in their study.  It is unclear how much further the

length of stay may have decreased from 1983 to the present.  The average length of stay for ICD code 410

(myocardial infarction) in 2000 is 5.5 days ((AHRQ 2000)). However, this may include patients who died in

the hospital (not included among our non-fatal cases), whose length of stay was therefore substantially shorter

than it would be if they hadn’t died.
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Eisenstein et al. (2001) estimated 10-year costs of $44,663, in 1997$, or $49,651 in 2000$ for

myocardial infarction patients, using statistical prediction (regression) models to estimate inpatient costs.  Only

inpatient costs (physician fees and hospital costs) were included.

Russell et al. (1998) estimated first-year direct medical costs of treating nonfatal myocardial infarction

of $15,540 (in 1995$), and $1,051 annually thereafter.  Converting to year 2000$, that would be $23,353 for

a 5-year period (without discounting), or $29,568 for a ten-year period.

As seen in Table 4-12, the three different studies provided significantly different values.  We have

not adequately resolved the sources of differences in the estimates.  Because the wage-related opportunity

cost estimates from Cropper and Krupnick (1990) cover a 5-year period, we used a simple average of the

two estimates for medical costs that similarly cover a 5-year period, or $62,495.  We added this to the 5-year

opportunity cost estimate.  Table 4-13 gives the resulting estimates.  We currently do not have adequate

information to characterize the uncertainty surrounding any of these estimates.

Table 5-7.  Summary of Studies Valuing Reduced Incidences of Myocardial Infarction

Study Direct Medical Costs

 (2000$) a

Over an x-year period, for x =

Wittels et al., 1990 $109,474 5

Russell et al., 1998 $22,331 5

Eisenstein et al., 2001 $49,651 10

Russell et al., 1998 $27,242 10

a Wittels et al. did not appear to discount costs incurred in future years.  The values for the other two studies are based on a

three percent discount rate.

Table 5-8.  Estimated Costs Over a 5-Year Period of a Non-Fatal Myocardial Infarction

Age Group

Opportunity Cost a Medical Cost b Total Cost

3% Discount

Rate

7% Discount

Rate

3% Discount

Rate

7% Discount

Rate

3% Discount

Rate

7% Discount

Rate

0 - 24 $0 $0 $65,902 $65,293 $65,902 $65,293

25-44 $8,774 $7,855 $65,902 $65,293 $74,676 $73,149

45 - 54 $12,932 $11,578 $65,902 $65,293 $78,834 $76,871

55 - 65 $74,746 $66,920 $65,902 $65,293 $140,649 $132,214

> 65 $0 $0 $65,902 $65,293 $65,902 $65,293

a From Cropper and Krupnick (1990).  Present discounted value of 5 yrs of lost earnings, at 3% and 7% discount rate, adjusted

from 1977$ to 2000$ using CPI-U “all items”.

b An average of the 5-year costs estimated by Wittels et al. (1990) and Russell et al. (1998).  Note that Wittels et al. appears

not to have used discounting in deriving a 5-year cost of $109,474;  Russell et al. estimated first-year direct medical costs and

annual costs thereafter.  The resulting 5-year cost is $22,331, using a 3% discount rate, and $21,113, using a 7% discount rate. 

Medical costs were inflated to 2000$ using CPI-U for medical care.
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Hospital Admissions

We estimate the impact of PM on both respiratory and cardiovascular hospital admissions.  In

addition, we estimate the impact of these pollutants on emergency room visits for asthma.  The respiratory

and cardiovascular hospital admissions studies used in the primary analysis are listed in Tables 5-7 and 5-8,

respectively.  Appendix A provides details on each study.  Due to the availability of detailed hospital admission

and discharge records, there is an extensive body of literature examining the relationship between hospital

admissions and air pollution.  Because of this, we pooled some of the hospital admission endpoints, using the

results of a number of studies.  Although the benefits associated with respiratory and cardiovascular hospital

admissions are estimated separately in the analysis, the methods used to estimate changes in incidence and

to value those changes are the same for both broad categories of hospital admissions.  The two categories

of hospital admissions are therefore discussed together in this section.

Table 5-9  Respiratory Hospital Admission Studies

Location Study Endpoints Estimated

(ICD code)

Pollutants Used in Final

Model

Age of

Study

Populatio

n

PM-Related Hospital Admissions

Los Angeles,

CA

Moolgavkar

(2000c)

Chronic Lung Disease

Less Asthma(ICD codes

490-492, 494-496)

PM2.5 Ages 18-

64

Seattle, WA Sheppard et al.

(1999)

asthma (493) PM2.5 <65

Detroit, MI  Lippmann et al.

(2000)

Pneumonia (ICD-9 codes

480-487)  

PM2.5 Ages 65+

Detroit,

(Lippman)

Chicago, Los

Angeles, and

Phoenix

(Moolgavkar) 

Lippmann et al.

(2000), 

Moolgavkar

(2000b) 

Chronic Lung Disease

(ICD codes 490-496)

PM2.5 Ages 65+

Seattle, WA Norris et al. (1999) Asthma-related ER visits

(ICD code 493)

PM2.5 < 18



16  Moolgavkar (2000a) reports results that include ICD code 410 (heart attack).  In the benefits analysis, avoided

nonfatal heart attacks are estimated using the results reported by Peters et al. (2001).  The baseline rate in the Peters et al.

function is a modified heart attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require

hospitalization.  In order to avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the

baseline incidence rate used in this function. 

17 Moolgavkar (2000a) reports results for ICD codes 390-429.  In the benefits analysis, avoided nonfatal heart attacks

are estimated using the results reported by Peters et al. (2001).  The baseline rate in the Peters et al. function is a modified heart

attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization.  In order to

avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate used in this

function. 
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Table 5-10 Cardiovascular Hospital Admission Study

Location Study Endpoints Estimated

(ICD code)

Pollutants

Used in Final

Model

Age of

Study

Population

PM-Related Hospital Admissions

Los Angeles, CA Moolgavkar (2000a) Cardiovascular (ICD codes

390-409, 411-429)16

PM2.5 Ages 20-64

Los Angeles

(Moolgavkar),

Detroit

(Lippman)

Moolgavkar (2000a),

Lippmann et al.

(2000)

Cardiovascular ((ICD codes

390-409, 411-429)17

PM2.5 age 65+

PM-Related Respiratory and Cardiovascular Hospital Admissions

To estimate avoided incidences of cardiovascular hospital admissions associated with PM2.5, we use

studies by Moolgavkar (2000a) and Lippmann et al. (2000).  There are additional published studies showing

a statistic ally significant relationship between PM10 and cardiovascular hospital admissions.  However, given

that the control option we are analyzing is expected to reduce primarily PM2.5, we have chosen to focus on

the two studies focusing on PM2.5.  Both of these studies estimated a C-R function for populations over 65,

allowing us to pool the C-R functions for this age group.  Only Moolgavkar estimated a separate C-R function

for populations 20 to 64.  Total cardiovascular hospital admissions are thus the sum of the pooled estimate for

populations over 65 and the single study estimate for populations 20 to 64.  Cardiovascular hospital admissions

include admissions for myocardial infarctions.  In order to avoid double counting benefits from reductions in

MI when applying the C-R function for cardiovascular hospital admissions, we first adjusted the baseline

cardiovascular hospital admissions to remove admissions for myocardial infarction.  

To estimate total avoided incidences of respiratory hospital admissions, we use C-R functions for

several respiratory causes, including chronic obstructive pulmonary disease (COPD), pneumonia, and asthma.

As with cardiovascular admissions, there are additional published studies showing a statistically significant

relationship between PM10 and respiratory  hospital admissions.  We use only those focusing on PM2.5.  Both

Moolgavkar (2000a) and Lippmann et al (2000) estimated C-R functions for COPD in populations over 65,

allowing us to pool the C-R functions for this group.  Only Moolgavkar estimated a separate C-R function for

populations 20 to 64. Total COPD hospital admissions are thus the sum of the pooled estimate for populations

over 65 and the single study estimate for populations 20 to 64.    Only Lippmann et al estimated pneumonia,



18 Some people take action to avert the negative impacts of pollution.  While the costs of

successful averting behavior should be added to the sum of the health-endpoint-specific costs when

estimating the total costs of pollution, these costs are not associated with any single health endpoint  It is

possible that in some cases the averting action was not successful, in which case it might be argued that

the cost of the averting behavior should be added to the other costs listed (for example, it might be the

case that an individual incurs the costs of averting behavior and in addition incurs the costs of the illness

that the averting behavior was intended to avoid).  Because averting behavior is generally not taken to

avoid a particular health problem  (such as a hospital admission for respiratory illness), but instead is taken

to avoid the entire collection of adverse effects of pollution, it does not seem reasonable to ascribe the

entire costs of averting behavior to any single health endpoint.    
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and only for the population 65 and older.  In addition, Sheppard et al (1999) estimated a C-R function for

asthma hospital admissions for populations under age 65.  Total avoided incidences of PM-related respiratory-

related hospital admissions is the sum of COPD, pneumonia, and asthma admissions.

Valuing Respiratory and Cardiovascular Hospital Admissions

Society’s WTP to avoid a hospital admission includes medical expenses, lost work productivity, the

non-market costs of treating illness (i.e., air, water and solid waste pollution from hospitals and the

pharmaceutical industry), and the pain and suffering of the affected individual as well as of that of relatives,

friends, and associated caregivers.18

Because medical expenditures are to a significant extent shared by society, via medical insurance,

Medicare, etc., the medical expenditures actually incurred by the individual are likely to be less than the total

medical cost to society.  The total value to society of an individual’s avoidance of hospital admission, then,

might be thought of as having two components:  (1) the cost of illness (COI) to society, including the total

medical costs plus the value of the lost productivity, as well as (2) the WTP of the individual, as well as that

of others, to avoid the pain and suffering resulting from the illness.

In the absence of estimates of social WTP to avoid hospital admissions for specific illnesses

(components 1 plus 2 above), estimates of total COI (component 1) are typically used as conservative (lower

bound) estimates.  Because these estimates do not include the value of avoiding the pain and suffering

resulting from the illness (component 2), they are biased downward.  Some analyses adjust COI estimates

upward by multiplying by an estimate of the ratio of WTP to COI, to better approximate total WTP.  Other

analyses have avoided making this adjustment because of the possibility of over-adjusting -- that is, possibly

replacing a known downward bias with an upward bias.  The COI values used in this benefits analysis will

not be adjusted to better reflect the total WTP.

Following the method used in the §812 analysis (U.S. EPA, 1999b), ICD-code-specific COI estimates

used in our analysis consist of two components: estimated hospital charges and the estimated opportunity cost

of time spent in the hospital (based on the average length of a hospital stay for the illness).  The opportunity

cost of a day spent in the hospital is estimated as the value of the lost daily wage, regardless of whether or

not the individual is in the workforce.  This is estimated at $106 (U.S. Bureau of the Census, 1992).

For all hospital admissions included in this analysis, estimates of hospital charges and lengths of

hospital stays were based on discharge statistics provided by Elixhauser et al. (1993).  The total COI for an

ICD-code-specific hospital stay lasting n days, then, would be estimated as the mean hospital charge plus

$106*n.  Most respiratory hospital admissions categories considered in epidemiological studies consisted of
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sets of ICD codes.  The unit dollar value for the set of ICD codes was estimated as the weighted average

of the ICD-code-specific  mean hospital charges of each ICD code in the set.  The weights were the relative

frequencies of the ICD codes among hospital discharges in the United States, as estimated by the National

Hospital Discharge Survey [Owings, 1999 #1872].  The study-specific values for valuing respiratory and

cardiovascular hospital admissions are shown in Tables 5-9 and 5-10, respectively.

The mean hospital charges and mean lengths of stay provided by Elixhauser et al. (1993) are based

on a very large nationally representative sample of about seven million hospital discharges, and are therefore

the best estimates of mean hospital charges and mean lengths of stay available, with negligible standard

errors.  However, because of distortions in the market for medical services, the hospital charge may exceed

“the cost of a hospital stay.”  We use the example of a hospital visit to illustrate the problem.  Suppose a

patient is admitted to the hospital to be treated for an asthma episode.  The patient’s stay in the hospital

(including the treatments received) costs the hospital a certain amount.  This is the hospital cost – i.e., the

short-term expenditures of the hospital to provide the medical services that were provided to the patient during

his hospital stay.  The hospital then charges the payer a certain amount – the hospital charge.  If the hospital

wants to make a profit,  is trying to cover costs that are not associated with any one particular patient

admission (e.g., uninsured patient services), and/or has capital expenses (building expansion or renovation)

or other long term costs, it may charge an amount that exceeds the patient-specific short term costs of

providing services.  The payer (e.g., the health maintenance organization or other health insurer) pays the

hospital a certain amount – the payment – for the services provided to the patient.  The less incentive the

payer has to keep costs down, the closer the payment will be to the charge.  If, however, the payer has an

incentive to keep costs down, the payment may be substantially less than the charge; it may still, however,

exceed the short-term cost for services to the individual patient.

Although the hospital charge may exceed the short-term cost to the hospital of providing the medical

services required during a patient’s hospital stay, cost of illness estimates based on hospital charges are still

likely to understate the total social WTP to avoid the hospitalization in the first place, because the omitted

WTP to avoid the pain and suffering is likely to be quite large. 

Table 5-11  Unit Values for Respiratory Hospital Admissions*

Location Study Endpoints Estimated

(ICD code)

Age of Study

Population

COI a

(1999 $)

PM-Related Hospital Admissions

Los Angeles,

CA

Moolgavkar

(2000c)

Chronic Lung Disease

Less Asthma(ICD codes

490-492, 494-496)

Ages 18-64 $11,333

Seattle, WA Sheppard et al.

(1999)

Asthma (493) <65 $7,467

Detroit, MI  Lippmann et al.

(2000)

Pneumonia (ICD-9 codes

480-487)  

Ages 65+ $17,106

Detroit

(Lippman)

Chicago, Los

Angeles, and

Phoenix

(Moolgavkar) 

Lippmann et al.

(2000), 

Moolgavkar

(2000b) 

Chronic Lung Disease

(ICD codes 490-496)

Ages 65+ $13,083



Location Study Endpoints Estimated

(ICD code)

Age of Study

Population

COI a

(1999 $)
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Seattle, WA Norris et al. (1999) Asthma-related ER visits

(ICD code 493)

< 18 $275

* The unit value for a group of ICD-9 codes is the weighted average of ICD-9 code-specific values, from Elixhauser et al.

(1993).  The weights are the relative frequencies of hospital discharges in Elixhauser et al. for each ICD-9 code in the group. 

The monetized benefits of non-overlapping endpoints within each study were aggregated.  Monetized benefits for asthma

among people age <65 (Sheppard et al., 1999) were aggregated with the monetized benefits in Samet et al. (2000) of people

age >64.



19  Moolgavkar (2000a) reports results that include ICD code 410 (heart attack).  In the benefits analysis, avoided

nonfatal heart attacks are estimated using the results reported by Peters et al. (2001).  The baseline rate in the Peters et al.

function is a modified heart attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require

hospitalization.  In order to avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the

baseline incidence rate used in this function. 

20 Moolgavkar (2000a) reports results for ICD codes 390-429.  In the benefits analysis, avoided nonfatal heart attacks

are estimated using the results reported by Peters et al. (2001).  The baseline rate in the Peters et al. function is a modified heart

attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization.  In order to

avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate used in this

function. 

Abt Associates Inc. June 20045-22

Table 5-12  Unit Values for Cardiovascular Hospital Admissions*

Location Study Endpoints Estimated

(ICD code)

Age of Study

Population

COI a

(1999 $)

PM-Related Hospital Admissions

Los Angeles, CA Moolgavkar (2000a) Cardiovascular (ICD codes

390-409, 411-429)19

Ages 20-64 $21,864(IC

D codes

390-429)

Los Angeles

(Moolgavkar),

Detroit

(Lippman)

Moolgavkar (2000a),

Lippmann et al.

(2000)

Cardiovascular ((ICD codes

390-409, 411-429)20

age 65+ $20,334(IC

D codes

390-429)

* The unit value for a group of ICD-9 codes is the weighted average of ICD-9 code-specific values, from Elixhauser et al.

(1993).  The weights are the relative frequencies of hospital discharges in Elixhauser et al. for each ICD-9 code in the group.  

We were not able to estimate the uncertainty surrounding cost-of-illness estimates for hospital

admissions because 1993 was the last year for which standard errors of estimates of mean hospital charges

were reported .  However, the standard errors reported in 1993 were very small because estimates of mean

hospital charges were based on large sample sizes, and the overall sample size in 1997 was about ten times

as large as that in 1993 (at about seven million hospital discharges in all).  The standard errors of the current

estimates of mean hospital charges will therefore be negligible.  Therefore, although we cannot include the

uncertainty surrounding these cost-of-illness estimates in our overall uncertainty analysis, the omission of this

component of uncertainty will have virtually no impact on the overall characterization of uncertainty.

Asthma-Related Emergency Room (ER) Visits

To estimate the effects of PM air pollution reductions on asthma-related ER visits, we use the C-R

function based on a study of children 18 and under by Norris et al. (1999).  As noted earlier, there is another

study by Schwartz examining a broader age group (less than 65), but the Schwartz study focused on PM10

rather than PM2.5.  We selected the Norris et al. C-R function because it better matched the pollutant of

interest. Because children tend to have higher rates of hospitalization for asthma relative to adults under 65,

we will likely capture the majority of the impact of PM2.5 on asthma ER visits in populations under 65,

although there may still be significant impacts in the adult population under 65.  
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Initially we were concerned about double-counting the benefits from reducing both hospital admissions

and ER visits.  However, our estimates of hospital admission costs do not include the costs of admission to

the ER, so we can safely estimate both hospital admissions and ER visits.

Valuing Asthma-Related Emergency Room (ER) Visits

The value of an avoided asthma-related ER visit was based on national data reported in Smith et al.

(1997).  Smith et al. reported that there were approximately 1.2 million asthma-related ER visits made in 1987,

at a total cost of $186.5 million, in 1987$.  The average cost per visit was therefore $155 in 1987$, or $298.62

in 1999 $ (using the CPI-U for medical care to adjust to 1999 $).  The uncertainty surrounding this estimate,

based on the uncertainty surrounding the number of ER visits and the total cost of all visits reported by Smith

et al. was characterized by a triangular distribution centered at $298.62, on the interval [$221.65, $414.07].

A second unit value is $249.86($1999) from Stanford et al. (1999).  This study considered asthmatics

in 1996-1997, in comparison to the Smith et al. (1997) study, which used 1987 National Medical Expenditure

Survey (NMES) data).  In comparing their study, the authors note that the 1987 NMES, used by Smith et al.,

“may not reflect changes in treatment patterns during the 1990s.” In addition, its costs are the costs to the

hospital (or ER) for treating asthma rather than charges or payments by the patient and/or third party payer.

Costs to the ER are probably a better measure of the value of the medical resources used up on an asthma

ER visit (see above for a discussion of costs versus charges).  An average of these two values gives an

estimate of $275($1999) for an Asthma-Related ER visits.

Acute Illnesses and Symptoms Not Requiring Hospitalization

We consider in this section a number of acute symptoms that do not require hospitalization, such as

acute bronchitis, and upper and lower respiratory symptoms.  Several of these illnesses and symptoms were

considered in the §812 Prospective analysis as well.  The unit values and the uncertainty distributions for

those acute illnesses and symptoms that were also considered in the §812 Prospective analysis were obtained

by adjusting the unit values used in that analysis from 1990 $ to 1999 $ by multiplying by 1.275 (based on the

CPI-U for “all items”). 

Table 5-13 Studies of Symptoms/Illnesses not Requiring Hospitalization

Endpoint Study Pollutants Study Population

Acute bronchitis Dockery et al. (1996) PM2.5 Ages 8-12

Upper respiratory

symptoms (URS)

Pope et al. (1991) PM10 Asthmatics, ages 9-

11

Lower respiratory

symptoms (LRS)

Schwartz et al. (1994) PM2.5 Ages 7-14

Minor restricted activity day

(MRAD)

Ostro and Rothschild

(1989), 

PM2.5 Ages 18-65

Work loss days (WLDs) Ostro (1987) PM2.5 Ages 18-65

Acute Bronchitis



21  See http://www.nlm.nih.gov/medlineplus/ency/article/000124.htm, accessed January 2002 

22 This is, to our knowledge, the only estimate, based on empirical data, of parental WTP for their

children versus themselves.
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Around five percent of U.S. children between ages five and seventeen experience episodes of acute

bronchitis annually (Adams and Marano, 1995).  Acute bronchitis is characterized by coughing, chest

discomfort, slight fever, and extreme tiredness, lasting for a number of days.  According to the MedlinePlus

medical encyclopedia21, with the exception of cough, most acute bronchitis symptoms abate within 7 to 10

days.  We estimated the incidence of episodes of acute bronchitis in children between the ages 8-12 using

a C-R function developed from Dockery et al. (1996).  

Dockery et al. (1996) examined the relationship between PM and other pollutants on the reported

rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369 children ages 8-12

living in  24 communities in the U.S. and Canada.  Health data were collected in 1988-1991, and single-

pollutant models were used in the analysis to test a number of measures of particulate air pollution.  Dockery

et al. found that annual level of sulfates and particle acidity were significantly related  to bronchitis, and PM2.5

and PM10 were marginally significantly related to bronchitis.

Valuing Acute Bronchitis

Estimating WTP to avoid a case of acute bronchitis is difficult for several reasons.  First, WTP to

avoid acute bronchitis itself has not been estimated.  Estimation of WTP to avoid this health endpoint

therefore must be based on estimates of WTP to avoid symptoms that occur with this illness.  Second, a case

of acute bronchitis may last more than one day, whereas it is a day of avoided symptoms that is typically

valued.  Finally, the C-R function used in the benefit analysis for acute bronchitis was estimated for children,

whereas WTP estimates for those symptoms associated with acute bronchitis were obtained from adults.

Three unit values are available in BenMAP for acute bronchitis in children.  In previous benefits

analyses, EPA used a unit value of $57.38. This is the midpoint between a low estimate and a high estimate.

The low estimate is the sum of the midrange values recommended by IEc (1994) for two symptoms believed

to be associated with acute bronchitis: coughing and chest tightness.  The high estimate was taken to be twice

the value of a minor respiratory restricted activity day. 

The above unit value assumes that an episode of acute bronchitis lasts only one day.  However, this

is generally not the case.  More typically, it can last for 6 or 7 days.  A simple adjustment, then, would be to

multiply the original unit value of $57.38 by 6 or 7.  A second unit value of $344 (=$57.38 x 6) was therefore

derived.

Finally, as noted above, the epidemiological study relating air pollution to the incidence of acute

bronchitis referred to children specifically.  The value of an avoided case should therefore be WTP to avoid

a case in a child, which may be different from WTP to avoid a case in an adult.  Recent work by Dickie and

Ulery (2002) suggests, in fact, that parents are generally willing to pay about twice as much to avoid sickness

in their children as in themselves.22  In one of several models they estimated, the natural logarithm of parents’

WTP was related both to the number of symptom-days avoided and to whether it was their child or

themselves at issue.  Dickie and Ulery noted that “experiencing all of the symptoms [considered in their study



23 The mean household income among participants in the Dickie and Ulery CV survey was

slightly higher than the national average.  We therefore adjusted all WTP estimates that resulted from

their models downward slightly, using an income elasticity of WTP of 0.147, the average of the income

elasticities estimated in the four models in the study.  The adjustment factor thus derived was 0.9738.

24 With empirical evidence, we could presumably improve the accuracy of the probabilities of

occurrence of each type of URS.  Lacking empirical evidence, however, a uniform distribution seems the

Abt Associates Inc. June 20045-25

– cough and phlegm, shortness of breath/wheezing, chest pain, and fever] for 7 days, or 28 symptom-days

altogether, is roughly equivalent to a case of acute bronchitis ...”   Using this model, and assuming that a case

of acute bronchitis can be reasonably modeled as consisting of 28 symptom-days, we estimated parents’ WTP

to avoid a case of acute bronchitis in a child to be $358($1999).23 

Upper Respiratory Symptoms (URS)

Using logistic  regression, Pope et al. (1991) estimated the impact of PM10 on the incidence of a

variety of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in the Utah Valley

from December 1989 through March 1990.  The children in the Pope et al. study were asked to record

respiratory symptoms in a daily diary, and the daily occurrences of URS and LRS, as defined above, were

related to daily PM10 concentrations.  Pope et al. describe URS as consisting of one or more of the following

symptoms:  runny or stuffy nose; wet cough; and burning, aching, or red eyes.  Levels of ozone, NO2, and

SO2 were reported low during this period, and were not included in the analysis.

The sample in this study is relatively small and is most representative of the asthmatic population,

rather than the general population.  The school-based subjects (ranging in age from 9 to 11) were chosen

based on “a positive response to one or more of three questions: ever wheezed without a cold, wheezed for

3 days or more out of the week for a month or longer, and/or had a doctor say the ‘child has asthma’ (Pope

et al., 1991, p. 669).”  The patient-based subjects (ranging in age from 8 to 72) were receiving treatment for

asthma and were referred by local physicians.  Regression results for the school-based sample (Pope et al.,

1991, Table 5) show PM10 significantly associated with both upper and lower respiratory symptoms.  The

patient-based sample did not find a significant PM10 effect.  The results from the school-based sample are

used here.

Valuing URS

Willingness to pay to avoid a day of URS is based on symptom-specific  WTPs to avoid those

symptoms identified by Pope et al. as part of the URS complex of symptoms. Three contingent valuation

(CV) studies have estimated WTP to avoid various morbidity symptoms that are either within the URS

symptom complex defined by Pope et al. (1991) or are similar to those symptoms identified by Pope et al.

In each CV study, participants were asked their WTP to avoid a day of each of several symptoms.  The

WTP estimates corresponding to the morbidity symptoms valued in each study are presented in Table 5-12.

The three individual symptoms listed in Table 5-12 that were identified as most closely matching those listed

by Pope, et al. for URS are cough, head/sinus congestion, and eye irritation, corresponding to “wet cough,”

“runny or stuffy nose,” and “burning, aching or red eyes,” respectively.  A day of URS could consist of any

one of the seven possible “symptom complexes” consisting of at least one of these three symptoms.  Using

the symptom symbols in Table 5-12, these seven possible symptom complexes are presented in Table 5-13.

It is assumed that each of these seven URS complexes is equally likely.24  The point estimate of MWTP to



most reasonable “default” assumption.
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avoid an occurrence of URS is just an average of the seven estimates of MWTP for the different URS

complexes – $18.70, or about $19 in 1990 $.  This is $24.23 (=$19*1.275) in 1999 $.  In the absence of

information surrounding the frequency with which each of the seven types of URS occurs within the URS

symptom complex, an uncertainty analysis for WTP to avoid a day of URS is based on a continuous uniform

distribution of MWTPs in Table 5-13, with a range of [$7, $33], or [$8.93, $42.08] in 1999 $.

Table 5-14 Median WTP Estimates and Derived Midrange Estimates (in 1999 $)

Symptom a Dickie et al.

(1987)

Tolley et al.

(1986)

Loehman et al.

(1979)

Mid-Range

Estimate

Throat congestion 4.81 20.84 - 12.75

Head/sinus congestion 5.61 22.45 10.45 12.75

Coughing 1.61 17.65 6.35 8.93

Eye irritation - 20.03 - 20.03

Headache 1.61 32.07 - 12.75

Shortness of breath 0.00 - 13.47 6.37

Pain upon deep inhalation

(PDI)

5.63 - - 5.63

Wheeze 3.21 - - 3.21

Coughing up phlegm 3.51 b - - 3.51

Chest tightness 8.03 - - 8.03

a All estimates are WTP to avoid one day of symptom.  Midrange estimates were derived by IEc (1993).

b 10% trimmed mean.
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Table 5-15  Estimates of MWTP to Avoid Upper Respiratory Symptoms (1999 $)

Symptom Combinations Identified as URS by Pope et al.

(1991)

MWTP to Avoid

Symptom(s)

Coughing $8.93

Head/Sinus Congestion $12.75

Eye Irritation $20.03

Coughing, Head/Sinus Congestion $21.67

Coughing, Eye Irritation $28.96

Head/Sinus Congestion, Eye Irritation $32.78

Coughing, Head/Sinus Congestion, Eye Irritation $41.71

Average: $23.83

Based on values reported in Table 5-12.

It is worth emphasizing that what is being valued here is URS as defined by Pope et al. (1991).

While other definitions of URS are certainly possible, this definition of URS is used in this benefit analysis

because it is the incidence of this specific  definition of URS that has been related to PM exposure by Pope

et al.

Lower Respiratory Symptoms (LRS)

Lower respiratory symptoms include symptoms such as cough, chest pain, phlegm, and wheeze.  To

estimate the link between PM2.5 and lower respiratory symptoms, we used a study by Schwartz et al. (1994).

Schwartz et al. (1994) used logistic  regression to link lower respiratory symptoms in children with SO2, NO2,

ozone, PM10, PM2.5, sulfate and H+ (hydrogen ion).  Children were selected for the study if they were

exposed to indoor sources of air pollution: gas stoves and parental smoking.  The study enrolled 1,844 children

into a year-long study  conducted in different years (1984 to 1988) in six cities.  The students were in grades

two through five at the time of enrollment in 1984.  By the completion of the final study, the cohort would then

be in the eighth grade (ages 13-14); this suggests an age range of 7 to 14.

In single pollutant models SO2, NO2, PM2.5, and PM10 were significantly linked to cough.  In two-

pollutant models, PM10 had the most consistent relationship with cough; ozone was marginally significant,

controlling for PM10.  In models for upper respiratory symptoms, they reported a marginally significant

association for PM10.  In models for lower respiratory symptoms, they reported significant single-pollutant

models, using SO2, O3, PM2.5, PM10, SO4, and H+.  The PM2.5 C-R function is based on the single pollutant

model reported in Schwartz et al. (1994, Table 5).

Valuing LRS

The method for deriving a point estimate of mean WTP to avoid a day of LRS is the same as for

URS.  Schwartz et al. (1994, p. 1235) define LRS as at least two of the following symptoms: cough, chest



25 Because cough is a symptom in some of the URS clusters as well as some of the LRS clusters,

there is the possibility of a very small amount of double counting – if the same individual were to have an

occurrence of URS which included cough and an occurrence of LRS which included cough both on

exactly the same day.  Because this is probably a very small probability occurrence, the degree of double

counting is likely to be very minor.  Moreover, because URS is applied only to asthmatics ages 9-11 (a

very small population), the amount of potential double counting should be truly negligible.

26 As with URS, if we had empirical evidence we could improve the accuracy of the probabilities

of occurrence of each type of LRS.  Lacking empirical evidence, however, a uniform distribution seems

the most reasonable “default” assumption.
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pain, phlegm, and wheeze.  The symptoms for which WTP estimates are available that reasonably match

those listed by Schwartz et al. for LRS are cough (C), chest tightness (CT), coughing up phlegm (CP), and

wheeze (W).  A day of LRS, as defined by Schwartz et al., could consist of any one of the 11 combinations

of at least two of these four symptoms, as displayed in Table 5-14.25

Table 5-14  Estimates of MWTP to Avoid Lower Respiratory Symptoms (1999 $)

Symptom Combinations Identified as LRS by Schwartz et al.

(1994)

MWTP to Avoid

Symptom(s)

Coughing, Chest Tightness $16.95

Coughing, Coughing Up Phlegm $12.42

Coughing, Wheeze $12.13

Chest Tightness, Coughing Up Phlegm $11.53

Chest Tightness, Wheeze $11.24

Coughing Up Phlegm, Wheeze $6.72

Coughing, Chest Tightness, Coughing Up Phlegm $20.46

Coughing, Chest Tightness, Wheeze $20.17

Coughing, Coughing Up Phlegm, Wheeze $15.64

Chest Tightness, Coughing Up Phlegm, Wheeze $14.75

Coughing, Chest Tightness, Coughing Up Phlegm, Wheeze $23.67

Average: $15.07

Based on values reported in Table 5-12.

We assumed that each of the eleven types of LRS is equally likely.26  The mean WTP to avoid a day

of LRS as defined by Schwartz et al. (1994) is therefore the average of the mean WTPs to avoid each type

of LRS, – $11.82.  This is $15.07 (=1.275*$11.82) in 1999 $.  This is the point estimate used in the benefit

analysis for the dollar value for LRS as defined by Schwartz et al.  The WTP estimates are based on studies

which considered the value of a day of avoided symptoms, whereas the Schwartz et al. study used as its
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measure a case of LRS.  Because a case of LRS usually lasts at least one day, and often more, WTP to

avoid a day of LRS should be a conservative estimate of WTP to avoid a case of LRS.

In the absence of information about the frequency of each of the seven types of LRS among all

occurrences of LRS, the uncertainty analysis for WTP to avoid a day of URS is based on a continuous

uniform distribution of MWTPs in Table 5-12, with a range of [$5, $19], or [$6.37, $24.22] in 1999 $.  This

is the same procedure as that used in the URS uncertainty analysis.

As with URS, it is worth emphasizing that what is being valued here is LRS as defined by Schwartz

et al. (1994).  While other definitions of LRS are certainly possible, this definition of LRS is used in this

benefit analysis because it is the incidence of this specific  definition of LRS that has been related to PM

exposure by Schwartz et al.

Issues in the Valuation of URS and LRS

The point estimates derived for mean WTP to avoid a day of URS and a case of LRS are based on

the assumption that WTPs are additive.  For example, if WTP to avoid a day of cough is $8.93, and WTP to

avoid a day of shortness of breath is $6.37, then WTP to avoid a day of both cough and shortness of breath

is $15.30.  If there are no synergistic effects among symptoms, then it is likely that the marginal utility of

avoiding symptoms decreases with the number of symptoms being avoided.  If this is the case, adding WTPs

would tend to overestimate WTP for avoidance of multiple symptoms.  However, there may be synergistic

effects– that is, the discomfort from two or more simultaneous symptoms may exceed the sum of the

discomforts associated with each of the individual symptoms.  If this is the case, adding WTPs would tend

to underestimate WTP for avoidance of multiple symptoms.  It is also possible that people may experience

additional symptoms for which WTPs are not available, again leading to an underestimate of the correct

WTP.  However, for small numbers of symptoms, the assumption of additivity of WTPs is unlikely to result

in substantive bias.

There are also three sources of uncertainty in the valuation of both URS and LRS: (1) an occurrence

of URS or of LRS may be comprised of one or more of a variety of symptoms (i.e., URS and LRS are each

potentially a “complex of symptoms”), so that what is being valued may vary from one occurrence to another;

(2) for a given symptom, there is uncertainty about the mean WTP to avoid the symptom; and (3) the WTP

to avoid an occurrence of multiple symptoms may be greater or less than the sum of the WTPs to avoid the

individual symptoms. 

Information about the degree of uncertainty from either the second or the third source is not available.

The first source of uncertainty, however, is addressed because an occurrence of URS or LRS may vary in

symptoms.  For example, seven different symptom complexes that qualify as URS, as defined by Pope et al.

(1991), were identified above.  The estimates of MWTP to avoid these seven different kinds of URS range

from $8.93 (to avoid an occurrence of URS that consists of only coughing) to $42.06 (to avoid an occurrence

of URS that consists of coughing plus head/sinus congestion plus eye irritation).  There is no information,

however, about the frequency of each of the seven types of URS among all occurrences of URS.

Because of insufficient information to adequately estimate the distributions of the estimators of

MWTP for URS and LRS, as a rough approximation, a continuous uniform distribution over the interval from

the smallest point estimate to the largest is used.  As was mentioned in the two previous sections, the interval

for URS is [$8.93, $42.06], and for LRS, the interval is [$6.37, $24.22].



Abt Associates Inc. June 20045-30

Alternatively, a discrete distribution of the seven unit dollar values associated with each of the seven

types of URS identified could be used.  This would provide a distribution whose mean is the same as the point

estimate of MWTP.  A continuous uniform distribution, however, is probably more reasonable than a discrete

uniform distribution.  The differences between the means of the discrete uniform distributions (the point

estimates) and the means of the continuous uniform distributions are relatively small, as shown in Table 5-15.

Table 5-16 Comparison of the Means of Discrete and Continuous Uniform Distributions of

MWTP Associated with URS and LRS (1990 $)

Health Endpoint Mean of Discrete Uniform

Distribution (Point Est.)

Mean of Continuous Uniform

Distribution

URS (Pope et al., 1991) 18.70 19.86

LRS (Schwartz et al., 1994) 11.82 11.92

Minor Restricted Activity Days (MRADs)

Ostro and Rothschild (1989) estimated the impact of PM2.5 on the incidence of minor restricted

activity days (MRAD) in a national sample of the adult working population, ages 18 to 65, living in

metropolitan areas.  We developed separate coefficients for each year in the analysis (1976-1981), which

were then combined for use in this analysis.  The coefficient used in the C-R function is a weighted average

of the coefficients in Ostro  (Ostro, 1987, Table IV) using the inverse of the variance as the weight.

Valuing Minor Restricted Activity Days (MRADs)

The unit value and uncertainty distribution for MRADs for this analysis were obtained by adjusting

the (rounded) values in 1990 $ used in the §812 Prospective analysis to 1999 $ by multiplying by 1.275.  No

studies are reported to have estimated WTP to avoid a minor restricted activity day (MRAD). However, IEc

(1993) has derived an estimate of WTP to avoid a minor respiratory restricted activity day (MRRAD), using

WTP estimates from Tolley et al. (1986) for avoiding a three-symptom combination of coughing, throat

congestion, and sinusitis.  This estimate of WTP to avoid a MRRAD, so defined, is $38.37 (1990 $), or about

$38.  Although Ostro and Rothschild (1989) estimated the relationship between PM2.5 and MRADs, rather

than MRRADs (a component of MRADs), it is likely that most of the MRADs associated with exposure to

PM2.5 are in fact MRRADs.  For the purpose of valuing this health endpoint, then, we assumed that MRADs

associated with PM exposure may be more specifically defined as MRRADs, and therefore used the estimate

of mean WTP to avoid a MRRAD.

Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity day other

than WLD) will be somewhat arbitrary because the endpoint itself is not precisely defined.  Many different

combinations of symptoms could presumably result in some minor or less minor restriction in activity.

Krupnick and Kopp (1988) argued that mild symptoms will not be sufficient to result in a MRRAD, so that

WTP to avoid a MRRAD should exceed WTP to avoid any single mild symptom.  A single severe symptom

or a combination of symptoms could, however, be sufficient to restrict activity.  Therefore WTP to avoid a

MRRAD should, these authors argue, not necessarily exceed WTP to avoid a single severe symptom or a

combination of symptoms.  The “severity” of a symptom, however, is similarly not precisely defined;
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moreover, one level of severity of a symptom could induce restriction of activity for one individual while not

doing so for another.  The same is true for any particular combination of symptoms.

Given that there is inherently a substantial degree of arbitrariness in any point estimate of WTP to

avoid a MRRAD (or other kinds of restricted activity days), the reasonable bounds on such an estimate must

be considered.  By definition, a MRRAD does not result in loss of work.  WTP to avoid a MRRAD should

therefore be less than WTP to avoid a WLD.  At the other extreme, WTP to avoid a MRRAD should exceed

WTP to avoid a single mild symptom.  The highest IEc midrange estimate of WTP to avoid a single symptom

is $15.72 (1990 $), or about $16, for eye irritation.  The point estimate of WTP to avoid a WLD in the benefit

analysis is $83 (1990 $).  If all the single symptoms evaluated by the studies are not severe, then the estimate

of WTP to avoid a MRRAD should be somewhere between $16 and $83.  Because the IEc estimate of $38

falls within this range (and acknowledging the degree of arbitrariness associated with any estimate within this

range), the IEc estimate is used as the mean of a triangular distribution centered at $38, ranging from $16 to

$61.  Adjusting to 1999 $, this is a triangular distribution centered at $48.43, ranging from $20.34 to $77.76.

Work Loss Days (WLD)

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted

activity days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working

population, ages 18 to 65, living in metropolitan areas.  The annual national survey results used in this analysis

were conducted in 1976-1981.  Ostro reported that two-week average PM2.5 levels were significantly linked

to work-loss days, RADs, and RRADs, however there was some year-to-year variability in the results.

Separate coefficients were developed for each year in the analysis (1976-1981); these coefficients were

pooled.  The coefficient used in the concentration-response function used here is a weighted average of the

coefficients in Ostro (1987, Table III) using the inverse of the variance as the weight.

Valuing WLD

Willingness to pay to avoid the loss of one day of work was estimated by dividing the median weekly

wage for 1990 (U.S. Bureau of the Census, 1992) by five (to get the median daily wage).  This values the

loss of a day of work at the national median wage for the day lost.  To account for regional variations in

median wages, the national daily median wage was adjusted on a county-by-county basis using a factor based

on the ratio of national median household income divided by each county’s median income.   Each county’s

income-adjusted willingness to pay to avoid the loss of one day of work was then used to value the number

of work loss days attributed to that county.  Valuing the loss of a day’s work at the wages lost is consistent

with economic theory, which assumes that an individual is paid exactly the value of his labor.

The use of the median rather than the mean, however, requires some comment.  If all individuals in

society were equally likely to be affected by air pollution to the extent that they lose a day of work because

of it, then the appropriate measure of the value of a work loss day would be the mean daily wage.  It is highly

likely, however, that the loss of work days due to pollution exposure does not occur with equal probability

among all individuals, but instead is more likely to occur among lower income individuals than among high

income individuals.  It is probable, for example, that individuals who are vulnerable enough to the negative

effects of air pollution to lose a day of work as a result of exposure tend to be those with generally poorer

health care. Individuals with poorer health care have, on average, lower incomes.  To estimate the average

lost wages of individuals who lose a day of work because of exposure to PM pollution, then, would require

a weighted average of all daily wages, with higher weights on the low end of the wage scale and lower

weights on the high end of the wage scale.  Because the appropriate weights are not known, however, the
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median wage was used rather than the mean wage.  The  median is more likely to approximate the correct

value than the mean because means are highly susceptible to the influence of large values in the tail of a

distribution (in this case, the small percentage of very large incomes in the United States), whereas the median

is not susceptible to these large values.  The median daily wage in 1990 was $83, or $105.8 in 1999$.  This

is the value  used to represent work loss days (WLD).  An uncertainty distribution for this endpoint was

unavailable, therefore the same central estimate ($105.8) was used to value incidence changes at the fifth,

mean, and ninety-fifth percentiles.
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6 Results

This chapter provides estimates of the magnitude and value of changes in adverse health effects

associated with each of the different policy scenarios we considered.  

Tables 6-1 through 6-2 present the estimated number of avoidable health effects for each endpoint

in each policy option.  Tables 6.1 presents the results for 2010 (including the No-EGU analysis, which shows

the number of attributable cases of health effects rather than avoidable health effects), and Table 6.2 presents

the similar table for 2020.  Tables 6-3 and 6-4 present the monetary value of the avoidable health effects for

2010 and 2020, respectively.  

Additional details of the results shown in Tables 6-1 through 6.4 are included in Appendix B.  The

Tables in Appendix B provide uncertainty ranges (5th and 95th percentile values) of the health and valuation

estimates.

The estimates of premature mortality included in this report are all based on estimates of the risk of

dying attributable to the estimated PM levels in each policy option.  As described in Chapter 5, these

attributable risks from the estimated annual PM levels for each scenario are estimated in each location.  The

estimated mortal risk involve not only the changes in PM concentrations, but also data on the age-specific

mortality rates in each location.  Exhibits 6-1 through 6-10 are maps depicting the estimated mortality rates

per 100,000 population from PM2.5 from electricity generating units associated with each scenario.  In addition

to the risks from PM2.5 from electricity generating units, there is additional risk from PM2.5 coming from other

sources.  This additional, non-EGU risk is not shown on Exhibits 6-1 to 6-10.

As discussed in Chapter 5, additional epidemiology-based health research has been published since

the time the health effects were selected for inclusion in EPA’s Clear Skies Analysis.  One such important

new research paper is the Pope et al., 2002, paper.  This research extends previously published results based

on the American Cancer Society cohort tracking data..  The primary premature mortality estimates included

in the EPA Clear Skies Analysis and in this paper are based earlier results from the ACS cohort data

(Krewski et al., 2000). Along with using additional years of follow-on data than was previously available, Pope

et al., 2002 also found a statistically significant relationship between PM2.5 levels and a specific cause of

death: lung cancer.  

The EPA Clear Skies Analysis did not include estimates of deaths from lung cancer, so they are not

included in the primary result set in this paper.  It is possible, however, to use the lung cancer/PM relationship

from the Pope et al., 2002 paper to estimate the numbers of avoidable lung cancer premature mortalities under

each policy option considered in this paper.  Table 6-5 presents estimates of the number of PM-related

premature deaths from lung cancer, as well as the total mortality estimates previously presented.

The lung cancer mortality estimates are not additional deaths beyond the estimates from the Krewski

et al., 2000 results.  The mortality estimates from lung cancer are included in the total premature mortality

estimates; the remaining cases of premature mortality (approximately 88 percent of the total) are from other

causes, including both respiratory and cardio-vascular diseases.  

In addition to the primary mortality estimate (which is based on Krewski et al., 2000 reanalysis of the

American Cancer Society data), it is also possible to use other health studies as the basis of additional

sensitivity estimates of mortality.  Different health studies would produce different estimates of the avoidable

cases of premature mortality.  For example, a different estimate of the amount of premature mortality could
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be based on the Krewski et al., 2000 reanalysis of the 6 Cities (Dockery et al., 1993) cohort data.  The

reanalysis of the 6 Cities data produced a relative risk factor nearly three times as high as the reanalysis of

the American Cancer Society data.  Therefore, using the 6 Cities reanalysis result produces almost three

times as large an estimate of the numbers of cases of attributable premature mortality.  For  No EGU

scenario, the 6 Cities reanalysis-based mortality relationship estimates there would be 67, 719 attributable

cases of premature mortality in 2010, compared with 23,604 using the American Cancer Society cohort

results..

Another health effect associated with exposure to PM are asthma attacks.  Because of possible

double counting with endpoints that are included (such as emergency room visits for asthma and upper

respiratory symptom days), EPA does not quantify the number of asthma attacks.  Using the methods

previously used by EPA, there are 554,448 PM-related asthma attacks in the 2010 No EGU analysis.

Table  6-1 2010 Health Benefits Estimates: Numbers of Cases Reduced

CSA No EGU Carper Straw Jeffords

Mortality 7,861 23,604 10,430 11,100 16,575

Chronic Bronchitis 5,400 16,221 7,160 7,615 11,397

Heart Attacks 13,115 38,198 17,218 18,244 27,039

Hospital Admissions-Respiratory

Chronic Lung, less

Asthma(20-64)

374 1,127 496 527 791

Asthma(0-64) 651 1,946 860 912 1,362

Pneumonia(65+) 2,653 8,040 3,515 3,733 5,628

Chronic Lung(65+) 332 1,000 441 468 702

Total Hospital Admissions-

Respiratory

4,010 12,113 5,313 5,640 8,484

Hospital Admissions Cardiovascular

All Cardiovascular,(20-64) 1,332 4,028 1,778 1,893 2,829

All Cardiovascular,(65+) 1,903 5,707 2,521 2,677 4,006

Total Hospital Admissions-

Cardiovascular

3,235 9,735 4,299 4,570 6,835

Emergency Room Visits for

Asthma

8,316 25,999 11,108 11,811 18,205

Acute Bronchitis 12,522 37,705 16,614 17,669 26,554

Lower Respiratory

Symptoms

142,621 429,980 189,214 201,197 302,678

Upper Respiratory

Symptoms

113,707 348,823 151,390 161,069 243,760

Work Loss Days 1,050,415 3,186,036 1,395,098 1,483,765 2,231,223
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Minor Restricted Activity

Days

6,258,491 18,916,818 8,306,310 8,832,956 13,265,510

Table 6-2 2020 Health Benefits Estimates: Numbers of Cases Reduced

CSA Carper Straw Jeffords

Mortality 14,104        16,166         18,355        21,749 

Chronic Bronchitis 8,770        10,048         11,422        13,586 

Heart Attacks 23,009        26,280         29,798        35,230 

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) 610             699              794             945 

  Asthma (0-64) 1,151          1,145           1,302          1,545 

  Pneumonia (65+) 4,972          5,705           6,496          7,749 

  Chronic Lung (65+) 650             746              848          1,008 

Total Hospital Admissions - Respiratory 7,383          8,295           7,513        11,247 

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) 2,139          2,452           2,782          3,296 

  All Cardiovascular, (65+) 3,632          4,165           4,731          5,615 

Total Hospital Admissions - Cardiovascular 5,771          6,617           7,513          8,911 

Emergency Room Visits for Asthma 13,223        15,191         17,373        21,050 

Acute Bronchitis 19,919        22,823         25,971        31,013 

Lower Respiratory Symptoms 226,616       259,649       295,492       353,091 

Upper Respiratory Symptoms 181,286       208,106       237,294       284,295 

Work Loss Days 1,602,343    1,837,341     2,091,325    2,495,685 

Minor Restricted Activity Days 9,519,433  10,910,946   12,413,325  14,800,704 



Abt Associates Inc. June 20046-4

Table 6-3 2010 Value of Health Benefits (in millions of $1999)

CSA NoEGU Carper Straw Jeffords

Mortality $51,974 $149,274 $65,959 $70,198 $104,823

Chronic Bronchitis $2,046 $5,523 $2,438 $2,592 $3,881

Heart Attacks $1,127 $3,284 $1,480 $1,568 $2,324

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) $4 $13 $6 $6 $9

  Asthma (0-64) $5 $15 $7 $7 $11

  Pneumonia (65+) $47 $143 $63 $67 $100

  Chronic Lung (65+) $4 $13 $6 $6 $9

Total Hospital Admissions - Respiratory $60 $187 $82 $87 $132

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) $30 $92 $41 $43 $64

  All Cardiovascular, (65+) $39 $116 $51 $54 $81

Total Hospital Admissions - Cardiovascular $69 $206 $92 $97 $146

Emergency Room Visits for Asthma $2 $7 $3 $3 $5

Acute Bronchitis $5 $13 $6 $7 $10

Lower Respiratory Symptoms $2 $7 $3 $3 $5

Upper Respiratory Symptoms $3 $9 $4 $4 $6

Work Loss Days $136 $367 $161 $171 $257

Minor Restricted Activity Days $327 $956 $420 $447 $670
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Table 6-4 2020 Value of Health Benefits (in millions of $1999)

CSA 2020 Carper Straw Jeffords

Mortality $106,996 $117,302 $133,186 $157,813

Chronic Bronchitis $3,880 $3,995 $4,540 $5,401

Heart Attacks $1,961 $2,240 $2,540 $3,003

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) $7 $8 $9 $11

  Asthma (0-64) $9 $9 $10 $12

  Pneumonia (65+) $89 $102 $116 $138

  Chronic Lung (65+) $9 $10 $11 $14

Total Hospital Admissions - Respiratory $114 $131 $149 $177

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) $49 $56 $63 $75

  All Cardiovascular, (65+) $74 $84 $96 $114

Total Hospital Admissions - Cardiovascular $123 $140 $159 $188

Emergency Room Visits for Asthma $4 $4 $5 $6

Acute Bronchitis $8 $9 $10 $12

Lower Respiratory Symptoms $4 $4 $5 $6

Upper Respiratory Symptoms $5 $6 $6 $8

Work Loss Days $208 $212 $241 $288

Minor Restricted Activity Days $522 $578 $658 $784
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Exhibit 6-1 2010 Premature Mortality Risk Attributable to PM2.5 from Power Plants, 2010 Baseline
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Exhibit 6-2 2010 Premature Mortality Risk Attributable to PM2.5 from Power Plants, With Clear Skies Act
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Exhibit 6-3 2010 Premature Mortality Risk Attributable to PM2.5 from Power Plants, With Carper
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Exhibit 6-4 2010 Premature Mortality Risk Attributable to PM2.5 from Power Plants, With Straw Proposal
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Exhibit 6-5 2010 Premature Mortality Risk Attributable to PM2.5 from Power Plants, With Jeffords
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Exhibit 6-6 2020 Premature Mortality Risk Attributable to PM2.5 from Power Plants, Baseline
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Exhibit 6-7 2020 Premature Mortality Risk Attributable to PM2.5 from Power Plants, With Clear Skies Act
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Exhibit 6-8 2020 Premature Mortality Risk Attributable to PM2.5 from Power Plants, With Carper
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Exhibit 6-9 2020 Premature Mortality Risk Attributable to PM2.5 from Power Plants, With Straw Proposal
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Exhibit 6-10 2020 Premature Mortality Risk Attributable to PM2.5 from Power Plants, With Jeffords
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Table 6.5 Lung Cancer Mortality Estimates

Lung Cancer

Mortality

(Pope et al.,

2002)

Adult Mortality

(Krewski et

al., 2000)

2010

CSA 944 7,861

No EGU 2,826 23,604

Carper 1,253 10,430

Straw 1,334 11,100

Jeffords 1,990 16,575

2020

CSA 1,758 14,104

Carper 2,015 16,166

Straw 2,288 18,355

Jeffords 2,711 21,749
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7 Non-Attainment Analysis

The reductions in ambient levels of PM2.5 will not only reduce the numbers of adverse health effects

attributable to PM, but will also have an influence on what portions of the country are predicted to exceed

the National Ambient Air Quality Standards (NAAQS) for PM. In 2001 EPA issued draft guidance that

describes a procedure for combining monitored data with REMSAD results to estimate future concentrations

of PM2.5.  The procedure, known as the Speciated Modeled Attainment Test (SMAT) uses estimates of

current and future levels of six components of PM2.5.  The six components of PM2.5 used in a SMAT analysis

are: sulfates, nitrates, organic carbon, elemental carbon, crustal material, and un-attributed mass.

EPA used the SMAT technique to estimate the numbers of counties that will not attain the annual

mean PM2.5 NAAQS levels with and without the Clear Skies Act.  They have also conducted SMAT analysis

for other proposed rules currently under consideration.  The most complete description of the SMAT method

is available as part of the documentation of the January 30, 2004 proposed Clean Air Interstate Rule (CAIR).

In particular, the SMAT procedures are described in “Appendix E: Speciated Modeled Attainment Test

(SMAT) Documentation”, a part of the Technical Support Document for the Interstate Air Quality Rule

Air Quality Modeling Analysis available online at http://www.epa.gov/interstateairquality/tsd0162.pdf.

While the method used in the SMAT have not changed since EPA conducted the analysis of the

Clear Skies Act, for the CAIR and other subsequent rules EPA has updated and refined some of the monitor

data used in a SMAT.    

This chapter provides the results of a SMAT analysis on each of the policy options considered in this

report.  While the method used in the SMAT have not changed since EPA conducted the analysis of the

Clear Skies Act, for the CAIR and other subsequent rules EPA has updated and refined some of the historic

monitor data and analysis used in a SMAT.    The analysis in this chapter uses the same historic monitor data

and analysis as the was used in EPA’s analysis of the Clear Skies Act.

EPA’s SMAT method is only applicable to counties with adequate PM2.5. monitor data.  The SMAT

analysis of the Clear Skies Act used actual monitor data from 1999 through 2001, and analyzed a total of 307

counties.  While these counties include many of the most heavily populated counties in the United States, a

sizable portion of the population lives in the 2,802 counties that did not have sufficient PM2.5 monitors in 1999-

2001 to be included in those analyses.

The results of the SMAT analysis for the policy options examined in this report are included in Table

7-1.  The analysis of the Clear Skies Act is from the EPA analysis.  County results, including the Design

Value (estimated PM2.5 level at the highest monitor in the county) are presented in Appendix C.
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Table 7-1 SMAT Results: Estimated Number of Non-Attainment Counties 

All Years # Counties Analyzed 307

Year Policy Option

# of Counties

Exceeding

Annual Mean

Standard

'99-'01 Observed Monitors 129

Base Case 80

Clear Skies 38

Jeffords 16

Straw 24

Carper 27

No EGU 13

2020 Base Case 53

Clear Skies 18

Jeffords 13

Straw 13

Carper 15
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Appendix A:  Particulate Matter C-R Functions

Appendix A describes the concentration-response functions that we use in this analysis.  Note that for all of

the concentration-response functions we define )PM as PMbaseline - PMcontrol, and we define the change in

incidence as: - (incidencecontrol - incidencebaseline).

Mortality

There are two types of exposure to PM that may result in premature mortality.  Short-term exposure

may result in excess mortality on the same day or within a few days of exposure.  Long-term exposure over,

say, a year or more, may result in mortality in excess of what it would be if PM levels were generally lower,

although the excess mortality that occurs will not necessarily be associated with any particular episode of

elevated air pollution levels.  In other words, long-term exposure may capture a facet of the association

between PM and mortality that is not captured by short-term exposure.

Mortality (Krewski et al., 2000) Based on ACS Cohort: Mean PM2.5

The C-R function to estimate the change in long-term mortality is:

where:

y0 = county-level all-cause annual death rate per person ages 30 and older

$ = PM2.5 coefficient = 0.0046257

)PM2.5 = change in annual mean PM2.5 concentration

pop = population of ages 30 and older

F$ = standard error of $ = 0.0012046

Incidence Rate.  To estimate county-specific  baseline mortality incidence among individuals ages 30 and

over, this analysis used the average annual all-cause county mortality rate from 1994 through 1996 (U.S.

Centers for Disease Control, 1999).  Note that the Krewski et al. (2000) replication of Pope et al. (1995) used

the same all-cause mortality when estimating the impact of PM.

Coefficient Estimate ($).  The coefficient ($) is estimated from the relative risk (1.12) associated with a

change in mean exposure of 24.5 :g/m3 (based on the range from the original ACS study) (Krewski et al.,

2000, Part II - Table 31, 63 city Dichotomous sampler ).



27 There are a limited number of studies that have estimated the impact of air pollution on chronic

bronchitis.  An important hindrance is the lack of health data and the associated air pollution levels over a

number of years.  
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Standard Error (F$).  The standard error (F$) was calculated as the average of the standard errors implied

by the reported lower and upper bounds of the relative risk (Krewski et al., 2000, Part II - Table 31). 

Chronic Illness

Schwartz (1993) and Abbey et al. (1993; 1995c) provide evidence that PM exposure over a number

of years gives rise to the development of chronic  bronchitis in the U.S., and a recent study by McDonnell et

al. (1999) provides evidence that ozone exposure is linked to the development of asthma in adults.  These

results are consistent with research that has found chronic exposure to pollutants leads to declining pulmonary

functioning (Detels et al., 1991; Ackermann-Liebrich et al., 1997; Abbey et al., 1998).27

Chronic Bronchitis (Abbey et al., 1995c, California)

Abbey et al. (1995c) examined the relationship between estimated PM2 .5 (annual mean from 1966

to 1977), PM10 (annual mean from 1973 to 1977) and TSP  (annual mean from 1973 to 1977) and the same

chronic respiratory symptoms in a sample population of 1,868 Californian Seventh Day Adventists.  The initial

survey was conducted in 1977 and the final survey in 1987.  To ensure a better estimate of exposure, the

study participants had to have been living in the same area for an extended period of time.  In single-pollutant

models, there was a statistically significant PM2.5 relationship with development of chronic  bronchitis, but not

for AOD or asthma; PM10 was significantly associated with chronic bronchitis and AOD; and TSP was

significantly associated with all cases of all three chronic  symptoms.  Other pollutants were not examined.

The C-R function is based on the results of the single pollutant model presented in Table 2.

Single Pollutant Model

The estimated coefficient (0.0137) is presented for a one :g/m3 change in PM2.5 (Abbey et al., 1995c,

Table 2).  The standard error is calculated from the reported relative risk (1.81) and 95% confidence interval

(0.98-3.25) for a 45 :g/m3 change in PM2.5 (Abbey et al., 1995c, Table 2).



28 Using the same data set, Abbey et al. (1995a, p. 140)  reported that the respondents in 1977

ranged in age from 27 to 95.  

29 The American Lung Association (2002b, Table 4) reports a chronic bronchitis prevalence rate

for ages 18 and over of 4.43% (American Lung Association, 2002b, Table 4). 
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Functional Form: Logistic

Coefficient: 0.0137

Standard Error: 0.00680

Incidence Rate: annual bronchitis incidence rate per person (Abbey et al., 1993, Table 3) = 0.00378

Population: population of ages 27 and older28 without chronic bronchitis = 95.57%29 of population 27+

Heart Attacks

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Peters et al., 2001)

Peters et al. (2001) studied the relationship between increased particulate air pollution and onset of

heart attacks in the Boston area from 1995 to 1996.  The authors used air quality data for PM10, PM10-2.5,

PM2.5,“black carbon”, O3, CO, NO2, and SO2 in a case-crossover analysis.  For each subject, the case

period was matched to three control periods, each 24 hours apart.  In univariate analyses, the authors

observed a positive association between heart attack occurrence and PM2.5 levels hours before and days

before onset.  The authors estimated multivariate conditional logistic models including two-hour and

twenty-four hour pollutant concentrations for each pollutant.  They found significant and independent

associations between heart attack occurrence and both two-hour and twenty-four hour PM2.5 concentrations

before onset.  Significant associations were observed for PM10 as well.  None of the other particle measures

or gaseous pollutants were significantly associated with acute myocardial infarction for the two hour or

twenty-four hour period before onset.

The patient population for this study was selected from health centers across the United States.  The

mean age of participants was 62 years old, with 21% of the study population under the age of 50.  In order

to capture the full magnitude of heart attack occurrence potentially associated with air pollution and because

age was not listed as an inclusion criteria for sample selection, we apply an age range of 18 and over in the

C-R function.  According to the National Hospital Discharge Survey, there were no hospitalizations for heart

attacks among children <15 years of age in 1999 and only 5.5% of all hospitalizations occurred in 15-44 year

olds (Popovic, 2001, Table 10).

Single Pollutant Model

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI 1.13-2.34) for

a 20 :g/m3 increase in twenty-four hour average PM2.5 (Peters et al., 2001, Table 4, p. 2813).

Functional Form: Logistic

Coefficient: 0.024121



30This estimate assumes that all heart attacks that are not instantly fatal will result in a

hospitalization.  In addition, Rosamond et al. (1999) report that approximately six percent of male and

eight percent of female hospitalized heart attack patients die within 28 days (either in or outside of the

hospital).  We applied a factor of 0.93 to the number of hospitalizations to estimate the number of nonfatal

heart attacks per year.

31 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports

the “estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are essentially the

same.  For example, a true percent change of 2.0 would result in a relative risk of 1.020 and coefficient of 0.001980.  The

“estimated” percent change, as reported by Moolgavkar, of 2.0 results in a relative risk of 1.020201 and coefficient of 0.002.
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Standard Error: 0.009285

Incidence Rate: region-specific  daily nonfatal heart attack rate per person 18+ = 93% of region-specific

daily heart attack hospitalization rate (ICD code 410) 30

Population: population of ages 18 and older

Hospital Admissions

There is a wealth of epidemiological information on the relationship between air pollution and hospital

admissions for various respiratory and cardiovascular diseases; in addition, some studies have examined the

relationship between air pollution and emergency room (ER) visits.  Because most emergency room visits do

not result in an admission to the hospital -- the majority of people going to the ER are treated and return home

-- we treat hospital admissions and ER visits separately, taking account of the fraction of ER visits that do

get admitted to the hospital, as discussed below.  

Hospital admissions require the patient to be examined by a physician, and on average may represent

more serious incidents than ER visits (Lipfert, 1993, p. 230).  The two main groups of hospital admissions

estimated in this analysis are respiratory admissions and cardiovascular admissions.  There is not much

evidence linking air pollution with other types of hospital admissions.  The only types of ER visits that have

been linked to air pollution in the U.S. or Canada are asthma-related visits.

Hospital Admissions for Chronic Lung Disease Less Asthma (Moolgavkar, 2000c)

Multipollutant Model (PM2.5 and CO) 

In a model with CO, the coefficient and standard error are calculated from an estimated percent change of

2.031 and t-statistic  of 2.2 for a 10 :g/m3 increase in PM2.5 in the two-day lag model (Moolgavkar, 2000c,

Table 4, p. 81).

Functional Form: Log-linear

Coefficient: 0.0020

Standard Error: 0.000909



32 Moolgavkar (2000c) reports results for ICD codes 490-496.  In order to avoid double counting non-elderly asthma

hospitalizations (ICD code 493) with Sheppard et al. (1999) in a total benefits estimation, we have excluded ICD code 493 from

the baseline incidence rate used in this function. 

33 PM2.5 levels were estimated from light scattering data.

34  The reported Inter Quartile Range(11.8 :g/m3) change in the abstract and text is smaller than

reported in Table 3.  We assume the change reported in the abstract and text to be correct because

greater number of significant figures are reported.
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Incidence Rate: region-specific  daily hospital admission rate for chronic lung disease admissions per person

18-64 (ICD codes 490-492, 494-496)32

Population: population of ages 18 to 64

Hospital Admissions for Asthma (Sheppard et al., 1999, Seattle)

Sheppard et al. (1999) studied the relation between air pollution in Seattle and nonelderly (<65)

hospital admissions for asthma from 1987 to 1994.  They used air quality data for PM10, PM2.5, coarse

PM101 0 - 2 . 5 ,  SO2, ozone, and CO in a Poisson regression model with control for time trends, seasonal

variations, and temperature-related weather effects.33 They found asthma hospital admissions associated with

PM10, PM2.5, PM10-2.5, CO, and ozone.  They did not observe an association for SO2. They found PM and CO

to be jointly associated with asthma admissions.  The best fitting co-pollutant models were found using ozone.

However, ozone data was only available April through October, so they did not consider ozone further.  For

the remaining pollutants, the best fitting models included PM2.5 and CO.  Results for other co-pollutant models

were not reported.  The PM2.5 C-R function is based on the multipollutant model.

Multipollutant Model (PM2.5 and CO)

The coefficient and standard error for the co-pollutant model with CO are calculated from a relative

risk of 1.03 (95% CI 1.01-1.06) for an 11.8 :g/m3 increase34 in PM2.5 (Sheppard et al., 1999, p. 28).

Functional Form: Log-linear

Coefficient: 0.002505

Standard Error: 0.001045

Incidence Rate: region-specific  daily hospital admission rate for asthma admissions per person <65 (ICD

code 493)

Population: population of ages 65 and under

Hospital Admissions for Pneumonia (Lippmann et al., 2000, Detroit)
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Lippmann et al. (2000) studied the association between particulate matter and daily mortality and

hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods, 1985-

1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was the main

focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and respiratory

endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson regression model with

generalized additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single

pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-486), PM1 0 - 2 . 5

and PM10 were significant for ischemic  heart disease (ICD code 410-414), and PM2.5 and PM10 were

significant for heart failure (ICD code 428).  There were positive, but not statistically significant associations,

between the PM metrics and COPD (ICD codes 490-496) and dysrhythmia (ICD code 427).  In separate

co-pollutant models with PM and either ozone, SO2, NO2, or CO, the results were generally comparable.  The

PM2.5 C-R function is based on the results of the co-pollutant model with ozone.

Multipollutant Model (PM2.5 and ozone)

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.175 (95% CI

1.026-1.345) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 26).  

Functional Form: Log-linear

Coefficient: 0.004480

Standard Error: 0.001918

Incidence Rate: region-specific daily hospital admission rate for pneumonia admissions per person 65+ (ICD

codes 480-487)

Population: population of ages 65 and older

Hospital Admissions for Chronic Lung Disease

The following two studies, Lippmann (2000) and Moolgavkar (2000b), were combined together using a

random/fixed effects pooling method.  The random/fixed effects weighting for each study was as follows:

Lippmann(2000) study was 15% and Moolgavkar(2000b) study was 85%.  The pertinent information for the

individual studies has been included below.

 1) Lippmann et al., 2000, Detroit

Lippmann et al. (2000) studied the association between particulate matter and daily mortality and

hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods, 1985-

1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was the main

focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and respiratory

endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson regression model with

generalized additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single

pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-486), PM10-2.5

and PM10 were significant for ischemic  heart disease (ICD code 410-414), and PM2.5 and PM10 were

significant for heart failure (ICD code 428).  There were positive, but not statistically significant associations,

between the PM metrics and COPD (ICD codes 490-496) and dysrhythmia (ICD code 427).  In separate
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co-pollutant models with PM and either ozone, SO2, NO2, or CO, the results were generally comparable.  The

PM2.5 C-R function is based on results of the co-pollutant model with ozone.

Multipollutant Model (PM2.5 and ozone)

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.040 (95% CI

0.877-1.234) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 26).  

Functional Form: Log-linear

Coefficient: 0.001089

Standard Error: 0.002420

Incidence Rate: region-specific  daily hospital admission rate for chronic  lung disease admissions per person

65+ (ICD codes 490-496)

Population: population of ages 65 and older

2) Moolgavkar, 2000b

Moolgavkar (2000b) examined the association between air pollution and COPD hospital admissions

(ICD 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas.  He collected daily air pollution

data for ozone, SO2, NO2, CO, and PM10 in all three areas.  PM2.5 data was available only in Los Angeles.

The data were analyzed using a Poisson regression model with generalized additive models to adjust for

temporal trends.  Separate models were run for 0 to 5 day lags in each location.  Among the 65+ age group

in Chicago and Phoenix, weak associations were observed between the gaseous pollutants and admissions.

No consistent associations were observed for PM10.  In Los Angeles, marginally significant associations were

observed for PM2.5, which were generally lower than for the gases.  In co-pollutant models with CO, the

PM2.5 effect was reduced.  Similar results were observed in the 0-19 and 20-64 year old age groups.  

The PM2.5 C-R functions are based on the co-pollutant models (PM2.5 and CO) reported for the 20-64

and 65+ age groups.  Since the true PM effect is most likely best represented by a distributed lag model, then

any single lag model should underestimate the total PM effect.  As a result, we selected the lag models with

the greatest effect estimates for use in the C-R functions.

   

Ages 65 and older

Multipollutant Model (PM2.5 and CO)



35 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar

defines and reports the “estimated” percent change as (log RR * 100).  Because the relative risk is close

to 1, RR-1 and log RR are essentially the same.  For example, a true percent change of 0.8 would result

in a relative risk of 1.008 and coefficient of 0.000797.  The “estimated” percent change, as reported by

Moolgavkar, of 0.8 results in a relative risk of 1.008032 and coefficient of 0.0008.

36 Although Moolgavkar (2000a) reports results for the 20-64 year old age range, for

comparability to other studies, we apply the results to the population of ages 18 to 64.
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In a model with CO, the coefficient and standard error are calculated from an estimated percent

change of 0.835 and t-statistic  of 0.8 for a 10 :g/m3 increase in PM2.5 in the two-day lag model (Moolgavkar,

2000b, Table 3, p. 80).

Functional Form: Log-linear

Coefficient: 0.0008

Standard Error: 0.001000

Incidence Rate: region-specific daily hospital admission rate for chronic  lung disease admissions per person

65+ (ICD codes 490-496)

Population: population of ages 65 and older

Hospital Admissions,   All Cardiovascular(20-64) (Moolgavkar, 2000a, Los Angeles)

Moolgavkar (2000a) examined the association between air pollution and cardiovascular hospital admissions

(ICD 390-448) in the Chicago, Los Angeles, and Phoenix metropolitan areas.  He collected daily air pollution

data for ozone, SO2, NO2, CO, and PM10 in all three areas.  PM2.5 data was available only in Los Angeles.

The data were analyzed using a Poisson regression model with generalized additive models to adjust for

temporal trends.  Separate models were run for 0 to 5 day lags in each location.  In a single pollutant model,

PM2.5 was statistically significant for lag 0 and lag 1.  In co-pollutant models with CO, the PM2.5 effect

dropped out and CO remained significant.  For ages 20-64, SO2 and CO exhibited the strongest effect and

any PM2 .5 effect dropped out in co-pollutant models with CO.  The PM2.5 C-R functions are based on co-

pollutant (PM2.5 and CO) models.

Ages 18 to 6436

Multipollutant Model (PM2.5 and CO)



37 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In a similar hospitalization

study by Moolgavkar (2000b), he defines and reports the “estimated” percent change as (log RR * 100). 

Because the relative risk is close to 1, RR-1 and log RR are essentially the same.  For example, a true

percent change of 0.9 would result in a relative risk of 1.009 and coefficient of 0.000896.  Assuming that

the 0.9 is the “estimated” percent change described previously would result in a relative risk of 1.009041

and coefficient of 0.0009.  We assume that the “estimated” percent changes reported in this study reflect

the definition from (Moolgavkar, 2000b).

38  Moolgavkar (2000a) reports results that include ICD code 410 (heart attack).  In the benefits

analysis, avoided nonfatal heart attacks are estimated using the results reported by Peters et al. (2001). 

The baseline rate in the Peters et al. function is a modified heart attack hospitalization rate (ICD code 410),

since most, if not all, nonfatal heart attacks will require hospitalization.  In order to avoid double counting heart attack

hospitalizations, we have excluded ICD code 410 from the baseline incidence rate used in this function. 
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In a model with CO, the coefficient and standard error are calculated from an estimated percent

change of 0.937 and t-statistic of 1.8 for a 10 :g/m3 increase in PM2.5 in the zero lag model (Moolgavkar,

2000a, Table 4, p. 1203).

Functional Form: Log-linear

Coefficient: 0.0009

Standard Error: 0.000500

Incidence Rate: region-specific  daily hospital admission rate for all cardiovascular admissions per person

ages 18 to 64 (ICD codes 390-409, 411-459)38

Population: population of ages 18 to 64

Hospital Admissions for All Cardiovascular(65+) 

The following four studies, Moolgavkar (2000a), and Lippmann (2000) Dysrhythmia, Lippmann (2000) Heart

Failure, and Lippmann (2000) Ischemic  Heart Disease were combined together using a random/fixed effects

pooling method.  The random/fixed effects weighting for each study was as follows: Moolgavkar(2000a) study

was 76% and the sum of the three Lippmann studies was weighted 24%.  The pertinent information for the

individual studies has been included below. 

1) Moolgavkar, 2000a, Los Angeles

Moolgavkar (2000a) examined the association between air pollution and cardiovascular hospital

admissions (ICD 390-448) in the Chicago, Los Angeles, and Phoenix metropolitan areas.  He collected daily

air pollution data for ozone, SO2, NO2, CO, and PM10 in all three areas.  PM2.5 data was available only in Los

Angeles.  The data were analyzed using a Poisson regression model with generalized additive models to adjust

for temporal trends.  Separate models were run for 0 to 5 day lags in each location.  Among the 65+ age

group, the gaseous pollutants generally exhibited stronger effects than PM10 or PM2.5.  The strongest overall

effects were observed for SO2 and CO.  In a single pollutant model, PM2.5 was statistically significant for lag

0 and lag 1.  In co-pollutant models with CO, the PM2.5 effect dropped out and CO remained significant. 

Ages 65 and older



39 In a log-linear model, the percent change is equal to (RR - 1) * 100.  In a similar hospitalization

study by Moolgavkar (2000b), he defines and reports the “estimated” percent change as (log RR * 100). 

Because the relative risk is close to 1, RR-1 and log RR are essentially the same.  For example, a true

percent change of 0.5 would result in a relative risk of 1.005 and coefficient of 0.000499.  Assuming that

the 0.5 is the “estimated” percent change described previously would result in a relative risk of 1.005013

and coefficient of 0.0005.  We assume that the “estimated” percent changes reported in this study reflect

the definition from (Moolgavkar, 2000b).

40 Moolgavkar (2000a) reports results for ICD codes 390-429.  In the benefits analysis, avoided

nonfatal heart attacks are estimated using the results reported by Peters et al. (2001).  The baseline rate

in the Peters et al. function is a modified heart attack hospitalization rate (ICD code 410), since most, if not all,

nonfatal heart attacks will require hospitalization.  In order to avoid double counting heart attack hospitalizations, we have

excluded ICD code 410 from the baseline incidence rate used in this function. 
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Multipollutant Model (PM2.5 and CO)

In a model with CO, the coefficient and standard error are calculated from an estimated percent

change of 0.539 and t-statistic of 0.9 for a 10 :g/m3 increase in PM2.5 in the one day lag model (Moolgavkar,

2000a, Table 3, p. 1202).

Functional Form: Log-linear

Coefficient: 0.0005

Standard Error: 0.000556

Incidence Rate: region-specific  daily hospital admission rate for all cardiovascular admissions per person

65+ (ICD codes 390-409, 411-459)40

Population: population of ages 65 and older

2) Lippmann et al., 2000, Detroit

Lippmann et al. (2000) studied the association between particulate matter and daily mortality and

hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods, 1985-

1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was the main

focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and respiratory

endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson regression model with

generalized additive models (GAM) to adjust for nonlinear relationships and temporal trends.  In single

pollutant models, all PM metrics were statistically significant for pneumonia (ICD codes 480-486), PM10-2.5

and PM10 were significant for ischemic  heart disease (ICD code 410-414), and PM2.5 and PM10 were

significant for heart failure (ICD code 428).  There were positive, but not statistically significant associations,

between the PM metrics and COPD (ICD codes 490-496) and dysrhythmia (ICD code 427).  In separate

co-pollutant models with PM and either ozone, SO2, NO2, or CO, the results were generally comparable.  The

PM2.5 C-R function is based on the co-pollutant model with ozone.

a) Hospital Admissions for Dysrhythmia

Multipollutant Model (PM2.5 and ozone)
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The co-pollutant coefficient and standard error are calculated from a relative risk of 1.080 (95% CI

0.904-1.291) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 27).  

Functional Form: Log-linear

Coefficient: 0.002138

Standard Error: 0.002525

Incidence Rate: region-specific daily hospital admission rate for dysrhythmia admissions per person 65+

(ICD code 427)

Population: population of ages 65 and older

b) Hospital Admissions for Heart Failure 

Multipollutant Model (PM2.5 and ozone)

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.183 (95% CI

1.053-1.329) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 27).  

Functional Form: Log-linear

Coefficient: 0.004668

Standard Error: 0.001650

Incidence Rate: region-specific  daily hospital admission rate for heart failure admissions per person 65+

(ICD code 428)

Population: population of ages 65 and older

c) Hospital Admissions for Ischemic Heart Disease 

Multipollutant Model (PM2.5 and ozone)

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.041 (95% CI

0.947-1.144) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 27).  

Functional Form: Log-linear

Coefficient: 0.001116

Standard Error: 0.001339



41 Lippmann et al. (2000) reports results for ICD codes 410-414.  In the benefits analysis, avoided

nonfatal heart attacks are estimated using the results reported by Peters et al. (2001).  The baseline rate

in the Peters et al. function is a modified heart attack hospitalization rate (ICD code 410), since most, if

not all, nonfatal heart attacks will require hospitalization.  In order to avoid double counting heart attack

hospitalizations, we have excluded ICD code 410 from the baseline incidence rate used in this function. 
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Incidence Rate: region-specific  daily hospital admission rate for ischemic  heart disease admissions per

person 65+ (ICD codes 411-414)41

Population: population of ages 65 and older

Emergency Room Visits

There is a wealth of epidemiological information on the relationship between air pollution and hospital

admissions for various respiratory and cardiovascular diseases; in addition, some studies have examined the

relationship between air pollution and ER visits.  Because most ER visits do not result in an admission to the

hospital -- the majority of people going to the ER are treated and return home -- we treat hospital admissions

and ER visits separately, taking account of the fraction of ER visits that do get admitted to the hospital, as

discussed below.

The only types of ER visit that have been explicitly linked to ozone in U.S. and Canadian

epidemiological studies are asthma visits.  However, it seems likely that ozone may be linked to other types

of respiratory-related ER visits.  

Emergency Room Visits for Asthma (Norris et al., 1999)

Norris et al. (1999) examined the relation between air pollution in Seattle and childhood (<18) hospital

admissions for asthma from 1995 to 1996.  The authors used air quality data for PM10, light scattering (used

to estimate fine PM), CO, SO2, NO2, and O3 in a Poisson regression model with adjustments for day of the

week, time trends, temperature, and dew point.  They found significant associations between asthma ER visits

and light scattering (converted to PM2.5), PM10, and CO.   No association was found between O3, NO2, or

SO2 and asthma ER visits, although O3 had a significant amount of missing data.  In multipollutant models with

either PM metric (light scattering or PM10) and NO2 and SO2, the PM coefficients remained significant while

the gaseous pollutants were not associated with increased asthma ER visits.  The PM2.5 C-R function is on

the multipollutant model reported.

Multipollutant Model (PM2.5, NO2, and SO2)

In a model with NO2 and SO2, the PM2.5 coefficient and standard error are calculated from a relative

risk of 1.17 (95% CI 1.08-1.26) for a 9.5 :g/m3 increase in PM2.5 (Norris et al., 1999, p. 491).  

Functional Form: Log-linear

Coefficient: 0.016527

Standard Error: 0.004139



42 The original study measured PM2.1, however when using the study's results we use PM2.5. 

This makes only a negligible difference, assuming that the adverse effects of PM2.1 and PM2.5 are

comparable.
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Incidence Rate: region-specific  daily emergency room rate for asthma admissions per person <18 (ICD

code 493)

Population: population of ages under 18

Acute Morbidity

In addition to chronic  illnesses and hospital admissions, there is a considerable body of scientific

research that has estimated significant relationships between elevated air pollution levels and other morbidity

health effects.  Chamber study research has established relationships between specific air pollution chemicals

and symptoms such as coughing, pain on deep inspiration, wheezing, eye irritation and headaches.  In addition,

epidemiological research has found air pollution relationships with acute infectious diseases (e.g., bronchitis,

sinusitis) and a variety of “symptom-day” categories.  Some “symptom-day” studies examine excess

incidences of days with identified symptoms such as wheezing, coughing, or other specific upper or lower

respiratory symptoms.  Other studies estimate relationships for days with a more general description of days

with adverse health impacts, such as “respiratory restricted activity days” or work loss days.

A challenge in preparing an analysis of the minor morbidity effects is identifying a set of effect

estimates that reflects the full range of identified adverse health effects but avoids double counting.  From

the definitions of the specific  health effects examined in each research project, it is possible to identify a set

of effects that are non-overlapping, and can be ultimately treated as additive in a benefits analysis.

Acute Bronchitis (Dockery et al., 1996)

Dockery et al. (1996) examined the relationship between PM and other pollutants on the reported

rates of asthma, persistent wheeze, chronic  cough, and bronchitis, in a study of 13,369 children ages 8-12

living in 24 communities in U.S. and Canada.  Health data were collected in 1988-1991, and single-pollutant

models were used in the analysis to test a number of measures of particulate air pollution.  Dockery et al.

found that annual level of sulfates and particle acidity were significantly related  to bronchitis, and PM2.1 and

PM10 were marginally significantly related to bronchitis.42  They also found nitrates were linked to asthma,

and sulfates linked to chronic  phlegm.  It is important to note that the study examined annual pollution

exposures, and the authors did not rule out that acute (daily) exposures could be related to asthma attacks and

other acute episodes.



43The unweighted average of the six city rates is 0.0647.

44In 1994, there were 13,707,000 restricted activity days associated with acute bronchitis, and

2,115,000 children (ages 5-17) experienced acute conditions (Adams and Marano, 1995, Tables 6 and 21). 

On average, then, each child with acute bronchitis suffered 6.48 days.
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Earlier work, by Dockery et al. (1989), based on six U.S. cities, found acute bronchitis and chronic

cough significantly related to PM15.  Because it is based on a larger sample, the Dockery et al. (1996) study

is the better study to develop a C-R function linking PM2.5 with bronchitis.  The C-R function to estimate the

change in acute bronchitis is:

where:

y0 = annual bronchitis incidence rate per person  = 0.044

$ = estimated PM2.5 logistic regression coefficient = 0.0272

)PM2.5 = change in annual average PM2.5 concentration

pop = population of ages 8-12

F$ = standard error of $ = 0.0171

Incidence Rate.  Bronchitis was counted in the study only if there were “reports of symptoms in the past

12 months” (Dockery et al., 1996, p.  501).  It is unclear, however, if the cases of bronchitis are acute and

temporary, or if the bronchitis is a chronic  condition.  Dockery et al. found no relationship between PM and

chronic cough and chronic phlegm, which are important indicators of chronic  bronchitis.  For this analysis, we

assumed that the C-R function based on Dockery et al. is measuring acute bronchitis.

In 1994, 2,115,000 children ages 5-17 experienced acute conditions (Adams and Marano, 1995, Table

6) out of population of 48.110 million children ages 5-17 (U.S. Bureau of the Census, 1998, Table 14), or 4.4

percent of this population.  This figure is somewhat lower than the 5.34 percent of children under the age of

18 reported to have chronic  bronchitis in 1990-1992 (Collins, 1997, Table 8).  Dockery et al. (1996, p. 503)

reported that in the 24 study cities the bronchitis rate varied from three to ten percent.  Finally a weighted

average of the incidence rates in the six cities in the Dockery et al. (1989) study is 6.34 percent , where the

sample size from each city is used to weight the respective incidence rate (Dockery et al., 1989, Tables 1 and

4).43   This analysis assumes a 4.4 percent prevalence rate is the most representative of the national

population.  Note that this measure reflects the fraction of children that have a chest ailment diagnosed as

bronchitis in the past year, not the number of days that children are adversely affected by acute bronchitis.44
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Coefficient Estimate ($).  The estimated logistic coefficient ($) is based on the odds ratio (= 1.50)

associated with being in the most polluted city (PM2.1 = 20.7 :g/m3) versus the least polluted city (PM2.1 =

5.8 :g/m3) (Dockery et al., 1996, Tables 1 and 4).  The original study used PM2.1, however, we use the PM2.1

coefficient and apply it to PM2.5 data.

Standard Error (F$).  The standard error of the coefficient (F$) is calculated from the reported lower and

upper bounds of the odds ratio (Dockery et al., 1996, Table 4):

Lower Respiratory Symptoms (Schwartz et al., 1994)

Schwartz et al. (1994)  used logistic regression to link lower respiratory symptoms in children with

SO2, NO2, ozone, PM10, PM2.5, sulfate and H+ (hydrogen ion).  Children were selected for the study if they

were exposed to indoor sources of air pollution: gas stoves and parental smoking.  The study enrolled 1,844

children into a year-long study  conducted in different years (1984 to 1988) in six cities.  The students were

in grades two through five at the time of enrollment in 1984.  By the completion of the final study, the cohort

would then be in the eighth grade (ages 13-14); this suggests an age range of 7 to 14.

In single pollutant models SO2, NO2, PM2.5, and PM10 were significantly linked to cough.  In two-

pollutant models, PM10 had the most consistent relationship with cough; ozone was marginally significant,

controlling for PM10.  In models for upper respiratory symptoms, they reported a marginally significant

association for PM10.  In models for lower respiratory symptoms, they reported significant single-pollutant

models, using SO2, O3, PM2.5, PM10, SO4, and H+.

The C-R function used to estimate the change in lower respiratory symptoms is:



45For example, the 62.5th percentile would have an estimated incidence rate of 0.145 percent.
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where:

y0 = daily lower respiratory symptom incidence rate per person = 0.0012

$ = estimated PM2.5 logistic regression coefficient = 0.01823

)PM2.5 = change in daily average PM2.5 concentration

pop = population of ages 7-14

F$ = standard error of $ = 0.00586

Incidence Rate.  The proposed incidence rate, 0.12 percent, is based on the percentiles in Schwartz et al.

(Schwartz et al., 1994, Table 2).  They did not report the mean incidence rate, but rather reported various

percentiles from the incidence rate distribution.  The percentiles and associated values are 10th = 0 percent,

25 th = 0 percent, 50th = 0 percent, 75th = 0.29 percent, and 90th = 0.34 percent.  The most conservative

estimate consistent with the data are to assume the incidence is zero up to the 75th percentile, a constant 0.29

percent between the 75th and 90th percentiles, and a constant 0.34 percent between the 90th and 100th

percentiles.  Alternatively, assuming a linear slope between the 50th and 75th, 75th and 90th, and 90th to 100th

percentiles, the estimated mean incidence rate is 0.12 percent,45 which is used in this analysis.

Coefficient Estimate ($).  The coefficient $ is calculated from the reported odds ratio (= 1.44) in a single-

pollutant model associated with a 20 :g/m3 change in PM2.5 (Schwartz et al., 1994, Table 5):

Standard Error (F$).  The standard error for the coefficient (F$) is calculated from the reported lower and

upper bounds of the odds ratio (Schwartz et al., 1994, Table 5):

Population.  Schwartz et al. (1994, Table 5 and p. 1235) enrolled 1,844 children into a year-long study

conducted in different years in different cities; the students were in grades two through five and lived in six

U.S. cities.  All study participants were enrolled in September 1984; the actual study was conducted in



46Neas et al. (1994, p. 1091) used the same data set; their description suggests that grades two to

five were represented initially.

47  The American Lung Association (2002c, Table 7) estimates asthma prevalence for children

ages 5 to 17 at 5.67% (based on data from the 1999 National Health Interview Survey).
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Watertown, MA in 1984/85; Kingston-Harriman, TN, and St. Louis, MO in 1985/86; Steubenville, OH, and

Portage, WI in 1986/87; and Topeka, KS in 1987/88.  The study does not publish the age range of the children

when they participated.  As a result, the study is somewhat unclear about the appropriate age range for the

resulting C-R function.  If all the children were in second grade in 1984 (ages 7-8) then the Topeka cohort

would be in fifth grade (ages 10-11) when they participated in the study.  It appears from the published

description, however,  that the students were in grades two through five in 1984.46  By the completion of the

study, some students in the Topeka cohort would then be in the eighth grade (ages 13-14); this suggests an

age range of 7 to 14.

Upper Respiratory Symptoms (Pope et al., 1991)

Using logistic  regression, Pope et al. (1991) estimated the impact of PM10 on the incidence of a

variety of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in the Utah Valley

from December 1989 through March 1990.  The children in the Pope et al. study were asked to record

respiratory symptoms in a daily diary.  With this information, the daily occurrences of upper respiratory

symptoms (URS) and lower respiratory symptoms (LRS) were related to daily PM10 concentrations.  Pope

et al. describe URS as consisting of one or more of the following symptoms:  runny or stuffy nose; wet cough;

and burning, aching, or red eyes.  Levels of ozone, NO2, and SO2 were reported low during this period, and

w ere not included in the analysis.  The sample in this study is relatively small and is most representative of

the asthmatic  population, rather than the general population.  The school-based subjects (ranging in age from

9 to 11) were chosen based on “a positive response to one or more of three questions: ever wheezed without

a cold, wheezed for 3 days or more out of the week for a month or longer, and/or had a doctor say the ‘child

has asthma’ (Pope et al., 1991, p. 669).”  The patient-based subjects (ranging in age from 8 to 72) were

receiving treatment for asthma and were referred by local physicians.  Regression results for the school-

based sample (Pope et al., 1991, Table 5) show PM10 significantly associated with both upper and lower

respiratory symptoms.  The patient-based sample did not find a significant PM10 effect.  The results from the

school-based sample are used here.

Single Pollutant Model

The coefficient and standard error for a one :g/m3 change in PM10 is reported in Table 5.

Functional Form: Logistic

Coefficient: 0.0036

Standard Error: 0.0015

Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 (Pope et al., 1991,

Table 2)

Population: asthmatic population47 ages 9 to 11 = 5.67% of population ages 9 to 11



48The study used a two-week average pollution concentration; the daily rate used here is assumed

to be a reasonable approximation.  
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Work Loss Days (Ostro, 1987)

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted

activity days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working

population, ages 18 to 65, living in metropolitan areas.  The annual national survey results used in this analysis

were conducted in 1976-1981.  Ostro reported that two-week average PM2.5 levels were significantly linked

to work-loss days, RADs, and RRADs, however there was some year-to-year variability in the results.

Separate coefficients were developed for each year in the analysis (1976-1981); these coefficients were

pooled.  The coefficient used in the concentration-response function used here is a weighted average of the

coefficients in Ostro (1987, Table III) using the inverse of the variance as the weight.

The study is based on a “convenience” sample of individuals ages 18-65.  Applying the C-R function

to this age group is likely a slight underestimate, as it seems likely that elderly are at least as susceptible to

PM as individuals 65 and younger.  The elderly appear more likely to die due to PM exposure than other age

groups (e.g., Schwartz, 1994c, p. 30) and a number of studies have found that hospital admissions for the

elderly are related to PM exposures (e.g., Schwartz, 1994a; Schwartz, 1994b).  On the other hand, the

number of workers over the age of 65 is relatively small; it was under 3% of the total workforce in 1996 (U.S.

Bureau of the Census, 1997, Table 633).

The C-R function to estimate the change in the number of work-loss days is:

where:

y0 = daily work-loss-day incidence rate per person = 0.00648

$ = inverse-variance weighted PM2.5 coefficient = 0.0046

)PM2.5 = change in daily average PM2.5 concentration48

pop = population of ages 18 to 65

F$ = standard error of $ = 0.00036

Incidence Rate.  The estimated 1994 annual incidence rate is the annual number (376,844,000) of WLD per

person in the age 18-64 population divided by the number of people in 18-64 population (159,361,000).  The



49Ostro (1987) analyzed a sample aged 18 to 65.  It is assumed that the age 18-64 rate is a

reasonably good approximation to the rate for individuals 18-65.  Data are from U.S. Bureau of the

Census (1997, Table 14) and Adams (1995, Table 41).

Abt Associates Inc. June 2004A-19

σ
γ

σ
γβ β

2 1 1
0 00036= ⇒ = = . .

β

β
σ

σ

β

β

=



















=
=

=

∑

∑

i

i

i

i

i

2
1976

1981

2
1976

1981 1
0 0046. .

σ

β
σ

σ

β
σ

γ
β

σ γβ
β

β

β

β

2

2
1976

1981

2
1976

1981

2
1976

1981

2
1976

1981

1
=



















=



















=
⋅











=

=

=

=

∑

∑

∑
∑var var .

i

i

i

i

i i

i

i

i

i

i

1994 daily incidence rate is calculated as the annual rate divided by 365.49  Data are from U.S. Bureau of the

Census (1997, Table 14) and Adams (1995, Table 41).

Coefficient Estimate ($).  The coefficient used in the C-R function is a weighted average of the coefficients

in Ostro (1987, Table III) using the inverse of the variance as the weight:

Standard Error (F$).  The standard error of the coefficient (F$) is calculated as follows, assuming that the

estimated year-specific coefficients are independent:

This eventually reduces down to:

Minor Restricted Activity Days (Ostro and Rothschild, 1989)

Ostro and Rothschild (1989) estimated the impact of PM2.5 on the incidence of minor restricted

activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national sample of the

adult working population, ages 18 to 65, living in metropolitan areas.  The annual national survey results used

in this analysis were conducted in 1976-1981.  Controlling for PM2.5, two-week average O3 has highly variable

association with RRADs and MRADs.  Controlling for O3, two-week average PM2.5 was significantly linked

to both health endpoints in most years.

The study is based on a “convenience” sample of individuals ages 18-65.  Applying the C-R function

to this age group is likely a slight underestimate, as it seems likely that elderly are at least as susceptible to

PM as individuals 65 and younger.  The elderly appear more likely to die due to PM exposure than other age



50The study used a two-week average pollution concentration; the daily rate used here is assumed

to be a reasonable approximation. 
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groups (e.g., Schwartz, 1994c, p. 30) and a number of studies have found that hospital admissions for the

elderly are related to PM exposures (e.g., Schwartz, 1994a; Schwartz, 1994b).

Using the results of the two-pollutant model, we developed separate coefficients for each year in the

analysis, which were then combined for use in this analysis.  The coefficient used in this analysis is a weighted

average of the coefficients (Ostro, 1987, Table IV) using the inverse of the variance as the weight.  The C-R

function to estimate the change in the number of minor restricted activity days (MRAD) is:

where:

y0 = daily MRAD daily incidence rate per person = 0.02137

$ = inverse-variance weighted PM2.5 coeffcient = 0.00741

)PM2.5 = change in daily average PM2.5 concentration50

pop = adult population ages 18 to 65

F$ = standard error of $ = 0.0007

Incidence Rate.  The annual incidence rate (7.8) provided by Ostro and Rothschild (1989, p. 243) was

divided by 365 to get a daily rate of 0.02137.

Coefficient Estimate ($).  The coefficient is a weighted average of the coefficients in Ostro and Rothschild

(1989, Table 4) using the inverse of the variance as the weight:
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Standard Error (F$).  The standard error of the coefficient (F$) is calculated as follows, assuming that the

estimated year-specific coefficients are independent:

This reduces down to:

Supplemental Concentration Response Functions

Mortality  (Krewski et al., 2000) - Reanalysis of Dockery et al. (1993)

Krewski et al. (2000) performed a validation and replication analysis of Dockery et al. (1993).  The

original investigators examined the relationship between PM exposure and mortality in a cohort of 8,111

individuals aged 25 and older, living in six U.S. cities.  They surveyed these individuals in 1974-1977 and

followed their health status until 1991.  While they used a smaller sample of individuals from fewer cities than

the study by Pope et al., they used improved exposure estimates, a slightly broader study population (adults

aged 25 and older; a higher proportion without a high school education), and a follow-up period nearly twice

as long as that of Pope et al. (1995).  Krewski et al. (2000, Part II - Table 52) found that educational status

was a strong effect modifier of the PM - mortality relationship in both studies, with the strongest effect seen

among the less educated.  Perhaps because of these differences, Dockery et al. study found a larger effect

of PM on premature mortality than that found by Pope et al.

After an audit of the air pollution data, demographic  variables, and cohort selection process, Krewski

et al. (2000) noted that a small portion of study participants were mistakenly censored early.  The following

C-R function is based on the risk estimate from the audited data, with the inclusion of those person-years

mistakenly censored early. 

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.28) and 95% confidence

interval (1.10-1.48) associated with a change in annual mean PM2.5 exposure of 18.6 :g/m3 to 29.6 :g/m3

(Krewski et al., 2000, Part I - Table 19c).    

Functional Form: Log-linear

Coefficient: 0.013272

Standard Error: 0.004070

Incidence Rate: county-specific annual all cause mortality rate per person ages 25 and older

Population: population of ages 25 and older



51All-cause mortality includes accidents, suicides, homicides and legal interventions.  The category

“all other” deaths is all-cause mortality less lung cancer and cardiopulmonary deaths.

52Note that we used an unpublished, final version of the paper that presents the relative risks with

one more significant digit than that found in the published version.  We chose to use this extra information

to increase the precision of our estimates. 
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Mortality, Lung Cancer (Pope et al., 2002) - Based on ACS Cohort: Mean PM2.5

Pope et al.  (2002) followed Krewski et al. (2000) and Pope et al. (1995, Table 2) and reported results

for all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-

519), and “all other” deaths.51  Like the earlier studies, Pope et al. (2002) found that mean PM2.5 is

significantly related to all-cause and cardiopulmonary mortality.  In addition, Pope et al. (2002) found a

significant relationship with lung cancer mortality, which was not found in the earlier studies.  None of the

three studies found a significant relationship with “all other” deaths.

’79-’83 Exposure

The coefficient and standard error for PM2.5 using the ’79-’83 PM data are estimated from the

relative risk (1.082) and 95% confidence interval (1.011-1.158) associated with a change in annual mean

exposure of 10.0 :g/m3. Pope et al. (2002, Table 2).52 

Functional Form: Log-linear

Coefficient: 0.007881

Standard Error: 0.003463

Incidence Rate: county-specific  annual lung cancer mortality rate (ICD code 162) per person ages 30 and

older

Population: population of ages 30 and older



Abt Associates Inc. June 2004B-1

Appendix B: Benefits Estimate: Uncertainty Results

Uncertainty estimates (5th and 95th percentile estimates) for the health and valuation results are

shown in Tables B-1 through B-4.
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Table B-1 2010 Health Benefits with Uncertainty: Numbers of Avoided Cases

CSA No EGU Carper

Mean 5th Percentile
Mean

95th

Percentile

5th Percentile
Mean

95th

Percentile

Mortality 7,861 13,527 23,604 33,632 5,969 10,430 14,880

Chronic Bronchitis 5,400 3,025 16,221 29,069 1,326 7,160 12,921

Heart Attacks 13,115 14,377 38,198 60,841 6,401 17,218 27,753

Hospital Admissions-Respiratory

   Chronic Lung, less Asthma(20-64) 374 284 1,127 1,975 125 496 868

   Asthma (0-64) 651 610 1,946 3,291 270 860 1,453

   Pneumonia (65+) 2,653 2,364 8,040 13,780 1,036 3,515 6,008

   Chronic Lung (65+) 332 (1,464) 1,000 3,641 (647) 441 1,602

Total Hospital Admissions-Respiratory 4,010 12,113 5,313

Hospital Admissions Cardiovascular

   All  Cardiovascular,(20-64) 1,332 347 4,028 7,719 153 1,778 3,406

   All  Cardiovascular,(65+) 1,903 (2,547) 5,707 18,651 (1,126) 2,521 8,207

Total Hospital Admissions-Cardiovascular 3,235 9,735 4,299

Emergency Room Visits for Asthma 8,316 15,103 25,999 37,163 6,493 11,108 15,779

Acute Bronchitis 12,522 (1,297) 37,705 74,385 (562) 16,614 33,303

Lower Respiratory Symptoms 142,621 206,086 429,980 646,906 89,990 189,214 286,836

Upper Respiratory Symptoms 113,707 109,901 348,823 587,102 47,666 151,390 254,973

Work Loss Days 1,050,415 2,778,689 3,186,036 3,592,565 1,216,135 1,395,098 1,573,877

Minor Restricted Activity Days 6,258,491 16,008,538 18,916,818 21,813,846 7,022,655 8,306,310 9,587,433
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Table B-1 2010 Health Benefits with Uncertainty: Numbers of Avoided Cases (continued)

CSA Straw Jeffords

Mean 5th

Percentile
Mean

95th

Percentile

5th

Percentile
Mean

95th

Percentile

Mortality 7,861           6,353         11,100         15,836           9,492         16,575         23,634 

Chronic Bronchitis 5,400           1,411           7,615         13,737           2,118         11,397         20,500 

Heart Attacks 13,115           6,786         18,244         29,394         10,110         27,039         43,342 

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) 374              133              527              922              199              791           1,386 

  Asthma (0-64) 651              286              912           1,540              427           1,362           2,301 

  Pneumonia (65+) 2,653           1,100           3,733           6,381           1,657           5,628           9,632 

  Chronic Lung (65+) 332            

(687)

             468           1,702          (1,029)              702           2,554 

Total Hospital Admissions - Respiratory 4,010           5,640           8,484 

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) 1,332              163           1,893           3,625              244           2,829           5,420 

  All Cardiovascular, (65+) 1,903          (1,195)           2,677           8,712          (1,787)           4,006         13,064 

Total Hospital Admissions - Cardiovascular 3,235           4,570           6,835 

Emergency Room Visits for Asthma 8,316           6,901         11,811         16,782         10,610         18,205         25,936 

Acute Bronchitis 12,522            

(598)

        17,669         35,393            

(905)

        26,554         52,826 

Lower Respiratory Symptoms 142,621         95,720       201,197       304,907       144,480       302,678       457,198 

Upper Respiratory Symptoms 113,707         50,715       161,069       271,268         76,773       243,760       410,415 

Work Loss Days 1,050,415     1,293,454     1,483,765     1,673,875     1,945,445     2,231,223    2,516,574 

Minor Restricted Activity Days 6,258,491     7,468,187     8,832,956   10,194,911   11,220,404   13,265,510  15,304,720 
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Table B-2 Value of 2010 Health Benefits with Uncertainty (Millions of $1999)

CSA No EGU Carper

Mean 5th

Percentile
Mean

95th

Percentile

5th

Percentile
Mean

95th

Percentile

Mortality $51,974 $21,838 $149,274 $359,554 $9,645 $65,959 $158,961

Chronic Bronchitis $2,046 $466 $5,523 $18,709 $204 $2,438 $8,262

Heart Attacks $1,127 $950 $3,284 $7,573 $425 $1,480 $3,447

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) $4 $3 $13 $24 $2 $6 $11

  Asthma (0-64) $5 $5 $15 $25 $2 $7 $10

  Pneumonia (65+) $47 $41 $143 $237 $18 $63 $104

  Chronic Lung (65+) $4 -$18 $13 $47 -$8 $6 $21

Total Hospital Admissions - Respiratory $60 $187 $82

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) $30 $8 $92 $169 $3 $41 $75

  All Cardiovascular, (65+) $39 -$64 $116 $335 -$28 $51 $147

Total Hospital Admissions - Cardiovascular $69 $206 $92

Emergency Room Visits for Asthma $2 $4 $7 $11 $2 $3 $5

Acute Bronchitis $5 $0 $13 $33 $0 $6 $14

Lower Respiratory Symptoms $2 $3 $7 $12 $1 $3 $6

Upper Respiratory Symptoms $3 $3 $9 $19 $1 $4 $7

Work Loss Days $136 $338 $367 $437 $148 $161 $191

Minor Restricted Activity Days $327 $549 $956 $1,340 $241 $420 $589
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Table B-2 Value of 2010 Health Benefits with Uncertainty (Millions of $1999) (Continued)

CSA Straw Jeffords

Mean 5th

Percentile
Mean

95th

Percentile

5th

Percentile
Mean

95th

Percentile

Mortality $51,974 $10,265 $70,198 $169,171 $15,331 $104,823 $252,558

Chronic Bronchitis $2,046 $217 $2,592 $8,786 $326 $3,881 $13,148

Heart Attacks $1,127 $450 $1,568 $3,651 $670 $2,324 $5,389

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) $4 $2 $6 $11 $2 $9 $17

  Asthma (0-64) $5 $2 $7 $11 $3 $11 $17

  Pneumonia (65+) $47 $19 $67 $110 $29 $100 $166

  Chronic Lung (65+) $4 -$8 $6 $22 -$13 $9 $33

Total Hospital Admissions - Respiratory $60 $87 $132

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) $30 $4 $43 $80 $6 $64 $119

  All Cardiovascular, (65+) $39 -$30 $54 $156 -$45 $81 $234

Total Hospital Admissions - Cardiovascular $69 $97 $146

Emergency Room Visits for Asthma $2 $2 $3 $5 $3 $5 $8

Acute Bronchitis $5 $0 $7 $15 $0 $10 $23

Lower Respiratory Symptoms $2 $1 $3 $6 $2 $5 $8

Upper Respiratory Symptoms $3 $1 $4 $8 $2 $6 $13

Work Loss Days $136 $158 $171 $204 $237 $257 $306

Minor Restricted Activity Days $327 $257 $447 $626 $385 $670 $940
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Table B-3 2020 Health Benefits with Uncertainty: Numbers of Avoided Cases

CSA Carper Straw

Mean
5th

Percentile
Mean

95th

Percentile

5th

Percentile
Mean

95th

Percentile

Mortality 14,104          9,255        16,166         23,057         10,510         18,355         26,174 

Chronic Bronchitis 8,770          1,864        10,048         18,105           2,121         11,422         20,560 

Heart Attacks 23,009          9,795        26,280         42,253         11,126         29,798         47,827 

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) 610            176             699           1,223              200              794           1,390 

  Asthma (0-64) 1,151            359          1,145           1,934              408           1,302           2,199 

  Pneumonia (65+) 4,972          1,681          5,705           9,756           1,913           6,496         11,114 

  Chronic Lung (65+) 650         (1,093)             746           2,711    (1,242)              848           3,083 

Total Hospital Admissions - Respiratory 7,383          8,295           7,513 

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) 2,139            211          2,452           4,697              240           2,782           5,329 

  All Cardiovascular, (65+) 3,632         (1,868)          4,165         13,712  (2,141)           4,731         15,381 

Total Hospital Admissions - Cardiovascular 5,771          6,617           7,513 

Emergency Room Visits for Asthma 13,223          8,867        15,191         21,608         10,132         17,373         24,734 

Acute Bronchitis 19,919           (775)        22,823         45,580      (884)         25,971         51,755 

Lower Respiratory Symptoms 226,616      123,702       259,649       392,945       140,932       295,492       446,707 

Upper Respiratory Symptoms 181,286        65,533       208,106       350,443         74,731       237,294       399,557 

Work Loss Days 1,602,343   1,601,815 1,837,341  2,072,576     1,823,365     2,091,325     2,358,915 

Minor Restricted Activity Days 9,519,433   9,226,638  10,910,946   12,591,232   10,498,482   12,413,325   14,323,062 
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Table B-3 2010 Health Benefits with Uncertainty: Numbers of Avoided Cases (Continued)

CSA Jeffords

Mean
5th

Percentile
Mean

95th

Percentile

Mortality 14,104        12,456        21,749        31,006 

Chronic Bronchitis 8,770          2,526        13,586        24,421 

Heart Attacks 23,009        13,185        35,230        56,418 

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) 610            238             945          1,655 

  Asthma (0-64) 1,151            484          1,545          2,610 

  Pneumonia (65+) 4,972          2,281          7,749        13,264 

  Chronic Lung (65+) 650        (1,477)          1,008          3,667 

Total Hospital Admissions - Respiratory 7,383        11,247 

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) 2,139            284          3,296          6,314 

  All Cardiovascular, (65+) 3,632        (2,537)          5,615        18,273 

Total Hospital Admissions - Cardiovascular 5,771          8,911 

Emergency Room Visits for Asthma 13,223        12,263        21,050        30,005 

Acute Bronchitis 19,919        (1,059)        31,013        61,598 

Lower Respiratory Symptoms 226,616      168,653       353,091      533,005 

Upper Respiratory Symptoms 181,286        89,544       284,295      478,639 

Work Loss Days 1,602,343   2,176,116    2,495,685    2,814,756 

Minor Restricted Activity Days 9,519,433  12,519,823  14,800,704  17,074,718 
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Table B-4 Value of 2020 Health Benefits with Uncertainty (Millions of $1999)

CSA Carper Straw

Mean
5th

Percentile
Mean

95th

Percentile

5th

Percentile
Mean

95th

Percentile

Mortality $106,996 $17,154 $117,302 $282,662 $19,478 $133,186 $320,915

Chronic Bronchitis $3,880 $335 $3,995 $13,536 $381 $4,540 $15,386

Heart Attacks $1,961 $638 $2,240 $5,221 $724 $2,540 $5,912

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) $7 $2 $8 $15 $2 $9 $17

  Asthma (0-64) $9 $3 $9 $14 $3 $10 $16

  Pneumonia (65+) $89 $29 $102 $168 $33 $116 $191

  Chronic Lung (65+) $9 -$14 $10 $36 -$15 $11 $40

Total Hospital Admissions - Respiratory $114 $131 $149

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) $49 $5 $56 $103 $5 $63 $117

  All Cardiovascular, (65+) $74 -$47 $84 $244 -$54 $96 $277

Total Hospital Admissions - Cardiovascular $123 $140 $159

Emergency Room Visits for Asthma $4 $2 $4 $7 $3 $5 $7

Acute Bronchitis $8 $0 $9 $20 $0 $10 $23

Lower Respiratory Symptoms $4 $2 $4 $7 $2 $5 $8

Upper Respiratory Symptoms $5 $2 $6 $11 $2 $6 $13

Work Loss Days $208 $195 $212 $252 $222 $241 $287

Minor Restricted Activity Days $522 $333 $578 $811 $378 $658 $923
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Table B-4 Value of 2020 Health Benefits with Uncertainty (Millions of $1999) (Continued)

CSA 2020 Jeffords

Mean

5th

Percentil

e

Mean

95th

Percentile

Mortality $106,996 $23,083 $157,813 $380,215

Chronic Bronchitis $3,880 $455 $5,401 $18,299

Heart Attacks $1,961 $859 $3,003 $6,977

Hospital Admissions - Respiratory

  Chronic Lung, less Asthma (20-64) $7 $3 $11 $20

  Asthma (0-64) $9 $4 $12 $19

  Pneumonia (65+) $89 $40 $138 $229

  Chronic Lung (65+) $9 -$18 $14 $47

Total Hospital Admissions - Respiratory $114 $177

Hospital Admissions Cardiovascular

  All Cardiovascular, (20-64) $49 $6 $75 $139

  All Cardiovascular, (65+) $74 -$63 $114 $330

Total Hospital Admissions - Cardiovascular $123 $188

Emergency Room Visits for Asthma $4 $3 $6 $9

Acute Bronchitis $8 $0 $12 $28

Lower Respiratory Symptoms $4 $2 $6 $10

Upper Respiratory Symptoms $5 $2 $8 $16

Work Loss Days $208 $265 $288 $342

Minor Restricted Activity Days $522 $451 $784 $1,100
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Appendix C: Details of SMAT Non-Attainment Analysis

Table C-1 reports the estimated design values for the 307 counties included in the EPA Clear Skies

Act SMAT analysis.  Table C-1 includes the EPA estimates of the observed monitors (1999-2001) and of

the Clear Skies Act, as well as the estimates for all the policy options included in this report.



Table C-1   County Estimates of PM2.5 Design Values

'99-'01 2010 2010 2010 2010 2010 2010 2020 2020 2020 2020 2020

EPA CSA Analysis EPA CSA Analysis

State County

PM2.5 1999-

2001 

Ambient 

Design 

Value

PM2.5 

Base case 

2010 

PM2.5 

Clear 

Skies

2010 Jeffords Straw Carper No EGU

PM2.5 

Base case 

2020 

PM2.5 

Clear 

Skies

2020 Jeffords Straw Carper

129 80 38 16 24 27 13 53 18 13 13 15

Alabama Clay 15.55 14.27 13.31 11.71 12.50 12.70 10.76 13.59 11.87 11.07 11.31 10.47

Alabama Colbert 15.25 13.46 12.21 10.74 11.47 11.65 9.87 12.74 10.87 10.14 10.36 9.59

Alabama DeKalb 16.76 15.24 14.09 11.95 13.02 13.22 10.75 14.40 12.34 11.25 11.25 11.62

Alabama Houston 16.33 15.19 14.18 12.47 13.32 13.53 11.46 14.84 13.09 12.20 12.47 11.54

Alabama Jefferson 21.58 20.07 18.96 17.15 18.13 18.32 15.96 19.22 17.38 16.35 16.35 16.60

Alabama Madison 15.50 13.97 12.79 10.95 11.98 12.15 9.85 13.19 11.33 10.30 10.30 10.66

Alabama Mobile 15.34 14.45 13.62 12.45 13.11 13.26 11.61 14.40 12.93 12.39 12.39 12.63

Alabama Montgomery 16.79 15.71 14.74 13.06 13.89 14.15 12.06 15.31 13.63 12.74 12.74 12.95

Alabama Morgan 19.30 17.74 16.24 14.28 15.26 15.50 13.12 16.82 14.46 13.48 13.78 12.75

Alabama Russell 18.39 17.11 15.93 14.06 14.96 15.23 12.87 16.48 14.36 13.43 13.43 13.67

Alabama Shelby 16.58 15.32 14.44 13.03 13.82 14.00 12.10 14.70 13.20 12.43 12.43 12.68

Alabama Talladega 17.76 16.42 15.53 13.54 14.41 14.79 12.42 15.85 14.16 13.14 13.14 13.37

Arizona Coconino 7.50 7.20 7.16 7.13 7.14 7.15 7.11 7.12 7.07 7.01 7.03 7.05

Arizona Gila 9.60 9.11 9.05 9.02 9.03 9.04 9.00 9.01 8.93 8.87 8.89 8.91

Arizona Maricopa 11.20 10.78 10.72 10.69 10.70 10.71 10.67 10.79 10.71 10.65 10.67 10.69

Arizona Pinal 8.60 8.30 8.23 8.20 8.21 8.22 8.18 8.30 8.22 8.16 8.18 8.20

Arizona Santa Cruz 12.10 11.70 11.58 11.55 11.56 11.57 11.53 11.71 11.55 11.49 11.51 11.53

California Alameda 12.20 11.22 11.21 11.18 11.19 11.20 11.16 10.53 10.52 10.46 10.48 10.50

California Butte 15.40 14.03 14.01 13.98 13.99 14.00 13.96 13.33 13.31 13.25 13.27 13.29

California Calaveras 9.40 8.39 8.38 8.35 8.36 8.37 8.33 7.80 7.79 7.73 7.75 7.77

California Colusa 10.30 9.55 9.54 9.51 9.52 9.53 9.49 9.18 9.17 9.11 9.13 9.15

California El Dorado 8.10 7.34 7.33 7.30 7.31 7.32 7.28 6.93 6.91 6.85 6.87 6.89

California Fresno 24.00 21.76 21.73 21.70 21.71 21.72 21.68 20.85 20.82 20.76 20.78 20.80

California Humboldt 9.20 8.58 8.58 8.55 8.56 8.57 8.53 8.56 8.55 8.49 8.51 8.53

California Imperial 15.70 13.83 13.75 13.72 13.73 13.74 13.70 13.38 13.28 13.22 13.24 13.26

California Kern 23.70 20.68 20.64 20.61 20.62 20.63 20.59 19.62 19.58 19.52 19.54 19.56

California Kings 16.60 14.29 14.26 14.23 14.24 14.25 14.21 13.16 13.13 13.07 13.09 13.11

California Los Angeles 25.90 23.73 23.69 23.66 23.67 23.68 23.64 23.84 23.80 23.74 23.76 23.78

California Mendocino 8.00 7.21 7.20 7.17 7.18 7.19 7.15 6.85 6.84 6.78 6.80 6.82

California Merced 18.90 16.51 16.48 16.45 16.46 16.47 16.43 15.20 15.17 15.11 15.13 15.15

California Modoc 8.00 7.42 7.41 7.38 7.39 7.40 7.36 7.13 7.11 7.05 7.07 7.09

Total National Number of Non-

Attaining Counties

Abt Associates Inc. C-2 June 2004



'99-'01 2010 2010 2010 2010 2010 2010 2020 2020 2020 2020 2020

EPA CSA Analysis EPA CSA Analysis

State County

PM2.5 1999-

2001 

Ambient 

Design 

Value

PM2.5 

Base case 

2010 

PM2.5 

Clear 

Skies

2010 Jeffords Straw Carper No EGU

PM2.5 

Base case 

2020 

PM2.5 

Clear 

Skies

2020 Jeffords Straw Carper

California Orange 22.40 20.76 20.71 20.68 20.69 20.70 20.66 21.16 21.10 21.04 21.06 21.08

California Placer 12.50 11.29 11.28 11.25 11.26 11.27 11.23 10.72 10.71 10.65 10.67 10.69

California Riverside 29.80 27.98 27.92 27.89 27.90 27.91 27.87 27.94 27.87 27.81 27.83 27.85

California San Bernardino 25.80 24.22 24.18 24.15 24.16 24.17 24.13 24.19 24.13 24.07 24.09 24.11

California San Diego 17.10 16.00 15.97 15.94 15.95 15.96 15.92 16.30 16.26 16.20 16.22 16.24

California San Joaquin 16.40 14.78 14.76 14.73 14.74 14.75 14.71 13.89 13.87 13.81 13.83 13.85

California San Luis Obispo 10.00 9.16 9.15 9.12 9.13 9.14 9.10 8.92 8.90 8.84 8.86 8.88

California Shasta 10.40 9.45 9.44 9.41 9.42 9.43 9.39 9.07 9.06 9.00 9.02 9.04

California Sonoma 11.10 9.91 9.90 9.87 9.88 9.89 9.85 9.40 9.39 9.33 9.35 9.37

California Stanislaus 19.70 17.39 17.37 17.34 17.35 17.36 17.32 16.05 16.03 15.97 15.99 16.01

California Sutter 12.90 11.87 11.86 11.83 11.84 11.85 11.81 11.34 11.32 11.26 11.28 11.30

California Tulare 24.70 22.18 22.15 22.12 22.13 22.14 22.10 21.23 21.20 21.14 21.16 21.18

California Ventura 14.50 13.71 13.69 13.66 13.67 13.68 13.64 13.85 13.82 13.76 13.78 13.80

Colorado Boulder 9.20 8.79 8.65 8.62 8.63 8.64 8.60 8.79 8.61 8.55 8.57 8.59

Colorado Mesa 7.30 6.80 6.66 6.63 6.64 6.65 6.61 6.68 6.51 6.45 6.47 6.49

Connecticut Fairfield 13.59 12.53 11.75 11.19 11.57 11.61 10.66 12.07 10.99 10.65 10.65 10.74

Connecticut New Haven 16.81 15.47 14.57 14.00 14.42 14.46 13.41 14.99 13.73 13.42 13.42 13.54

Delaware Kent 12.90 11.89 10.70 9.89 10.41 10.49 9.04 11.21 9.56 9.20 9.20 9.36

Delaware New Castle 16.62 15.49 14.26 13.35 13.86 13.94 12.48 14.80 13.09 12.49 12.49 12.65

Delaware Sussex 14.48 13.34 11.99 10.76 11.44 11.53 9.75 12.65 10.78 10.06 10.06 10.22

D.C. District of Columbia 16.56 15.48 13.90 12.84 13.39 13.48 11.72 14.65 12.53 11.93 12.08 11.08

Florida Alachua 10.86 9.87 9.10 8.10 8.54 8.64 7.40 9.53 8.34 7.69 7.69 7.77

Florida Broward 9.04 8.37 7.91 7.76 7.99 8.02 7.44 8.26 7.55 7.59 7.59 7.64

Florida Citrus 10.54 9.46 8.54 7.67 8.04 8.23 6.83 9.18 7.80 7.48 7.48 7.44

Florida Escambia 13.38 12.38 11.52 9.91 10.72 10.88 9.13 12.03 10.47 9.64 9.64 9.97

Florida Hillsborough 12.65 11.01 10.38 9.73 10.08 10.17 9.09 10.70 9.63 9.31 9.31 9.40

Florida Lee 9.63 8.53 7.98 7.49 7.80 7.84 6.99 8.21 7.33 7.08 7.08 7.16

Florida Leon 13.36 12.18 11.27 10.36 10.79 10.88 9.63 11.75 10.19 9.90 10.01 9.15

Florida Miami-Dade 8.48 7.67 7.23 7.27 7.46 7.49 6.99 7.54 6.83 7.08 7.08 7.13

Florida Orange 11.36 10.27 9.58 8.89 9.29 9.35 8.12 9.91 8.82 8.37 8.37 8.53

Florida Pinellas 11.83 10.30 9.70 9.14 9.46 9.54 8.54 10.02 9.01 8.74 8.74 8.83

Florida St. Lucie 9.56 8.52 7.96 7.66 7.91 7.90 7.10 8.23 7.32 7.22 7.22 7.25

Florida Sarasota 10.52 9.18 8.60 8.20 8.50 8.56 7.67 8.87 7.91 7.77 7.77 7.85

Florida Seminole 10.50 9.30 8.63 8.03 8.38 8.45 7.37 8.90 7.84 7.50 7.50 7.61

Florida Volusia 10.62 9.53 8.82 8.22 8.59 8.66 7.56 9.12 8.00 7.69 7.69 7.80

Georgia Bibb 17.63 16.42 15.28 13.20 14.16 14.40 12.10 15.93 13.83 12.86 13.15 11.83

Abt Associates Inc. C-3 June 2004



'99-'01 2010 2010 2010 2010 2010 2010 2020 2020 2020 2020 2020

EPA CSA Analysis EPA CSA Analysis

State County

PM2.5 1999-

2001 

Ambient 

Design 

Value

PM2.5 

Base case 

2010 

PM2.5 

Clear 

Skies

2010 Jeffords Straw Carper No EGU

PM2.5 

Base case 

2020 

PM2.5 

Clear 

Skies

2020 Jeffords Straw Carper

Georgia Chatham 16.50 15.63 14.55 12.57 13.48 13.71 11.53 15.65 13.75 12.78 13.07 11.77

Georgia Clarke 18.62 17.10 15.76 13.43 14.51 14.86 12.21 16.08 13.53 12.53 12.53 12.85

Georgia Clayton 19.16 17.79 16.64 14.47 15.44 15.68 13.34 16.82 14.58 13.61 13.61 13.89

Georgia Cobb 18.56 16.84 15.80 13.39 14.39 14.59 12.19 15.88 13.55 12.53 12.53 12.88

Georgia DeKalb 19.56 18.31 17.11 14.89 15.95 16.18 13.79 17.65 15.40 14.37 14.37 14.66

Georgia Dougherty 16.61 15.69 14.66 12.67 13.59 13.82 11.61 15.37 13.39 12.45 12.74 11.46

Georgia Floyd 18.46 17.01 15.79 13.61 14.67 14.90 12.42 16.25 14.00 12.98 12.98 13.33

Georgia Fulton 21.21 19.85 18.58 16.21 17.34 17.59 15.05 19.13 16.75 15.65 15.65 15.95

Georgia Hall 17.25 15.68 14.43 12.21 13.19 13.39 11.02 14.66 12.31 11.32 11.32 11.63

Georgia Muscogee 17.98 16.73 15.57 13.74 14.62 14.89 12.57 16.11 14.03 13.13 13.13 13.36

Georgia Paulding 16.77 15.43 14.31 12.36 13.33 13.56 11.28 14.67 12.65 11.70 11.70 12.00

Georgia Richmond 17.12 16.04 14.78 12.70 13.59 13.88 11.62 15.27 13.06 12.01 12.01 12.28

Georgia Washington 16.47 15.41 14.31 12.37 13.26 13.49 11.34 14.89 12.90 12.00 12.27 11.05

Georgia Wilkinson 17.76 16.73 15.68 13.98 14.81 15.07 12.97 16.25 14.21 13.50 13.50 13.76

Idaho Ada 9.50 8.59 8.58 8.55 8.56 8.57 8.53 8.21 8.19 8.13 8.15 8.17

Idaho Bannock 10.00 9.25 9.21 9.18 9.19 9.20 9.16 9.06 9.01 8.95 8.97 8.99

Idaho Canyon 10.20 9.07 9.06 9.03 9.04 9.05 9.01 8.91 8.89 8.83 8.85 8.87

Idaho Twin Falls 3.20 2.99 2.98 2.95 2.96 2.97 2.93 2.90 2.88 2.82 2.84 2.86

Illinois Champaign 13.79 13.03 11.78 10.47 11.44 11.48 9.45 12.34 10.67 9.64 9.64 10.15

Illinois Cook 18.79 17.98 16.90 15.67 16.58 16.61 14.74 17.44 15.94 14.73 14.73 15.36

Illinois DuPage 15.45 14.79 13.81 12.63 13.53 13.55 11.76 14.18 12.83 11.73 11.73 12.34

Illinois Madison 17.27 16.32 15.19 13.72 14.76 14.80 12.75 15.71 14.14 12.86 12.86 13.46

Illinois Randolph 13.91 12.75 11.38 10.32 11.12 11.15 9.54 11.95 10.40 9.46 9.94 9.43

Illinois St. Clair 17.43 16.39 15.10 13.59 14.67 14.72 12.59 15.74 14.01 12.71 12.71 13.30

Illinois Sangamon 14.16 13.06 11.93 10.64 11.58 11.62 9.70 12.38 10.90 9.81 9.81 10.33

Illinois Will 15.87 15.26 14.23 12.92 13.94 13.96 12.02 14.73 13.32 12.11 12.11 12.81

Indiana Clark 17.34 15.95 14.37 12.62 13.70 13.83 11.15 15.29 13.06 11.89 11.89 12.34

Indiana Floyd 15.60 14.34 12.89 11.30 12.29 12.41 9.96 13.74 11.71 10.65 10.65 11.06

Indiana Lake 16.26 15.49 14.49 13.31 14.17 14.22 12.43 14.85 13.47 12.40 12.40 12.98

Indiana Marion 17.01 15.97 14.45 12.94 13.91 14.01 11.73 15.13 13.19 12.01 12.01 12.45

Indiana Porter 13.93 13.26 12.41 11.39 12.14 12.17 10.62 12.71 11.53 10.61 10.61 11.11

Iowa Black Hawk 11.74 10.72 9.91 8.83 9.68 9.67 8.16 9.94 8.88 7.88 7.88 8.40

Iowa Clinton 12.44 11.52 10.63 9.43 10.38 10.37 8.68 10.84 9.61 8.55 8.55 9.14

Iowa Johnson 11.64 10.73 9.87 8.71 9.60 9.61 7.98 10.00 8.87 7.81 7.81 8.35

Iowa Linn 11.35 10.51 9.69 8.51 9.39 9.40 7.79 9.83 8.75 7.63 7.63 8.18

Iowa Polk 10.85 9.96 9.22 8.24 8.98 9.00 7.62 9.26 8.31 7.35 7.35 7.82
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Iowa Scott 13.03 12.17 11.24 10.04 10.98 10.99 9.26 11.45 10.21 9.11 9.11 9.70

Iowa Woodbury 10.00 9.19 8.57 7.66 8.40 8.43 7.10 8.55 7.75 6.83 6.83 7.32

Kansas Johnson 11.80 10.78 10.06 9.07 9.79 9.86 8.50 10.17 9.24 8.32 8.32 8.80

Kansas Linn 11.20 10.22 9.46 8.26 9.14 9.22 7.62 9.56 8.56 7.50 7.50 8.08

Kansas Sedgwick 11.77 10.87 10.21 8.98 9.86 9.97 8.35 10.33 9.50 8.38 8.38 9.03

Kansas Shawnee 11.25 10.32 9.61 8.55 9.34 9.41 7.90 9.76 8.87 7.83 7.83 8.37

Kentucky Boyd 15.46 14.49 12.76 11.32 12.20 12.31 10.15 13.72 11.55 10.76 10.76 11.02

Kentucky Bullitt 16.04 14.39 12.81 11.09 12.16 12.29 9.69 13.61 11.35 10.24 10.24 10.68

Kentucky Campbell 15.46 14.29 12.79 11.30 12.25 12.35 10.09 13.53 11.54 10.56 10.56 10.86

Kentucky Carter 12.90 11.92 10.55 9.15 9.99 10.09 8.09 11.25 9.32 8.47 8.76 8.03

Kentucky Fayette 16.82 15.29 13.64 11.73 12.84 12.98 10.30 14.46 12.14 10.96 10.96 11.35

Kentucky Franklin 14.53 13.19 11.74 10.03 11.00 11.13 8.77 12.46 10.42 9.35 9.35 9.69

Kentucky Jefferson 17.08 15.70 14.12 12.33 13.42 13.55 10.84 15.05 12.83 11.62 11.62 12.07

Kentucky Kenton 15.86 14.61 13.05 11.37 12.45 12.54 10.13 13.91 11.79 10.67 10.67 11.04

Kentucky McCracken 15.10 13.85 12.53 10.87 11.87 11.99 9.61 13.19 11.41 10.37 10.73 9.83

Kentucky Pike 16.14 14.87 13.24 11.47 12.49 12.66 10.19 14.08 11.72 10.85 10.85 11.15

Kentucky Warren 15.41 13.81 12.33 10.43 11.53 11.69 9.24 12.96 10.80 9.65 9.65 10.05

Louisiana Caddo 13.69 12.86 11.96 10.81 11.67 11.74 10.17 12.57 11.28 10.61 10.61 11.09

Louisiana Calcasieu 12.75 12.36 11.78 10.50 11.38 11.45 9.96 12.34 11.38 10.65 10.65 11.07

Louisiana East Baton Rouge 14.55 14.03 13.41 12.30 12.96 13.04 11.75 14.25 13.19 12.56 12.56 12.85

Louisiana Iberville 13.88 13.39 12.72 11.45 12.22 12.31 10.81 13.51 12.35 11.61 11.96 11.66

Louisiana Jefferson 13.59 13.09 12.37 11.14 11.89 11.97 10.52 13.03 11.84 11.13 11.47 11.19

Louisiana Lafayette 12.44 11.76 11.10 9.85 10.62 10.70 9.25 11.59 10.50 9.74 9.74 10.10

Louisiana Orleans 14.15 13.63 12.89 11.67 12.35 12.45 11.00 13.57 12.34 11.64 11.64 11.92

Louisiana Ouachita 13.04 12.31 11.57 10.45 11.19 11.27 9.82 12.17 11.05 10.32 10.32 10.70

Louisiana Rapides 13.26 12.38 11.70 10.46 11.25 11.32 9.80 12.50 11.37 10.62 10.62 11.00

Louisiana Tangipahoa 13.47 12.61 11.88 10.68 11.36 11.46 10.00 12.36 11.13 10.44 10.44 10.73

Louisiana West Baton Rouge 14.06 13.56 12.95 11.88 12.51 12.59 11.34 13.77 12.74 12.12 12.12 12.40

Maine Androscoggin 10.31 9.35 8.77 8.44 8.73 8.76 8.07 8.97 8.21 8.11 8.11 8.18

Maine Aroostook 10.79 10.37 9.89 9.62 9.85 9.87 9.34 10.21 9.59 9.51 9.51 9.57

Maine Cumberland 11.65 10.51 9.88 9.59 9.90 9.94 9.21 10.06 9.23 9.18 9.18 9.26

Maine Hancock 6.03 5.51 5.08 4.87 5.05 5.08 4.67 5.34 4.77 4.75 4.75 4.79

Maine Kennebec 9.97 9.04 8.47 8.16 8.43 8.47 7.82 8.66 7.91 7.83 7.83 7.90

Maine Oxford 10.45 9.74 9.10 8.62 8.90 8.93 8.28 9.42 8.61 8.53 8.60 8.04

Maine Penobscot 9.38 8.55 7.99 7.72 7.97 8.00 7.40 8.21 7.49 7.43 7.43 7.49

Maryland Baltimore city 17.83 16.62 14.98 13.88 14.47 14.57 12.67 15.83 13.57 12.91 12.91 13.07
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Massachusetts Hampden 14.10 13.02 12.18 11.67 12.07 12.10 11.09 12.55 11.42 11.17 11.17 11.26

Massachusetts Hampshire 9.02 8.27 7.69 7.19 7.46 7.50 6.70 7.92 7.16 7.42 6.98 6.47

Massachusetts Worcester 12.68 11.55 10.81 10.42 10.75 10.78 9.95 10.99 9.99 9.79 9.79 9.88

Michigan Allegan 12.23 11.44 10.81 9.93 10.63 10.64 8.99 10.85 9.84 8.97 8.97 9.46

Michigan Berrien 12.51 11.67 10.89 9.96 10.67 10.69 9.13 11.02 9.89 9.03 9.03 9.49

Michigan Genesee 12.70 11.90 11.13 10.39 10.96 10.97 9.70 11.30 10.25 9.56 9.56 9.87

Michigan Ingham 13.15 12.23 11.43 10.52 11.24 11.24 9.68 11.55 10.42 9.55 9.55 9.98

Michigan Kalamazoo 15.01 13.99 13.02 11.94 12.76 12.78 11.01 13.22 11.84 10.88 10.88 11.37

Michigan Kent 14.06 13.11 12.29 11.29 12.07 12.08 10.37 12.39 11.20 10.27 10.27 10.76

Michigan Macomb 13.25 12.52 11.72 11.02 11.56 11.56 10.34 11.94 10.84 10.24 10.24 10.51

Michigan Muskegon 12.19 11.48 10.84 10.04 10.68 10.69 9.29 10.95 9.97 9.15 9.15 9.64

Michigan Ottawa 13.33 12.43 11.65 10.70 11.44 11.45 9.82 11.75 10.62 9.72 9.72 10.19

Michigan St. Clair 13.80 13.08 12.22 11.28 12.00 12.01 10.42 12.53 11.33 11.28 10.90 10.22

Michigan Wayne 18.91 17.98 16.81 15.76 16.56 16.57 14.76 17.25 15.62 14.75 14.75 15.11

Mississippi DeSoto 13.98 12.70 11.63 10.30 11.01 11.15 9.54 12.02 10.46 10.92 10.10 9.39

Mississippi Hancock 12.16 11.39 10.70 9.64 10.27 10.38 8.99 11.26 10.09 9.55 9.55 9.80

Mississippi Hinds 15.09 13.94 13.02 11.73 12.51 12.61 11.02 13.46 11.95 11.24 11.24 11.57

Mississippi Jackson 13.82 12.93 12.16 10.87 11.49 11.70 10.03 12.79 11.21 10.71 10.71 10.94

Mississippi Jones 16.62 15.21 14.16 12.62 13.50 13.66 11.70 14.76 12.96 12.16 12.16 12.50

Mississippi Lee 14.20 12.84 11.80 10.26 11.16 11.30 9.32 12.19 10.54 9.62 9.62 9.99

Missouri Buchanan 12.43 11.34 10.55 9.42 10.26 10.33 8.69 10.63 9.60 8.53 8.53 9.08

Missouri Cedar 11.52 10.51 9.63 8.34 9.28 9.36 7.63 9.80 8.68 7.55 7.55 8.16

Missouri Clay 12.84 11.83 11.09 10.06 10.81 10.88 9.41 11.26 10.31 9.30 9.30 9.81

Missouri Greene 12.24 11.27 10.30 8.96 9.91 9.98 8.14 10.59 9.34 8.25 8.25 8.80

Missouri Jackson 13.87 12.76 11.98 10.89 11.68 11.75 10.19 12.14 11.14 10.07 10.07 10.61

Missouri Jasper 13.69 12.54 11.50 9.95 11.05 11.15 9.14 11.71 10.39 9.08 9.08 9.79

Missouri Jefferson 14.97 14.11 12.93 11.58 12.55 12.60 10.69 13.57 12.01 10.86 10.86 11.38

Missouri Monroe 11.01 10.08 9.23 8.15 8.96 8.99 7.44 9.42 8.32 7.38 7.38 7.87

Missouri St. Charles 14.64 13.85 12.85 11.54 12.47 12.50 10.68 13.33 11.96 10.80 10.80 11.33

Missouri Ste. Genevieve 14.19 13.08 11.87 10.45 11.48 11.54 9.51 12.37 10.77 9.62 9.62 10.17

Missouri St. Louis 14.12 13.35 12.40 11.00 11.88 11.93 10.19 12.84 11.53 10.29 10.29 10.77

Missouri St. Louis city 16.28 15.32 14.13 12.73 13.73 13.78 11.81 14.72 13.12 11.92 11.92 12.47

Montana Lewis And Clark 8.50 8.30 8.28 8.25 8.26 8.27 8.23 8.32 8.29 8.23 8.25 8.27

Montana Lincoln 16.40 15.52 15.49 15.46 15.47 15.48 15.44 14.97 14.94 14.88 14.90 14.92

Montana Missoula 11.80 11.15 11.12 11.09 11.10 11.11 11.07 10.84 10.81 10.75 10.77 10.79

Montana Yellowstone 8.00 7.63 7.53 7.50 7.51 7.52 7.48 7.55 7.41 7.35 7.37 7.39
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Nebraska Lancaster 10.52 9.65 8.96 8.93 8.94 8.95 8.91 9.04 8.19 8.13 8.15 8.17

Nevada Clark 11.00 10.39 10.32 10.29 10.30 10.31 10.27 9.83 9.71 9.65 9.67 9.69

Nevada Washoe 9.70 8.93 8.92 8.89 8.90 8.91 8.87 8.55 8.53 8.47 8.49 8.51

New Jersey Hudson 17.22 14.65 13.77 13.17 13.51 13.56 12.58 14.11 12.86 12.46 12.46 12.55

New Jersey Mercer 14.31 13.46 12.45 11.97 12.23 12.26 11.51 12.95 11.54 12.11 11.31 10.76

New Jersey Union 16.27 14.20 13.56 13.17 13.40 13.44 12.75 13.91 12.96 12.68 12.68 12.77

New Mexico Dona Ana 10.90 10.15 10.00 9.97 9.98 9.99 9.95 9.92 9.71 9.65 9.67 9.69

New Mexico Grant 5.70 5.52 5.47 5.44 5.45 5.46 5.42 5.52 5.45 5.39 5.41 5.43

New Mexico Lea 6.90 6.47 6.30 6.27 6.28 6.29 6.25 6.30 6.07 6.01 6.03 6.05

New Mexico Sandoval 5.00 4.91 4.84 4.81 4.82 4.83 4.79 4.96 4.88 4.82 4.84 4.86

New Mexico Santa Fe 4.80 4.53 4.47 4.44 4.45 4.46 4.42 4.45 4.36 4.30 4.32 4.34

New York New York 18.05 16.35 15.37 14.60 15.02 15.06 13.96 15.49 14.14 13.60 13.60 13.70

North Carolina Alamance 15.32 13.91 12.59 11.37 12.17 12.34 10.31 13.05 11.07 10.71 10.71 10.93

North Carolina Cabarrus 15.67 13.71 12.67 11.07 12.04 12.18 10.04 12.88 11.14 10.28 10.28 10.55

North Carolina Catawba 17.11 15.37 14.01 12.12 13.20 13.35 10.97 14.43 12.19 11.32 11.32 11.59

North Carolina Chatham 13.42 12.22 11.08 9.90 10.62 10.75 8.98 11.50 9.72 9.28 9.28 9.47

North Carolina Cumberland 15.44 14.24 12.92 11.50 12.27 12.41 10.50 13.55 11.55 10.91 10.91 11.10

North Carolina Davidson 17.28 15.58 14.27 12.56 13.59 13.74 11.40 14.69 12.53 11.79 11.79 12.03

North Carolina Duplin 12.65 11.57 10.46 9.22 9.89 10.00 8.35 11.00 9.34 8.71 8.71 8.88

North Carolina Durham 15.35 14.25 12.91 11.58 12.38 12.51 10.58 13.50 11.49 10.97 10.97 11.15

North Carolina Forsyth 16.23 14.52 13.26 11.69 12.65 12.88 10.53 13.60 11.63 10.88 10.88 11.15

North Carolina Gaston 15.29 13.87 12.89 11.16 12.22 12.31 10.21 13.12 11.25 10.49 10.49 10.77

North Carolina Guilford 16.25 14.79 13.41 11.72 12.65 12.80 10.62 13.86 11.79 12.60 11.34 10.14

North Carolina Haywood 15.38 13.90 12.74 10.88 11.93 12.10 9.75 13.24 11.18 10.30 10.30 10.65

North Carolina McDowell 16.17 14.61 13.33 11.56 12.60 12.77 10.40 13.91 11.76 10.97 10.97 11.25

North Carolina Mecklenburg 16.77 15.22 14.08 12.29 13.25 13.41 11.23 14.33 12.37 11.49 11.49 11.74

North Carolina Mitchell 15.46 13.97 12.71 10.85 11.94 12.12 9.69 13.24 11.06 10.28 10.28 10.60

North Carolina New Hanover 12.19 11.33 10.43 9.50 10.08 10.18 8.74 10.98 9.51 9.10 9.10 9.28

North Carolina Onslow 12.14 11.16 10.13 9.04 9.65 9.76 8.21 10.63 9.05 8.53 8.53 8.69

North Carolina Orange 14.32 13.05 11.83 10.55 11.33 11.47 9.57 12.28 10.38 9.90 9.90 10.11

North Carolina Swain 14.12 12.83 11.69 9.99 10.95 11.13 8.94 12.15 10.19 9.43 9.43 9.75

North Carolina Wake 15.30 14.21 12.87 11.49 12.29 12.42 10.49 13.46 11.45 10.85 10.85 11.03

North Carolina Wayne 15.30 14.11 12.75 11.31 12.09 12.24 10.24 13.43 11.44 10.76 10.76 10.95

North Dakota Cass 8.58 7.90 7.45 6.78 7.27 7.30 6.43 7.40 6.86 6.15 6.15 6.51

North Dakota Mercer 6.90 6.37 6.01 5.50 5.90 5.92 5.22 5.68 5.52 5.39 5.24 4.98

North Dakota Steele 6.93 6.36 6.03 5.52 5.92 5.94 5.23 5.91 5.51 5.41 5.23 4.98
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Ohio Butler 17.41 16.14 14.57 13.15 14.06 14.15 11.83 15.24 13.14 12.19 12.19 12.46

Ohio Cuyahoga 20.25 19.20 17.69 16.60 17.37 17.42 15.56 18.37 16.38 15.64 15.64 15.94

Ohio Franklin 18.13 16.80 15.06 13.73 14.65 14.74 12.52 16.00 13.78 12.97 12.97 13.29

Ohio Hamilton 19.29 17.86 16.04 14.26 15.40 15.52 12.79 16.92 14.49 13.31 13.31 13.68

Ohio Jefferson 18.90 18.08 16.21 15.02 15.81 15.92 13.80 17.36 15.06 14.44 14.44 14.70

Ohio Lake 13.95 13.47 12.25 11.51 12.12 12.15 10.72 12.91 11.34 10.88 10.88 11.10

Ohio Lorain 15.08 14.28 13.14 11.94 12.69 12.76 10.92 13.58 12.08 12.41 11.65 10.79

Ohio Mahoning 16.42 15.46 13.79 12.78 13.52 13.59 11.73 14.66 12.63 12.08 12.08 12.30

Ohio Montgomery 17.65 16.50 14.92 13.45 14.40 14.49 12.22 15.65 13.57 12.49 12.49 12.84

Ohio Portage 15.29 14.47 13.00 12.01 12.74 12.79 11.05 13.75 11.93 11.34 11.34 11.58

Ohio Scioto 20.04 18.54 16.41 14.68 15.79 15.94 13.13 17.42 14.71 13.83 13.83 14.13

Ohio Stark 18.29 17.16 15.26 13.91 14.84 14.92 12.65 16.20 13.85 13.05 13.05 13.35

Ohio Summit 17.34 16.42 14.77 13.63 14.46 14.52 12.56 15.61 13.56 12.88 12.88 13.15

Ohio Trumbull 16.16 15.20 13.60 12.61 13.33 13.40 11.60 14.41 12.45 11.90 11.90 12.12

Oregon Benton 7.40 6.97 6.97 6.94 6.95 6.96 6.92 6.79 6.78 6.72 6.74 6.76

Oregon Columbia 6.60 6.08 6.06 6.03 6.04 6.05 6.01 5.82 5.80 5.74 5.76 5.78

Oregon Jackson 11.30 10.34 10.33 10.30 10.31 10.32 10.28 9.77 9.76 9.70 9.72 9.74

Oregon Klamath 9.70 9.13 9.12 9.09 9.10 9.11 9.07 8.86 8.85 8.79 8.81 8.83

Oregon Lake 7.60 7.18 7.17 7.14 7.15 7.16 7.12 6.98 6.97 6.91 6.93 6.95

Oregon Lane 13.20 12.23 12.21 12.18 12.19 12.20 12.16 11.77 11.75 11.69 11.71 11.73

Oregon Marion 8.20 7.59 7.58 7.55 7.56 7.57 7.53 7.28 7.27 7.21 7.23 7.25

Oregon Multnomah 9.10 8.58 8.57 8.54 8.55 8.56 8.52 8.36 8.35 8.29 8.31 8.33

Oregon Umatilla 8.80 8.17 8.15 8.12 8.13 8.14 8.10 7.82 7.80 7.74 7.76 7.78

Oregon Washington 7.80 7.35 7.34 7.31 7.32 7.33 7.29 7.16 7.15 7.09 7.11 7.13

Pennsylvania Allegheny 21.02 19.30 16.73 14.97 16.00 16.18 13.56 18.03 15.11 14.15 14.15 14.44

Pennsylvania Berks 15.62 14.48 13.15 12.23 12.72 12.79 11.36 13.82 11.98 11.38 11.38 11.51

Pennsylvania Cambria 15.32 14.19 12.25 11.10 11.82 11.94 9.99 13.32 11.02 10.44 10.44 10.64

Pennsylvania Dauphin 15.52 14.33 12.69 11.57 12.12 12.21 10.53 13.62 11.37 10.70 10.70 10.85

Pennsylvania Lancaster 16.91 15.43 13.82 12.58 13.18 13.27 11.56 14.53 12.39 11.58 11.58 11.73

Pennsylvania Philadelphia 16.55 15.66 14.59 13.68 14.13 14.19 12.91 15.18 13.66 13.06 13.06 13.18

Pennsylvania Washington 15.55 14.29 12.31 10.92 11.73 11.87 9.83 13.33 11.10 10.35 10.35 10.57

Pennsylvania Westmoreland 15.60 14.30 12.36 11.07 11.83 11.96 10.03 13.34 11.14 10.44 10.44 10.65

Pennsylvania York 16.25 15.03 13.46 12.41 12.97 13.05 11.35 14.22 12.12 11.45 11.45 11.61

South Carolina Charleston 12.62 11.85 11.04 9.74 10.34 10.47 8.94 11.62 10.19 9.35 9.35 9.52

South Carolina Georgetown 13.91 12.90 11.92 10.35 11.15 11.31 9.44 12.57 10.79 11.07 10.29 9.25

South Carolina Greenville 16.51 15.16 13.89 11.87 12.99 13.17 10.78 14.33 12.01 11.12 11.12 11.45
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South Carolina Lexington 15.62 14.43 13.28 11.73 12.53 12.74 10.70 13.73 11.69 10.99 10.99 11.32

South Carolina Oconee 12.29 11.16 10.19 8.85 9.53 9.67 8.07 10.51 8.72 7.50 8.31 7.47

South Carolina Richland 15.39 14.25 13.10 11.50 12.29 12.47 10.49 13.58 11.54 10.78 10.78 11.07

South Carolina Spartanburg 15.37 14.09 12.92 11.06 12.10 12.27 10.04 13.30 11.18 10.35 10.35 10.66

South Dakota Minnehaha 10.42 9.62 8.94 8.91 8.92 8.93 8.89 8.88 8.06 8.00 8.02 8.04

Tennessee Davidson 17.05 15.37 13.95 12.01 13.19 13.33 10.75 14.62 12.49 11.32 11.32 11.78

Tennessee Hamilton 18.46 16.83 15.37 13.37 14.56 14.77 12.09 15.88 13.44 12.63 12.63 13.01

Tennessee Knox 20.42 18.41 16.74 14.21 15.55 15.84 12.72 17.41 14.53 13.35 13.35 13.78

Tennessee Roane 17.02 15.22 13.78 11.60 12.75 13.07 10.27 14.35 11.88 10.85 10.85 11.24

Tennessee Shelby 15.56 14.86 13.75 12.23 13.17 13.36 11.30 14.26 12.51 11.55 11.55 12.03

Tennessee Sullivan 16.98 15.35 13.92 11.93 13.11 13.24 10.74 14.60 12.16 11.28 11.28 11.61

Tennessee Sumner 15.68 14.12 12.79 10.96 12.06 12.20 9.78 13.42 11.43 10.32 10.32 10.75

Utah Davis 9.00 8.83 8.79 8.76 8.77 8.78 8.74 8.67 8.61 8.55 8.57 8.59

Utah Salt Lake 13.60 13.35 13.28 13.25 13.26 13.27 13.23 13.10 13.01 12.95 12.97 12.99

Utah Tooele 7.20 7.22 7.19 7.16 7.17 7.18 7.14 7.29 7.25 7.19 7.21 7.23

Utah Utah 10.40 10.11 10.04 10.01 10.02 10.03 9.99 10.02 9.93 9.87 9.89 9.91

Utah Weber 8.80 8.56 8.51 8.48 8.49 8.50 8.46 8.46 8.39 8.33 8.35 8.37

Vermont Bennington 9.86 9.12 8.45 8.01 8.34 8.37 7.57 8.81 7.91 7.71 7.71 7.78

Vermont Chittenden 6.76 6.31 5.83 5.65 5.84 5.86 5.39 6.07 5.46 5.41 5.41 5.46

Vermont Rutland 11.32 10.46 9.71 9.22 9.59 9.62 8.75 10.06 9.07 8.84 8.84 8.93

Vermont Washington 10.47 9.72 9.04 8.60 8.93 8.96 8.17 9.35 8.47 8.26 8.26 8.34

Virginia Bristol city 16.01 14.33 13.00 11.18 12.22 12.38 10.08 13.55 11.35 10.52 10.52 10.81

Virginia Newport News city 12.67 11.88 10.91 10.05 10.62 10.70 9.38 11.55 10.17 9.74 9.74 9.94

Virginia Roanoke city 15.24 14.00 12.42 10.82 11.76 11.90 9.67 13.20 11.07 10.31 10.31 10.53

Virginia Virginia Beach city 13.21 12.41 11.39 10.45 11.06 11.15 9.70 12.10 10.60 10.14 10.14 10.35

Washington King 11.90 11.38 11.34 11.31 11.32 11.33 11.29 11.13 11.07 11.01 11.03 11.05

Washington Pierce 11.70 11.00 10.96 10.93 10.94 10.95 10.91 10.69 10.63 10.57 10.59 10.61

Washington Snohomish 11.40 10.66 10.61 10.58 10.59 10.60 10.56 10.25 10.19 10.13 10.15 10.17

Washington Spokane 10.40 9.61 9.58 9.55 9.56 9.57 9.53 9.14 9.11 9.05 9.07 9.09

Washington Thurston 9.70 8.72 8.68 8.65 8.66 8.67 8.63 8.25 8.20 8.14 8.16 8.18

Washington Whatcom 7.90 7.48 7.45 7.42 7.43 7.44 7.40 7.26 7.23 7.17 7.19 7.21

West Virginia Berkeley 16.01 14.77 12.93 11.65 12.37 12.49 10.43 13.88 11.55 10.92 10.92 11.05

West Virginia Brooke 17.40 16.65 14.91 13.80 14.54 14.64 12.67 15.97 13.84 13.27 13.27 13.51

West Virginia Cabell 17.85 16.51 14.50 12.97 13.97 14.10 11.65 15.55 13.05 12.31 12.31 12.60

West Virginia Hancock 17.36 16.60 14.88 13.77 14.50 14.60 12.64 15.93 13.82 13.23 13.23 13.47

West Virginia Harrison 14.78 13.63 11.75 10.39 11.27 11.39 9.12 12.83 10.54 9.94 9.94 10.15
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West Virginia Kanawha 18.39 17.19 14.89 13.43 14.42 14.55 12.03 16.25 13.50 12.85 12.85 13.14

West Virginia Marshall 16.52 15.58 13.43 11.96 12.88 12.99 10.70 14.57 12.18 11.52 11.52 11.72

West Virginia Monongalia 14.95 13.83 11.80 10.51 11.35 11.47 9.27 12.91 10.61 10.05 10.05 10.23

West Virginia Ohio 15.66 14.69 12.59 11.31 12.14 12.31 10.13 13.74 11.37 10.76 10.76 10.99

West Virginia Raleigh 14.02 12.83 11.31 9.95 10.81 10.93 8.82 12.09 10.00 9.42 9.42 9.64

West Virginia Summers 10.89 9.96 8.70 7.62 8.31 8.41 6.72 9.36 7.71 7.24 7.24 7.41

West Virginia Wood 17.62 16.36 14.21 12.71 13.73 13.86 11.33 15.39 12.91 12.18 12.18 12.47

Wisconsin Brown 11.43 10.63 9.94 9.11 9.78 9.77 8.45 10.06 9.12 8.30 8.30 8.75

Wisconsin Dane 13.16 12.22 11.37 10.32 11.17 11.17 9.60 11.52 10.36 9.33 9.33 9.93

Wisconsin Dodge 11.77 10.86 10.08 9.13 9.88 9.88 8.43 10.18 9.10 8.16 8.16 8.66

Wisconsin Door 8.02 7.58 7.14 6.65 7.06 7.06 6.21 7.31 6.72 6.24 6.24 6.51

Wisconsin Douglas 8.32 7.88 7.52 7.12 7.47 7.47 6.80 7.83 7.35 6.97 6.97 7.22

Wisconsin Grant 12.27 11.24 10.37 9.54 10.22 10.22 8.90 10.46 9.31 9.48 8.96 8.48

Wisconsin Jefferson 12.52 11.60 10.80 9.86 10.61 10.61 9.15 10.94 9.81 8.89 8.89 9.40

Wisconsin Kenosha 12.14 11.60 10.87 9.96 10.72 10.73 9.29 11.13 10.12 9.21 9.21 9.79

Wisconsin Manitowoc 10.25 9.55 8.94 8.18 8.78 8.77 7.56 9.08 8.23 7.44 7.44 7.87

Wisconsin Milwaukee 14.18 13.56 12.77 11.86 12.61 12.62 11.10 13.08 11.93 10.97 10.97 11.53

Wisconsin Outagamie 11.27 10.47 9.82 9.05 9.66 9.66 8.45 9.97 9.08 8.29 8.29 8.72

Wisconsin Vilas 6.39 5.97 5.61 5.16 5.53 5.53 4.81 5.70 5.23 4.40 5.03 4.76

Wisconsin Waukesha 14.10 13.28 12.45 11.47 12.26 12.26 10.73 12.63 11.45 10.47 10.47 11.03

Wisconsin Winnebago 11.19 10.34 9.66 8.85 9.50 9.50 8.21 9.75 8.82 8.01 8.01 8.45

Wisconsin Wood 10.61 9.71 9.09 8.36 8.96 8.96 7.80 9.15 8.31 7.13 8.00 7.56

Wyoming Laramie 5.40 5.25 5.14 5.11 5.12 5.13 5.09 5.32 5.17 5.11 5.13 5.15
Wyoming Sheridan 10.90 10.21 10.05 10.02 10.03 10.04 10.00 10.02 9.79 9.73 9.75 9.77
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