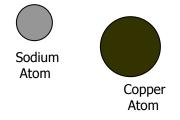
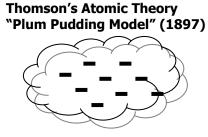
SCH 3U1

Unit 1 Day 1 - - - -	Matter, Chemical Trends, and Chemical Bonding (18 periods) diagnostic test, atomic theory, atomic structure review (atomic #, mass # atomic mass) pg36 comparison of subatomic particles table 2.1 pg 35 calculating # of p, n and electrons(complete charts) pg 37 #1, bohr-rutherford diagrams define isotopes and radioisotopes pg 37 ; fraction of an isotope versus abundance assignment page 39 (1,2, and 3)
Day 2 - - -	periodic law (pg 40), arrangement of electrons(pg 43), valence e's, review of periodic table layout (pg 41) and review group names, metals, nonmetals and metalloids lewis structures to represent valence e's(pg 46) assign page 42 # 2; page 46 (3,5,6); page 48 (3,6 and 11)
Day 3 - - - -	periodic table trends (size, ionization energy, electron affinity)pg 49 complete assignment 2 A page 50 do practice problems with students page 52, 55, assignment page 60 (2-5) page 61 (6, 11)
Day 4 -	Video : reactivity of metals ;Teacher demos , review sheets, alien periodic table
Day 5 - -	Quiz chp 2 ; chemical bonding, ionic and covalent definitions (pg 70), electronegativity (pg71) and predicting bond type (pg72); properties of ionic and covalently bonded compounds(pg 67), Complete pg 68 Ionic or Covalent Assign page 74 (4,5,6) pg 76 (2,3) Read careers in chemistry pg 77.
Day 6 - -	Using diagrams to represent ionic bond formation (pg 75) octet rule ; practice problem page 76 # 2; account for properties of ionic compounds(pg 78).
Day 7/8 - -	Use diagrams to represent covalent bonding; define pure covalent bond; state the diatomic elements; Polar covalent bonds (page 86 (11 -13 draw lewis structures for single, double and triple bonds. Identify and sketch the 5 basic shapes of molecules; Watch video www.teachersdomain.org : molecular shapes -do practice problems page 81 (6, 7) and page 82 (8-10) assign page 84 (1,2,3,4 and 6) page 94 (1, 4)
Day 9 -	Do lab modeling molecules page 92. Assignment
Day 10 -	Research Assignment : Computer lab.
Day 11 -	Writing formulas and naming compounds; know valence chart page 97) do practice problems pg 97(14,15)page 99 (16, 17)pg 100(18,19) complete handouts given. Know common names for compounds and uses see page 102
Day 12 -	Binary compounds multivalent cations pg 103 (20,21), pg 106 (2,4); binary acids
Day 13 -	Know the following polyatomic ions (see charts pages 97,98) Naming using the stock system and alternative system, naming acids, prefix method for naming compounds containing 2 or more non-metals, hydrated salts pg 103 (20,21) pg 105(23) pg 106 (1,3)
Day 14 -	Naming using the stock system and alternative system, naming acids, prefix method for naming compounds containing 2 or more non-metals pg 105(24) do review page 107 (2,3,7,8,9,14,15,16,17,18,19,22)
Day 15 -	Unit Review pg. 154 (8,9,11,28,29,30,31,32,40,43,44-47,49) pg 647 (8-21)

Day 1

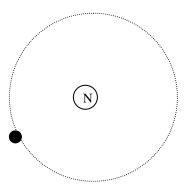

Review Quiz :


-	
True or False?	Each of the statements below is either true or false. If the statement is true, write the letter T beside its number. If false, write the letter F and rewrite the statement so that it is true. 1. A particle that gains electrons is called a cation.
	2. The symbol 27/13Al represents an atom that has 27 protons and 13 neutrons.
	3. Elements that have the same number of energy levels have similar chemical properties.
	4. The Lewis structure for an atom of neon, Ne, has 8 dots around the element symbol.
	5. The atom has a sharply defined outer boundary.
	6. Elements in the periodic table are arranged in order of increasing atomic mass.
	7. In the periodic table, elements that have similar properties are grouped in horizontal rows.
	8. Of the elements, helium, iron, sulfur, calcium, and potassium, the one that would react in a way that is most like sodium is calcium.
	9. Neutrons and electrons have nearly identical masses.
	10. In the chemical notation $\frac{A}{Z}$ X, A is the atomic symbol and Z is the mass number.
	11. Neutral atoms have the same number of protons and electrons.
	12. There is no limit to the number of electrons that can occupy the energy levels surrounding an atom.
	13. Given the choice of aluminum, magnesium, oxygen, helium, and hydrogen, the element that is most stable is oxygen.
	14. Hydrogen-1, hydrogen-2, and hydrogen-3 are elements that have the same number of protons but different numbers of electrons.
	15. The Lewis structure for an element that has an atomic number of 12 would have 2 dots, with both dots placed together on the same side of the element symbol.
	16. A fluorine ion has 7 valence electrons.

Models of Matter

- All matter is composed of tiny particles called _
- John Dalton devised the first modern concept of the atom.
- Scientists have revised Dalton's Theory based on more recent discoveries:

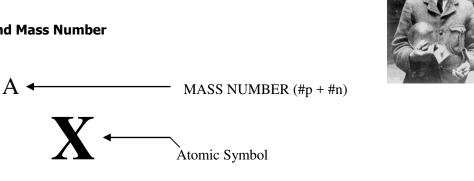
Dalton's Atomic Theory " Billiard Ball Model" (1803)



Electrons embedded in a

_____ charged cloud

_____charged nucleus with a negatively charge electron orbiting it.



Complete table below :

Model	Weakness

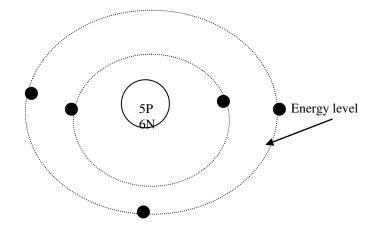
- <u>Mosely</u> atoms of different elements were bombarded with electrons and the wavelengths of the X-rays emitted by the atoms were studied.
- He found that the wavelengths were related to an integer he called the <u>number (Z)</u>

Review of Atomic Number and Mass Number

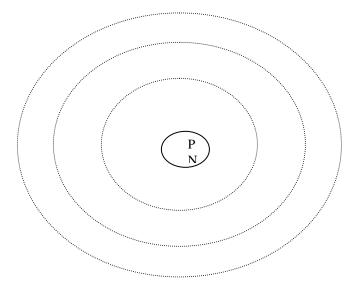
 $Z \leftarrow Atomic Symbol$ $Z \leftarrow ATOMIC NUMBER (#p)$ #neutrons (n) = A - Z

				4
Element Name	Chemical Notation	Number of Protons	Number of Electrons	Number of Neutrons
Aluminum				
Beryllium				
		5		
			18	
Carbon				
			17	18
		19		
	⁴ – He		2	
	2			
Lithium				
				0
		12		
Neon				
	Ν			
	16			8
	8			
		15		
		28		
			14	
				16
	Na			

comparison of subatomic particles table 2.1 pg 35


-

	Properties of Subatomic Particles														
Subatomic Particle	Symbol	Actual Charge (in Coulomb)	Relative Charge	Actual Mass (In grams)	Relative Mass	Maee (in atomic mass units")									
Electron	e.	1.60 x 10 ⁻¹⁹ -1		9.109 x 10 ⁻²⁸	1/1837	о									
Proton	р+	1.60 x 10 ⁻¹⁹ +1		1.673 x 10 ⁻²⁴	1	1									
Neutron	n ^o	о	0	1.675 x 10 ⁻²⁴	1	1									


<u>Orbits – Niels Bohr</u>: Solar System Model (1913)

• The Bohr-Rutherford model of an atom is a two-dimensional model, which shows the electrons orbiting around the nucleus. These ORBITS are also referred to as _____ LEVELS. Each orbit can only hold a certain number of electrons.

Lowest		Energy Level/Orbit (n)	Maximum Number of Electrons (2n ²)
energy	←	1 (K) – closest to the nucleus	2
		2 (L)	8
Highest		3 (M)	8 (used for convenience, really 18)
energy	←	4 (N)	8 (used for convenience, really 32)

Example #1: Draw a Bohr diagram for Na (Z = 11)

define isotopes and radioisotopes pg 37

ISOTOPES -

- Most elements have at least 2 naturally occurring isotopes.
- For this reason, the atomic mass of an element is not a whole number but rather a decimal.
- The _______of an element is a number which represents the average weighted mass of all the isotopes of an element.
- Periodic table states <u>Average Atomic Masses</u>, which take into account <u>relative mass</u> of isotopes of each element, as well as <u>relative abundance</u>.

Symbol	Isotope	Protons	Neutron	Electrons	Abundance
35Cl	Chlorine-35	17	18	17	75.77%
37Cl	Chlorine-37	17	20	17	24.23%

Calculating Average Atomic Mass

When calculating average atomic mass, the fraction of each isotope must be determined.

fraction of an isotope =
$$\frac{\text{abundance (\%)}}{100\%}$$

Once the fraction of each is known, the following formula can be used:

average atomic mass = (relative atomic mass $A \times$ fraction of A) + (relative atomic mass $B \times$ fraction of B)

- The nuclei of some atoms are _
- Henri Becquerel, Marie Curie, and Pierre Curie were awarded the Nobel prize in 1903 when they discovered that the radioactive element ______ would decompose into the elements Polonium & Radium.
- The ______ atom (mass # 238) releases a great deal of energy (in the form of radiation) as it breaks down into 2 lighter atoms; Polonium (mass # 209) and Radium (mass # 222). Isotopes which are radioactive are known as **radioisotopes**
- An element may have one or more isotopes which are not radioactive in addition to a radioisotope

There are approximately 2000 known isotopes. Most of these isotopes are of radioactive elements that emit invisible rays. These elements have unstable nuclei and emit rays in an attempt to become stable.

Radioactive isotopes have an application in medical therapy. Cobalt-60 sources were made for the treatment of malignant tumors. These cobalt-60 sources produce intense beams of ______rays, which destroy tumors.

Many radioactive isotopes have been used as tracers. Thus, a small amount of a radioactive isotope can be mixed with the non-radioactive element. This radioactive "tag" enables doctors to trace the movement of an element through the human body by using a Geiger counter, which detects the rays from the radioactive atoms. (i.e. a solution of sodium iodide mixed with iodine-131 can be injected to measure the uptake of iodine by the thyroid)

Radioisotopes can be used to control pests. Male insects that have been exposed to a nonlethal dose of radioactivity become sterile and therefore cannot fertilize eggs laid by the females. Population drops.

The ______ radiation from cobalt-60 is used to sterilize fruits, vegetables and grain, as well as medical supplies and wool. For example, potatoes that are exposed will not sprout and therefore have a longer shelf life.

Carbon-14 is a radioactive nuclide constantly produced in the atmosphere. It has a half-life of 5730 years, and undergoes beta emission, decaying to nitrogen-14. During photosynthesis, green plants absorb carbon in the form of carbon dioxide. A percentage of this carbon dioxide is made from carbon-14. Once the plant dies, photosynthesis stops, and no more radioactive carbon dioxide is absorbed. However, decay of the carbon-14 continues. Careful measurements of the amount of radioactivity of carbon-14 in a once-living plant yields the approximate time in history when the plant died.

Deuterium is the name given to hydrogen with a mass number of 2. It boils at 101.41 degrees Celsius and melts at 3.79 degrees Celsius. The rates of chemical reactions involving deuterium (heavy water) are slower than similar reactions involving plain water. Heavy water is used as a coolant and as a moderator in CANDU nuclear reactors. A moderator slows neutrons enough to ensure the reactor fuel (uranium) can capture them more readily, causing further nuclear reactions.

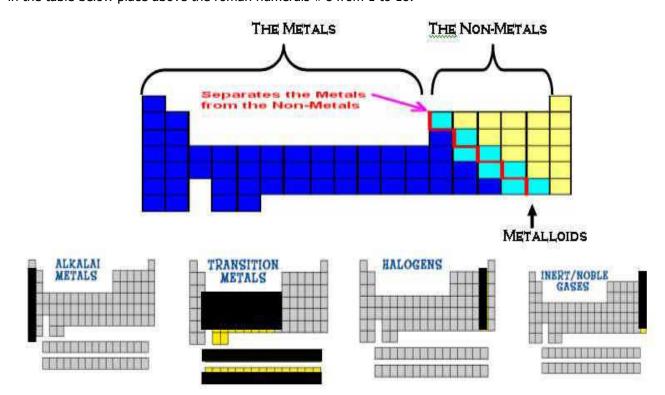
Assignment pg 37 # 1 , page 39 (1,2, and 3)

- Day 2 periodic law (pg 40), arrangement of electrons(pg 43), valence e's, review of periodic table layout (pg 41) and review group names, metals, nonmetals and metalloids
 - lewis structures to represent valence e's(pg 46); bohr-rutherford diagrams
 - assign page 42 # 2; page 46 (3,5,6); page 48 (3,6 and 11)

Organizing Matter

- As scientist were discovering different elements, it became apparent that they needed a way to organize them. At first they were organized by their atomic mass (find 3 places on the table where the mass decreases left to right)
- Mendeleev the "founder" of the periodic table, did this.

periodic law –


- energy levels represented as horizontal rows also called ______ maximum e's for each level is n = 1 ____n=2 ____n=3 ____n=4 _____ general formula _____
- valence e's ______e's ; obtained by the vertical columns called ______; these are numbered from 1 _____; the valence e's is the group # but if a double digit like 13 the # of valence e's is the 2nd number

Main group elements – groups ______(Representative elements)

Transition elements – groups _____

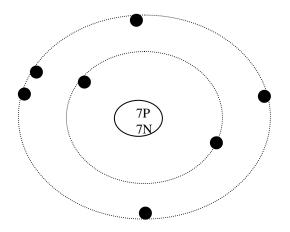
Alkali metals – group _____; alkaline earth metals – group _____; halogens – group _____; noble gases- group _____;

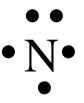
- maximum e's in outer shell is _____; known as _____ rule ; very stable - in the table below place above the roman numerals #'s from 1 to 18.

7

Lewis Dot Diagrams (Electron Dot Diagrams)(pg 46)

Because it is very time consuming to write out the entire Bohr diagram for an atom, we use a shortened version which only considers those electrons in the <u>VALENCE SHELL</u> (outermost shell). These electrons are called <u>VALENCE ELECTRONS</u>.


Method:


- 1. The valence electrons are represented by DOTS. The rest of the atom (core) is represented by the element symbol.
- 2. The symbol has 4 sides (max. 2 electrons per side).
- 3. Each side receives a single electron before they start to pair up.

Examples:

Nitrogen (Rutherford-Bohr)

Nitrogen (Lewis dot)

page 42 # 2; page 46 (3,5,6)

2.

3. BOHR-RUTHERFORD DIAGRAMS

¦Η							⁴ ₂ He
⁷ ₃ Li	⁹ ₄ Be	¹¹ ₅ B	¹² ₆ C	¹⁴ ₇ N	¹⁶ 80	¹⁹ 9F	²⁰ ₁₀ Ne
²³ ₁₁ Na	²⁴ ₁₂ Mg	²⁷ ₁₃ AI	²⁸ Si	³¹ ₁₅ P	³² ₁₆ S	³⁵ 7CI	⁴⁰ ₁₈ Ar
³⁹ 19	⁴⁰ ₂₀ Ca						·

5.

6.

page 48 (3,6 and 11)

Day 3 - periodic table trends (size, ionization energy, electron affinity)pg 49 - complete assignment (see below)

- do practice problems with students page 52, 55,
- assignment page 60 (2-5) page 61 (6, 11)

Trends in the Periodic Table

Name: _____

Purpose

Determine the trends, if they exist, for atomic size and ionization energy in the Periodic Table.

Materials

Graph paper

Procedure

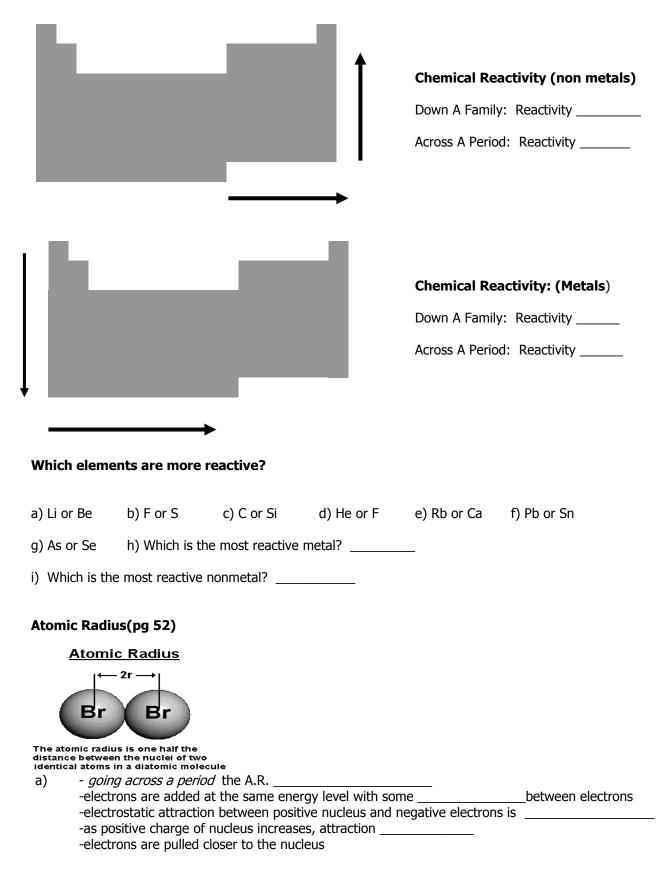
- 1. Use the information from the section of the periodic table. Be sure to give each graph a title and to label each axis.
- 2. For elements 3-20, make a graph of atomic radius as a function of atomic number. Plot atomic number on the X axis and atomic radius on the Y-axis.
- 3. For elements in Family 1A (1) and Family 2A (2), graph period number vs. atomic radius. Use a different color or symbol for each line.
- 4. For elements 3-20, make a graph of ionization energy as a function of atomic number. Plot atomic number on the X-axis and ionization energy on the Y-axis.
- 5. For elements in Family 1(1A) and Family 2 (2A), graph period number vs. ionization energy. Use a different color or symbol for each line.

	IA (1)	IIA (2)	IIIA (13)	IVA (14)	VA (15)	VIA (16)	VIIA (17)	VIIIA (18)
	3	4	5	6	7	8	9	10
2	Li	Be	В	С	Ν	0	F	Ne
	1.23	0.89	0.80	0.77	0.70	0.66	0.64	0.67
	124	215	191	260	335	314	402	497
	11	12	13	14	15	16	17	18
3	Na	Mg	Al	Si	Р	S	Cl	Ar
	1.57	1.36	1.25	1.17	1.10	1.04	0.99	0.98
	119	176	138	188	242	239	299	363
	19	20						
4	K	Са						
	2.03	1.74						
	100	141						
	37	38				8	- Atomic	number
5	Rb	Sr				0	<u> </u>	
	2.16	1.91				0.66	<u> </u>	radius
	96	131				314	Ionization	energy
	55	56						
6	Cs	Ba						
	2.35	1.98						
	90	120						

Pe	riodio	: Tre	nds	Name													
			r	 	r										 		
L				 											 		
																	1

	-					 			

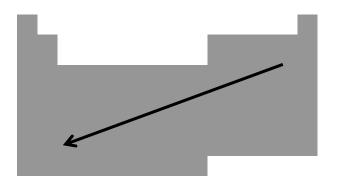
Analysis

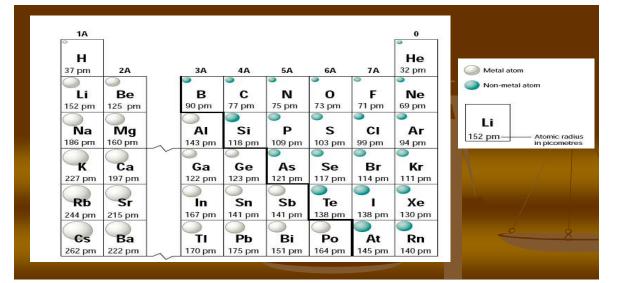

- 1. What happens to the atomic radius as the atomic number increases across a period? Down a family?
- 2. What happens to the ionization energy as the atomic number increases across a period? Down a family?

Conclusion

- 1. Why does atomic radius change as it does?
- 2. Why does the ionization energy change as it does?

Lab Summary Paragraph

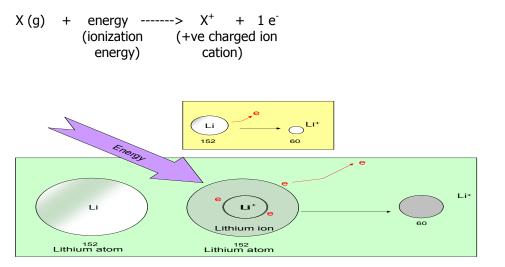

Periodic Trends: (Reactivity Trends)




b)

electrons _ _; ______ forces of attraction

-inner electrons shield the outer electrons from the full positive charge of the nucleus -large increase from Group 18 to group 1 (e.g. Ne to Na) because the single electron added to a new energy level is shielded by the ______ electrons in the lower level

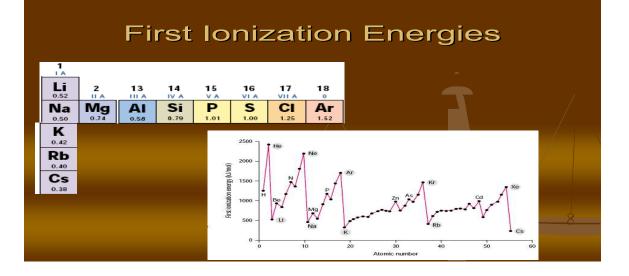


Ionization Energy (I.E.) (pg 53)

-the energy required to remove the ______ electron of an atom of an element in its state ; positive ion is than the atom it came from

going across the period

- I.E. ___

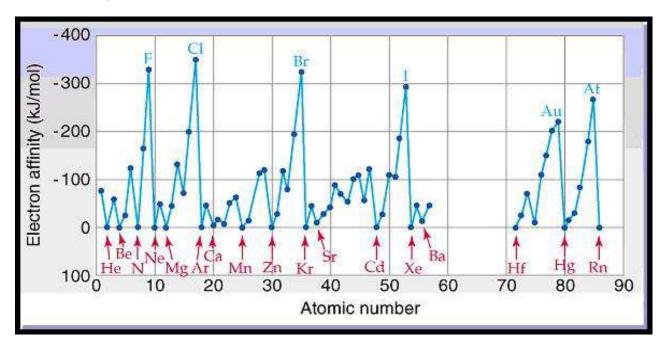

-energy level stays the same but number of protons and electrons _____ -electrostatic force of attraction _____; _____ energy is needed to remove an electron

going down a family

- I.E. ___ -more energy levels going down family
 - 1. electrons are _______ from the nucleus

 2. _______ by inner electrons
- ________ in attractive forces;_________ energy to remove an -SO _ electron

Electron Affinity


-the amount of energy ______when an atom of an element in the gaseous state ______ an $e^- X(g) + 1 e^- ----> X^- + energy$ - negative ions are ______ than the atom it came from.

going across a period (L to R)

-the E.A._____, coming closer to noble gas configuration;______ attraction by nucleus

going down a family

-E.A. _____; the e⁻ to be gained would be placed further away from the nucleus; ______ in attractive forces

Reactivity

metals -reactivity ______ going down the family and ______ going across the period

non-metals -reactivity ______ going down the family

1. Metals react by ______electrons. The _____the ionization energy, the _____reactive the metal is.

2. Non-metals react by ______electrons. The higher the electron affinity, the ______these non-metals attract extra electrons.

3. Noble gases are very ______because they have stable electron arrangements and do not easily lose or gain electrons. Helium has ______ electrons in its full outer energy level and other have ______ electrons.

Do practice problems with students page 52 (7), pg55 (8,9), assignment page 60 (2-5)

TRENDS IN THE PERIODIC TABLE - SUMMARY SHEET

NAME	DEFINITION	TREND	EXPLANATION
ATOMIC RADIUS	Distance measured from the centre of the nucleus to the outermost e- in pm or A ^o	 down a group across a period from left to right 	1. Increase in no. of energy and electrons - more 2. e ⁻ held more tightly, in ENC (effective nuclear charge), shielding radius
FIRST IONIZATION ENERGY	Energy required to remove the electron from a(state) atom	1down a group 2across a period from left to right	1in radius due to energy levels ,electrons tightly held 2. e ⁻ held,in ENCshielding ,to remove e ⁻
ELECTRONEGATIVITY (relates to electron affinity)	The tendency toelectrons	1up a group 2across a period from left to right not including Group	1energy levels, atomic radius ∴ attraction of electrons 2ENC, attraction for electrons,shielding
REACTIVITY METALS	The degree to which metals have a tendency to react with other substances by electrons	1down a group 2across a period from left to right	1energy levels,atomic radius ∴ attraction of e ⁻ -electronseasily removed 2ENC,attraction for shielding,easily removed
REACTIVITY NONMETALS	The degree to which nonmetals have a tendency to react with other substances by electrons	1up a group 2across a period from left to right not including Group 18	1energy levels, atomic radius attraction of electrons 2ENC, attraction for electrons,shielding shielding

Day 4 - Video : reactivity of metals ;Teacher demos , review sheets, alien periodic table

Teachersdomain.org video metals in hydrochloric acid

An acid is a chemical compound that, when dissolved in water, has a pH of ______ than 7.0. Acidic compounds contain positively charged ______ ions—hydrogen atoms containing protons but no______which readily react with other compounds. Examples of common acids are acetic acid, or vinegar, and sulfuric acid, which is used in car batteries. Monoprotic acids, which include hydrochloric acid, only give up one proton per acid molecule, while polyprotic acids can give up more than one proton per acid molecule.

When bare-metal surfaces are immersed in an acidic aqueous solution (a solution in which the solvent is water), the hydrogen ions in the acid attract and bond with negatively charged electrons from the metal to produce what is called an oxidation-reduction reaction. Hydrogen gas, which forms as two released electrons attach to two hydrogen ions, bubbles off, and metal atoms (now positively charged ions) are released into the solution. Through this oxidation-reduction reaction, the metal is said to corrode, or gradually wear away.

Metals consist of stacked layers of tightly packed, interacting atoms arranged in geometric patterns. Whereas non-metals tend to _____ electrons in chemical reactions, metals tend to _____ them. The gauge of just how readily a metal loses electrons is known as its redox potential, which is determined by its atomic structure.

Electrons inhabit various energy levels, or ______. The electron configuration shown in the periodic table indicates how many electrons are found in each shell, from innermost to outermost. Atoms of elements in the left-hand column have one electron in their outer shell, while atoms of elements in the right-hand column have eight electrons in their outer shell. Generally speaking, single electrons in an outer shell can easily be taken away from the atom with the application of very little energy. This makes atoms of elements in the left-hand column very reactive. On the other hand, it is very difficult to add or remove electrons from an atom that has eight electrons in its outer shell. The atoms of these elements, found in the column to the far right, are non-reactive. Knowing this helps explain why some metals, such as tin and copper, corrode less readily than others, such as magnesium and iron.

Because some metals are more prone to corrosion, engineers have learned to use certain techniques during an item's manufacture to protect it from structural decay. One method involves plating, or painting over a metal with a coating. This technique prevents electrochemical reactions from occurring. When exposed to oxygen in air or water, for example, two elements, aluminum and chromium, form a self-renewing, microscopically thin layer, known as an oxide film, which protects the underlying metal from corrosion. The alloy stainless steel, known for its sleek, shiny surface and tremendous strength, contains a high concentration of chromium.

Metal	Observation	Ranking (lowest = 1)
Cu		
Mg		
Zn		
Fe		
Ag		
Ni		
Pb		
Sn		

Questions :

Explain using electron structure why silver does not react in HCI?

What determines the reactivity of zinc?

How would you classify the level of reactivity of the various metals in HCI?

Can you explain why some metals reacted in HCl while others did not? Could the Periodic Table help?

How would you explain what happens on the molecular level in terms of electron movement?

Activity Series :

Most reactive to least reactive :

Teacher Demo : Reactivity of lithium and sodium in water

Observations :

page 61 (6, 11)

<u>Student Worksheet</u>: Atomic Structure 1.Complete the following table

1.Complete the follow	ing table					
Element Name	Chemical Symbol	Z number	A number	# of protons	# of neutrons	# of electrons
		36	84			36
				35	45	35
		53	127			54
		27			32	27
Zinc						
	Cd ²⁺		112			
				38	50	36
	X ²⁻				75	54
Calcium ion						
	X ³⁺			26	56	

Student Worksheet: Alien Periodic Trends

The following alien elements belong together in families as grouped below. The elements as listed ARE NOT necessarily in order. The Letters ARE NOT the normal Symbols for the element, therefore the alien periodic table. ZRD, SIFP, JXBE, LHT, QKA, WOV, YMC, GUN

The assignment is to arrange these elements in the proper periodic form, according to the information given below.

Fill in the answers in the periodic table provided. Place the symbol, the Lewis dot diagram, oxidation state in the appropriate box of the periodic table. Label each period and group on the periodic table as well

- 1. U has a total of six electrons
- 2. A is the second most common element in the atmosphere
- 3. E is a noble gas
- 4. S is an alkali metal with a 1+ charge
- 5. O is a halogen with a 1- charge
- 6. O has an atomic number larger than V but smaller than W
- 7. The outer most electrons of L are found in the S^2 orbital
- 8. C has five electrons in its outer energy level
- 9. The boiling point of T is more than H but less than that of L
- 10. M has one less proton than that of A
- 11. N is found in the third energy level
- 12. R has the largest atomic radii of the group
- 13. F is a gas at room temperature
- 14. Atom B contains 10 protons
- 15. Q has an atomic radius slightly larger than that of K
- 16. Y contains more metallic properties than either M or C
- 17. X has an atomic number one higher than F
- 18. D has highest ionization energy of its group
- 19. P is the most reactive element in its family
- 20. J has the greatest density in its family
- 21. Atoms of I are larger than those of S

	-			

Day 5 - Quiz chp 2 ; chemical bonding, ionic and covalent definitions (pg 70), electronegativity (pg71) and predicting bond type (pg72); properties of ionic and covalently bonded compounds(pg 67), Complete pg 68 Ionic or Covalent
 Assign page 74 (4,5,6) pg 76 (2,3) Read careers in chemistry pg 77.

CHEMICAL BONDS (pg 70)

- 1. Metals react chemically by ______electrons thus forming ______ ions.
- 2. Non-metals react chemically by ______ electrons thus forming ______ ions.
- 3. Chemical bonds in compounds containing a metal & non-metal element consist of the electrostatic attraction between these oppositely charged ______. These are called ______ **bonds**
- 4. Metal atoms lose all of their electrons in the outer energy level when they react, resulting in a noble gas electron arrangement. Non-metal atoms gain electrons when they chemically react so as to complete their outer energy level. As a result, the non-metal atom obtains a noble gas electron arrangement.
- 5. Atoms may also _______ electrons to achieve a noble gas configuration. This is called a ______bond.
- 6. Covalent bonds will occur between two non-metals, although they can sometimes occur between a non-metal and a metal

ELECTRONEGATIVITY (pg 71)

Electronegativity is a measurement of an atom's relative attraction for a pair of electrons in a chemical bond. Each element has been assigned an electronegativity value (EN). This value follows the same trend as electron affinity.

Trend Across a Period

Electronegativity ______ across a period of the periodic table because there is an ______ in positive nuclear charge which will increase the pull on the electrons.

Trend Down a Group

Electronegativity ______ down a group of the periodic table because the number of shielding electrons increases, ______ the attraction of the bonding electrons by the nucleus.

PREDICTING BOND TYPES

- 1. An **ionic bond** will occur when one of the bonding atoms has ______than half the maximum number of electrons (1, 2, or 3). These bonds generally occur between a metal and a non-metal atom.
- 2. A **covalent bond** will occur when both bonding atoms have half or more of their maximum number of valence electrons (4, 5, 6, or 7) Covalent bonds generally form between the atoms of 2 non-metals.
- 3. The ______ in electronegativity between 2 bonding atoms may be used as an aid in determining whether the bond is ionic or covalent.
 - a) If the difference in electronegativity (△EN) between 2 bonding atoms is greater than 1.7, the bond is likely to be ______. The greater the difference, the more ionic the bond becomes.
 - b) If ΔEN is less than 1.7, the bond is likely to be _____
 - c) If the Δ EN is 1.7, the bond may possess both ionic and covalent characteristics; _____ % ionic

d) If the \triangle EN is 0, the bond is non-polar covalent. As the \triangle EN value increases from 0, the bond gains a ______ nature.

23

Table of Electronegativities

			H 2.1					
n	Li	Be		В	С	Ν	0	F
D	1.0	1.5		2.0	2.5	3.0	3.5	4.0
E C	Na	Mg		AI	Si	Ρ	S	CI
R	0.9	1.2		1.5	1.8	2.1	2.5	3.5
E	К	Са		Ga	Ge	As	Se	Br
A	0.8	1.0		1.6	1.8	2.0	2.4	2.8
S	Rb	Sr		In	Sn	Sb	Те	I
E	0.8	1.0		1.7	1.8	1.9	2.1	2.5
	Cs	Ba		TI	Pb	Bi	Ро	At
+	0.7	0.9		1.8	1.8	1.9	2.0	2.2

INCREASE

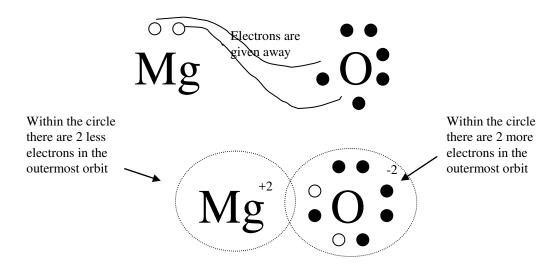
Intermolecular & Intramolecular Forces of Attraction

- Intermolecular:The force of attraction between the molecules of a compound. These
forces are relatively weak.
e.g. force of attraction between water molecules in water
- **Intramolecular:** The force of attraction between the atoms in a molecule. e.g. the covalent bonds holding the two H and one O atoms together within a water molecule

Properties of Covalent Compounds (pg. 67)

- 1. Forces of attraction between molecules are much ______ compared to those between ions. Thus, much ______ energy is required to separate the molecules in a covalent compound. This results in ______ melting and boiling points.
- Covalent compounds exist as solids, liquids, or gases, depending on the relative strength of the intermolecular attraction. In the cases of liquids and gases, the intermolecular bonds are quite ______ compared to solids. If the covalent bond is polar the intermolecular forces of attraction will be higher, increasing melting and boiling points.
- 3. Covalent compounds ______conduct electricity in the liquid state because the liquid ______possess charged particles.
- 4. Covalent compounds are generally ______ in water. The polar water molecules have very little or no effect on the uncharged molecules of a covalent compound.
- 5. Since covalent compounds are not normally soluble in water, they do not form solutions that conduct electricity. This is due to the absence of charged particles in the water.

Properties of Ionic Compounds


- 1. Ionic compounds have relatively ______melting and boiling points. Bonds between oppositely charged ions are extremely strong making it difficult to separate ions.
- 2. Ionic compounds usually exist as ______ at room temperature due to the relatively strong forces of attraction between the ions. The 3-dimensional arrangement of alternating cations and anions usually results in the formation of a crystalline structure called a lattice. Thus ionic compounds are usually crystalline, rather than amorphous.
- 3. Ionic crystals ______ conduct electricity in the solid state because of the strong bonds preventing movement of charged particles. However, in the liquid state attractive forces are weaker, thus allowing for the movement of charged particles. Ionic compounds ______ conduct electricity in the liquid (molten) form.
- 4. Ionic crystals are ______ in water. Since water is a polar molecule, it attacks a lattice and pulls it apart. Once removed from the lattice, an ion is quickly surrounded by water molecules.
- 5. When ionic crystals dissolve in water, the quantity of charged particles in the solution increases dramatically. So, solutions which contain dissolved ionic crystals are quite good conductors of electricity and are referred to as ______.

Complete pg 68 Ionic or Covalent

#1	bonding	#2	bonding
#3	bonding	#4	bonding
#5	bonding		

Assign page 74 (4,5,6) pg 76 (2,3) Read careers in chemistry pg 77.

Day 6 - Using diagrams to represent ionic bond formation resulting in lewis structures(pg 75) - octet rule ; practice problem page 76 # 2; account for properties of ionic compounds(pg 78). pg 78 (4,5)Watch animation teachersdomain : ionic bonding ; ionic bonding worksheet

Formation of ionic compound : NaCl

Steps :

- 1. Metal loses e's forming positive ion
- 2. Non-metal gains e's forming a negative ion
- 3. Multiply equations by appropiate factors so that e's lost = e's gained
- 4. Oppositely charged ions attract
- 1. Na° + energy ---->[Na]⁺ + 1 e
- 2. Cl + 1 e ----> [Cl]⁻ + energy
- 3. $Na^+ + Cl^- ----> NaCl + energy$

Try Magnesium chloride :

- 1. Mg : + energy ----> $[Mg]^{2+} + 2e$
- 2. $CI + 1 e ----> [CI]^{-} + energy$
- 3. Multiply equ. 2 by then add
- 4. $Mg^{2+} + 2 Cl^{-} ---> MgCl_2 + energy$

Try aluminum oxide :

To determine the formulas of simple ionic compounds ; place the oxidation #'s of each element and then cross them over +3 -2 e.g. Al O ----->

Try magnesium nitride

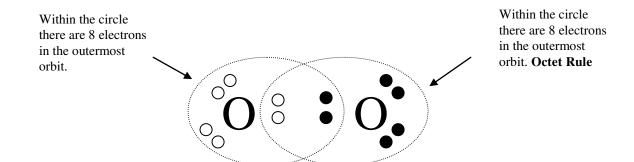
Name	Formula	Lewis Structure
Sodium oxide		
Magnesium oxide		
Aluminum Chloride		
Sodium nitride		
Aluminum phosphide		

octet rule – atoms try achieve ______ electrons in the outer ; in the case of H______

page 76 # 2,3; pg 78 (4,5) Reading assignment : account for properties of ionic compounds(pg 78).

- Watch animation teachersdomain : ionic bonding

Lewis dot – Ionic Bonding worksheet


Use Lewis diagrams to show the bonding that is taking place between the following atoms:

- 1. K and F
- 2. Li and P
- 3. Al and O
- 4. Sr and S
- 5. C and F
- 6. Na and I
- 7. Ca and Br
- 8. Ga and Cl
- 9. Rb and As
- 10. Mg and O
- 11. Ba and ${\sf N}$
- 12. Cs and Se
- 13. Ca and P

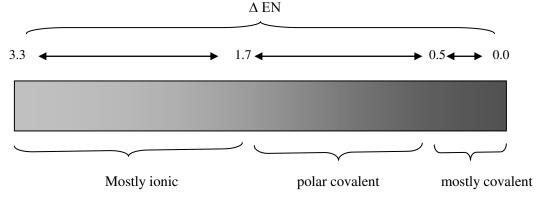
14. K and Si

- Day 7/8 Use diagrams to represent covalent bonding; define pure covalent bond; state the diatomic elements; draw lewis structures for single, double and triple bonds. Indicate 5 basic shapes of molecules
 - -do practice problems page 81 (6, 7) and page 82 (8-10)
 assign page 84 (1,2,3,4 and 6) Complete pg 86 (11,13) ; page 94 (1, 4) : video covalent bonding; Watch video www.teachersdomain.org : molecular shapes

Covalent Bonding

i. Pure Covalent or non-polar covalent (pg 81)

- ______ sharing of e's between atoms e.g. H₂ H : H
- bonds occur due to simultaneous attraction of both nuclei for the pair of e's
- by sharing each H has _____ e's making H₂
- the following exist in diatomic form : N₂, O₂, F₂, Cl₂, Br₂, I₂.


ii. Polar Covalent Bonding (pg 85)

______sharing of e's between atoms; e's spend more time closer to the more electronegative atom e.g. HCl

H - 2.2 and Cl -3.16 ; shared pair are closer to _____ thus it has a slight _____ charge and the other atom slight _____.

H Cl

- the degree of polarity can be determined by calculating the electronegativity difference

Arrange the following from least polar to most polar : H - O , S - O , C- F , C - I, N - Cl,

Assignment

1) For each of the following, classify the bonding as being covalent, polar covalent or ionic:

a) BrCl	d) SiF ₄	g) CaO	j) NaI	m) MgCl ₂
b) CH₄	e) Cs ₂ S	h) OCl ₂	k) H₂S	n) CCl₄
c) NH₃	f) Cl ₂	i) Na ₂ 0	l) KBr	0) N ₂

2) Determine which one of the following compounds has the bonds with the greatest polarity in it: HF, CO₂, FBr, H₂O, F₂O, HI _____

3) Arrange the following compounds in order of decreasing polarity of	of their bonds:

- HBr, H_2O , HF, CO_2 , HI, HCl, SI_2
- 4) For each of the following, show the three steps involved in the formation of the ionic compound and draw its Lewis structure:

a) lithium nitride	d) strontium chloride	g) magnesium sulphide
--------------------	-----------------------	-----------------------

b) barium chloride

e) rubidium sulphide

h) potassium bromide

c) potassium oxide

f) calcium nitride

i) magnesium iodide

Shapes of Molecules Electron dot diagrams and Lewis structures (pg 87)

1. Tetrahedral (AB₄) A = central atom B = bonded atoms

	_ valence e's (needs) (_ val. e (needs) (bond	
Total val. e	e = (dots)	

Electron dot :

Lewis Structure :

Drawing :

Bond angles

* atom with the greater need is the central atom

VSEPR Theory

- states that the arrangement of atoms around a central atom is determined by the repulsion between the electron pairs in the valence shell of the central atom
- a lone pair of electrons will repel more (take up more space) than a shared pair of electrons
- 2. Pyramidal shape (AB₃E) (3 bonds and 1 lone pair)--> pg 89

e.g. NH3 N	val e (needs) (bonds)
3H - 3 x	val. e (needs) (bond)
Total val.	e =	_

Electron dot :

Lewis Structure :

Drawing :

Bond angles

3. Trigonal Planar (AB₃) (3 bonds or 3 bond sites) note : 3 bonds will not obey octet rule ; one of the bonds is a double consisting of 4 e's e.g. COCl₂ C - 4 val e(needs___) (___ bonds) O - 6 val e (needs ___) (___ bonds) 2 Cl - 2 x ___ val e (needs ___) __ bonds

_____val e

Electron dot :

Lewis Structure :

Drawing :

Bond angles

4. Bent or Angular Shape (AB₂E₂) (2 bonds and 2 lone pair)(pg. 88)

e.g. H₂O O - ____ val e (needs ____) (___ bonds) 2H - 2 x ___ val e (needs ___) (___ bonds)

Total val. e =

Electron dot :

Lewis Structure :

Drawing :

Bond angles

5. Linear (AB or AB₂)

Electron dot :

Lewis :

Drawing :

Bond angles :

Multiple Bonds :

1.	O ₂	0 - 6 val e ((needs_
		0 - 6 val e (needs

Total val e =

Electron dot :

Lewis :

Drawing :

Bond Angles :

- bond is a _____ bond consisting of _____ e's ____ from each atom.

2. HCN H - ____ val e (needs ____) C - ____ val e (needs ____) N - ____ val e (needs ____)

Total = _____

Electron Dot :

Lewis :

Drawing :

Shape :

Bond angles :

page 81 (6, 7) and page 82 (8-10)

SHAPES OF MOLECULES

	no. of electron pairs			bond
shape	shared	unshared	example	angle
linear (AB or)	1/2	0	BeCi ₂ CI Be CI	180°
(AB_ <u>)</u>			BCI ₃ CI CI CI CI	120°
tetrahedral ()			CH ₄ H H H	109.5° Н Н Н Н
()	3		NH3	<109.5° due to lone pair repulsion 107.3°
angular (bent) ()			H ₂ O	<107.3° due to 2 lone pair repulsion 104.5°

Draw the following Lewis diagrams of the following covalent molecules, and then draw the structural diagram.

Name	Formu la	Use	Electron Dot Diagram	Lewis Diagram
Hydrogen	H ₂	Space shuttle fuel		
Silicon dioxide	SiO ₂	Anti-caking agent		
Fluorine	F ₂	Reacts to form fluorides		
Hydrogen chloride	HCI	Dissolves in water to form hydrochloric acid		
Water	H ₂ O	Universal solvent		
Hydrogen sulphide	H ₂ S	Poison rotten egg gas		
Ammonia	NH ₃	Refrigerant at ice rinks		
Methane	CH₄	Home heating fuel		

Hydrogen peroxide	H ₂ O ₂	Disinfectant	
oxygen	O ₂	Gas required for aerobic metabolism	
Carbon dioxide	CO ₂	Fire extinguisher fuel.	
Carbon disulphide	CS ₂	Toxic solvent	
Phosphine	PH ₃	Poisonous gas that smells like rotting fish	
Chloroform	CHCl₃	First anesthetics. Carcinogenic solvent.	
Hydrogen cyanide	HCN	Insecticide	
Ethane	C ₂ H ₄	Hydrocarbon	

Complete the following Chart :

Molecule	Lewis Structure	Shape Name	Drawing
NCI3			
нсю			
N ₂ Cl ₄			
cos			
C ₂ H ₂			
Cl₂O			
NH2CI			
H₂CO			
H ₂ O ₂			
CF₄			
N ₂ F ₂			
OF ₂			

assign page 84 (1,2,3,4 and 6)

Watch video www.teachersdomain.org: molecular shapesDay 9 Lab: Structure of MoleculesNames

Molecule	# of valence electrons	Electron dot diagram	Lewis Diagram	# of bond pairs	# of lone pairs	Name of shape	Molecular Sketch
HCl							
NH3							
H ₂ O							
CH ₄							
HCN							
O ₂							
CO ₂							
N_2							
CH ₂ O							
HOCI							

	 -		 		39
CCl ₄					
H ₂ O ₂ (2 central atoms)					
CH ₃ OH (2 central atoms)					
N ₂ H ₄ (2 central atoms)					
N ₂ H ₂ (2 central atoms)					
C ₂ H ₆ (2 central atoms)					
C ₂ H ₄					
C ₂ H ₂					

Day 10 - Research Assignment

 Analyze on the basis of research, the properties of a commonly used but potentially harmful chemical substance (e.g. fertilizer, pesticide, a household cleaning product, materials used in chemical batteries) and how that substance affects the environment, and propose ways to lessen the harmfulness of the substance (e.g by reducing the amount used, by modifying one of its chemical components) or identify alternative substances that could be used for the same purpose. Consider the following issue; many household cleaning products contain corrosive substances that can accumulate in the environment. There are now many green cleaners that do not contain these substances, although some of these products may not be as environmentally friendly as claimed.

Questions to research:

Why is it more environmentally friendly to use latex rather than oil-based paint.

Why should paint never be poured down the drain.

What properties of some common pharmaceuticals allow them to stay in the water systems and influence the growth and development of organisms. What are some ways in which this impact can be reduced.

2. Evaluate the risks and benefits to human health of some commonly used chemicals (e.g. chemical additives in foods, pharmaceuticals, cosmetics and perfumes; household cleaning products. Consider the issue : Artificial sweetners, such as aspartame, are used as sugar substitutes to reduce calories in processed foods and beverages. Although such sweetners may benefit people who are watching their weight, or those with diabetes, some experts say that their harmful effects on human health may outweigh their benefits

Questions to Research :

1. How can the use of non-stick cookware help reduce the amount of fat in our diet. What risks are associated with the use of such cookware

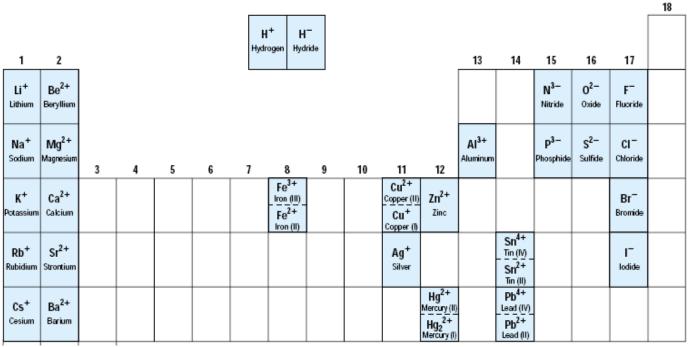
2. What are the risks and benefits of using sunscreens containing PABA.

3. What are the risks and benfits of using insect repellant containing DEET

4. Outline some of the concerns related to the overuse of aspartame

Day 11 - Writing formulas and naming compounds; valence chart page 97 do practice problems pg 97(14,15)page 99 (16, 17)pg 100(18,19) complete handouts given. Know common names for compounds and uses see page 102

Formula writing and Naming


Writing formulas and naming binary compounds; refer to valence chart page 97. Do practice problems Complete page 97 (14,15)pg 99 (16,17), pg 103 (20,21), pg 106 (2,4) complete handouts given.

Classical System

- Derived from ______ and _____ words to represent cations.
- Not commonly used today, but should recognize it.
- Word ending (suffix) and beginning (prefix) contained much information about compound.

Metal	Ion of Lower Charge	Ion of Higher Charge
iron	ferr <mark>ous</mark> , Fe ²⁺	ferr <mark>ic</mark> , Fe ³⁺
copper	cup <mark>rous</mark> , Cu ⁺	cupr <mark>ic</mark> , Cu ²⁺
tin	stann <mark>ous</mark> , Sn ²⁺	stann <mark>ic</mark> , Sn ⁴⁺
lead	plumb <mark>ous</mark> , Pb ²⁺	plumb <mark>ic</mark> , Pb ⁴⁺
mercury	mercur <mark>ous</mark> , Hg ₂ ²⁺	mercur <mark>ic</mark> , Hg²+

Stock System (IUPAC)	I	1
 Instead of suffixes and prefixes, Roman Numerals were used to represent 	П	2
charges. ■ Metals form postive cations.	Ш	3
 Non metals form negative anions. 	IV	4
	V	5
	VI	6

Writing Formula for Binary Ionic Compounds

- Formed by ______ oppositely charges ions.
- Overall charge of compound is _____

- When naming, cation name remains the same. Ending of anion changes to _____
- If multivalent ion, Roman Numeral in parenthesis indicates charge of cation.
- If you can reduce subscripts, do it!

Ex. Binary Ionic Compounds

Iron (III) Sulphide Fe and S ${\rm Fe}^{3+}$ and ${\rm S}^{2^-}$ (use cross over rule)

Tin (IV) Oxide Sn and O Sn⁴⁺ and O²⁻

Naming binary compounds

-	use the reverse cross over rule with a check. If the anion has the correct charge then continue. If there is no match use the correct charge of the anion and work out the charge of the cation (multivalent ions)					
3+ 2- Fe ₂ O ₃	-	charge on O matches thus name is iron(III) oxide				
1+1- SnO	-	charge on O is 2-	2+2- SnO	name is tin(II) oxide		

Cross-over-rule for writing Formulas

1. write down the symbols of the elements in the order given in the name						
2. Write valences above elements symbol						
3. Divide valences by the hi	3. Divide valences by the highest common multiple					
4. Cross-over valences						
5. Drop all 1's and unnecessary brackets						
Examples: sodium oxide Na ₂ O	calcium sulfide CaS	magnesium bromide MgBr2				

Exercise:

For all exercises you will give the name if formula provided and the formula if the name is provided.

calcium nitride	 silicon oxide	
aluminum carbide	 aluminum bromide	
silver sulphide	 zinc silicide	
sodium fluoride	 potassium bromide	
barium iodide	 magnesium chloride	
LiCl	 BaO	
K2S	 Al2O3	

BINARY COMPOUNDS

PART A: Name the following compounds	
NaCl	CaCl ₂
Ca0	MgBr ₂
CaS	Ag ₂ S
H ₂ 0	AlI ₃
Na ₂ 0	Al ₄ C ₃
Mg ₃ N ₂	H ₂ S
AIN	SiC
Al ₂ 0 ₃	KBr
PART B: Write the chemical formula for a aluminum carbide	hydrogen oxide
aluminum oxide	silver sulphide
silicon carbide	calcium chloride
sodium chloride	sodium oxide
magnesium bromide	calcium sulphide
hydrogen sulphide	magnesium nitride
aluminum iodide	calcium oxide
aluminum nitride	sodium hydride

page 97 (14,15)pg 99 (16,17)

Day 12 Binary Compounds with Elements having more than one valence value

Rules for Binary Compounds

- The name of the binary compound always ends in <u>"ide"</u>.
- Whenever the first mentioned element has more than one valence value, this must be indicated in the name. It will always be the first element. The second element has a valence value equal to the value for its group on the periodic table.
- Valence values of transition metals must be memorized. On the Periodic table, above each symbol are a number of values which the legend calls oxidation states. In many cases these also correspond to valence values.

There are three, 3, ways of doing this, and the different methods must not be mixed.

Method 1 - Roman numeral method (IUPAC)

- The valence value to be used is indicated by using uncrossed Roman numerals
- It is placed in brackets immediately following the name of the first element.

Examples:

iron(III) chloride	FeCl ₃	tin(IV) iodide	SnI4
phosphorus(III) oxide	P2O3	mercury(II) oxide	HgO

Exercise:

For all exercises you will give the name if formula provided and the formula if the name is provided.

iron(III) chloride	2	
SbF3		
MnO2		
sulphur(VI) oxid	e	
bismuth(v) phos	phide	
mercury(II) chlo	ride	
BiF5		
ZnO		
tin(IV) oxide		
phosphorus(V) c	hloride	
copper(I) bromic	de	
antimony(V) sul	ohide	
arsenic(III) oxid	е	
mercury(I) sulph	nide	
Pb3N2		
NiI2		
Co2Se3		
SnO ₂		
copper(II) sulph	nide	

BINARY COMPOUNDS Write the chemical formula or the chemical name for each of the following using the indicated method.

PART A: STOCK/IUPAC METHOD	
Pb0	As ₂ S ₅
Fe ₂ 0 ₃	CuI ₂
Sn0	SbCl ₃
P ₂ O ₃	Mn0 ₂
mercury(I) chloride	Iron(II) oxide
antimony(III) iodide	phosphorus(V) oxide
tin(II) oxide	copper(II) bromide
PART B: -OUS/-IC METHOD	
SnCl ₄	Sb ₂ 0 ₃
CuBr ₂	FeBr ₂
As ₂ S ₅	HgI
mercurous chloride	antimonous chloride
phosphoric sulphide	_ferric oxide
phosphorous oxide	mercuric chloride
stannous bromide	cuprous iodide
phosphoric oxide	arsenic sulphide
stannic fluoride	ferrous oxide

Binary Acids -

- ids consist of 2 elements only H is bonded to a non- metallic atom ; when dissolved in water form an acidic solution
 - to name these use hydro _____ (name of non-metal ending changed to ic) followed by the word acid; complete table below :

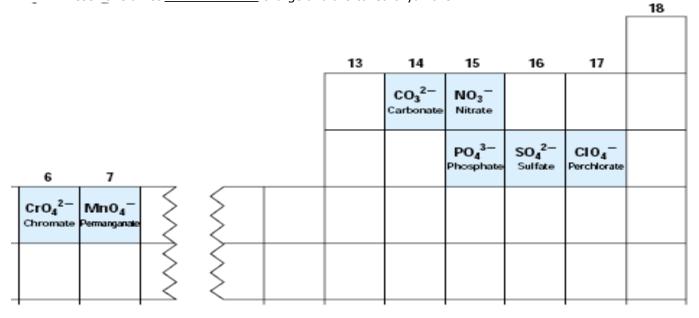
Binary compound (gas)	Formula	Binary Acid (aq)	Formula
hydrogen chloride		hydrochloric acid	
	HBr (g)		
		hydroiodic acid	
			HF (aq)
	H ₂ S (g)		
Hydrogen phosphide			

BINARY COMPOUNDS - REGULAR				
	Write Formulas	Write Names		
1.	sodium chloride	17.	CaO	
2.	calcium fluoride	18.	AgCl	
3.	barium bromide	19.	Ca ₃ N ₂	
4.	lithium carbide	20.	H ₂ O	
5.	silver iodide	21.	SiBr ₄	
6.	potassium oxide	22.	Al ₂ S ₃	
7.	aluminum bromide	23.	Na ₂ O	
8.	calcium nitride	24.	AIF ₃	
9.	radium oxide	25.	NaCl	
10.	boron fluoride	26.	KBr	
11.	hydrogen sulphide	27.	BaS	
12.	rubidium hydride	28.	AIN	
13.	cesium oxide	29.	BAs	
14.	magnesium sulphide	30.	HBr (aq)	
15.	calcium carbide	31.	ZnCl ₂	
16.	zinc oxide	32.	MgI ₂	

NAME _____

Beside each of the following compound names, give the correct symbol formula (binary)

potassium oxide	potassium fluoride
sodium oxide	sodium chloride
silver oxide	silver bromide
copper(I) oxide	cupric iodide
calcium oxide	calcium nitride
magnesium oxide	magnesium sulfide
mercury(I) oxide	ferrous sulfide
iron(II) phosphide	copper(I) fluoride
lead (II) oxide	aluminum sulfide
copper(II) bromide	iron (III) nitride
aluminum oxide	calcium fluoride
iron (III) oxide	aluminum phosphide


Complete pg 99 (16,17), pg 103 (20,21), pg 106 (2,4)

Formula Description (for interest only) Name 1 CaCl₂ used on roads to keep down dust 2 dietary supplement for iodine potassium iodide 3 in fire bricks MgO 4 used to de-hair hides aluminum chloride Na₂S aluminum ore (bauxite) 5 6 AI_2O_3 used in antiperspirants 7 black powder lithium nitride quicklime 8 CaO 9 heart stimulant barium chloride 10 table salt sodium chloride UV blocker 11 ZnO 12 BaF₂ used in embalming 13 ignites on contact with air magnesium hydride 14 MgCl₂ 11% of salt in sea water 15 zinc chloride in soldering paste 16 Ag₂S tarnish on silverware 17 potash fertilizer potassium chloride 18 CaF₂ used to flourinate drinking water 19 zinc sulphide zinc ore 20 white solid gallium fluoride

Nomenclature: Binary Ionic Compounds

Day 13 Polyatomic Ions

- Almost all polyatomic ions contain oxygen and only one other element. -
- These have a net ______ charge and are called oxyanions -

Different forms of Oxyanions

- Sometimes elements form more than one oxyanion -
- -To distinguish between just two – a suffixes are added
- To distinguish between more than two a prefixes are added -

			Prefix	Suffix	
One more oxy	One more oxygen atom:		per-	-ate	
"Normal" ato	m:			-ate	
One less oxyg	gen atom:			-ite	
Two less oxyg	gen atoms:		hypo-	-ite	
nitrate	NO ₃ ⁻		perchlorate	CIO ₄ ⁻	
nitrite	NO ₂ -		chlorate	CIO ₃ -	
			chlorite	CIO ₂ -	
sulfate	S04 ²⁻		hypochlorite	CIO-	
sulfite	S0 ₃ ²⁻		hydroxide	0H ⁻	
thiosulfate	S ₂ O ₃ ²⁻		cyanide	CN-	
			acetate	$CH_3CO_2^-$	
Naming Binary C	Naming Binary Compounds with Oxyanions Ca(ClO ₄) ₂				

 $Mg(ClO_2)_2$

Mg²⁺ and ClO₂⁻

Ca2+ and ClO4-

Fe(OH)₃

Use the reverse cross over rule with a check to see ions match their charges ; if the do not put in the charge of the anion Fe³⁺ and OH

TERTIARY COMPOUNDS

Write the chemical formula for each of the following:	Write the Stock/IUPAC name for each of the following:
silver phosphate	Na ₂ SO ₃
sodium sulphite	Ba(NO ₃) ₂
potassium perchlorate	MnSO ₄
magnesium phosphite	Hg ₂ SO ₄
calcium sulphate	NaIO ₄
ferric sulphate	CaCO ₃
potassium nitrate	Fe ₂ (SO ₄) ₃
magnesium hypobromite	KNO ₃
zinc chlorite	NaClO3
calcium phosphate	Fe(NO ₃) ₂
sodium periodate	(NH ₄) ₂ CO ₃
tin(IV) bromate	Mg ₃ (PO ₄) ₂
manganese(IV) nitrate	PbCO ₃
mercurous sulphite	Ca ₃ (PO ₄) ₂
cupric perbromate	Fe(NO ₃) ₃
calcium carbonate	KI0 ₃
tin(IV) iodite	(NH ₄) ₃ PO ₄
sodium phosphate	Al ₂ (SO ₄) ₃
calcium hypochlorite	MgSO ₃
sodium chlorite	Sn(NO ₂) ₂
magnesium perchlorate	FeSO ₃
aluminum bromite	AIPO ₄
mercuric hypoiodite	NaBrO
cupric sulphate	Na ₃ PO ₃

Hydrated Salts

- Some salts have water molecules associated with each formula unit.
- Ex. Copper (II) Sulfate pentahydrate
 - $CuSO_4 \cdot 5H_2O$
- Use the following prefixes to identify # of waters.

Greek Prefix	Number	Greek Prefix	Number
mono-	1	hexa-	6
di-	2	hepta-	7
tri-	3	octa-	8
tetra-	4	ennea- (or nona-)	9
penta-	5	deca-	10

Acid Salts

 Salts whose anions contain one or more covalently bonded hydrogen atom.

Ex. NaHSO4

Formula	Name
HCO₃ [−]	hydrogen carbonate
HSO₄ [−]	hydrogen sulfate
HSO₃ [−]	hydrogen sulfite
HPO42-	hydrogen phosphate
H ₂ PO ₄ -	dihydrogen phosphate

Nomenclature and Formula Writing Write formulas and names for each of the following combinations of elements and radicals.	
--	--

	Cl	0	P	CIO ₃	NO ₃	C ₂ H ₃ O ₂	PO ₄	CIO ₄	SO ₄
к									
Ca									
Mg									
AI									
~									
Cu (I)									
(-)									
Sn (II)									
()									
Au (III)									
Ag									
Pb									
Pb (IV)									

Beside each of the following compound names, give the correct symbol formula.

Potassium Nitrate	Copper(I) Nit	rate
Sodium Chlorate	Copper (II) Ni	itrate
Calcium Carbonate	Iron (II) Nitr	rate
Sodium Sulfate	Iron (III) Chlo	orate
Aluminum Phosphate	Iron (II) Carbo	onate
Calcium Nitrate	Ferric Sulfa	te
Calcium Chlorate	Iron (II) Phos	ohate
Calcium Sulfate	Aluminum Nit	rate
Calcium Phosphate	Aluminum Chl	orate
Magnesium Nitrate	Aluminum Carb	ponate
Magnesium Chlorate	Aluminum Su	lfate
Magnesium Carbonate	Copper (I) Chl	orate
Magnesium Sulfate	Copper (II) Ch	lorate

Using pg 667-669 N	ame the chemicals found	in the following : baking soda	, bleach
	_ Epsom salts	, laughing gas	/
milk of magnesia	, muriatic a	cid	

Day 14 - Naming using the stock system and alternative system, naming acids, prefix method for naming compounds containing 2 or more non-metals pg 103 (20,21), pg 105(23,24), pg 106 (1-4) do review page 107 (2,3,7,8,9,14,15,16,17,18,19,22)

Oxy - acids

- name derived from corresponding ternary salt or radical e.g. H₂SO₄ is sulfuric acid derived from the radical SO₄²⁻
 sulfate thus ic acids -----> ate salts
- the # of H's relate to the charge on the anion e.g. SO_4^{2-} has a -2 charge thus requires 2 H's
- ous acids -----> ite salts e.g. NO₂⁻ ---> nitrite ----> HNO₂ (aq) ----> nitrous acid

Formula of radical	Name of radical	Formula of corresponding acid	Name of Acid
NO ₃ ⁻			nitric acid
	phosphite		
		H ₂ SO ₄	
			sulfurous acid
CO ₃ ²⁻			
	acetate		
			phosphoric acid
	nitrite		
ClO ₂ ⁻			
			hypochlorous acid
		HClO₄	

Complete the following table :

Naming Covalently bonded molecular substances : Prefix Method

Binary Covalent Compounds

- Predicting formula is generally very difficult as they are variable.Ex. SCI, SCI2, SF4, SF6
- Prefixes are within name to show the number of specific atoms.

mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
	1

Ex. Binary Covalent Compounds

- Less electronegative atom is written first
- If first element in compound has only one atom, `mono' is not written.
- If second element in compound has only one atom, 'mono' is written.

CO → Carbon Monoxide CO₂ → Carbon Dioxide N_2O_2 → Dinitrogen dioxide

e.g. $CO_2 \dots > carbon dioxide CO \dots > N_2O \dots > N$

N₂O₃ -----> _____ SO₂ ----> _____

CCl₄ --->

P₂O₅ ----> _____

Complete the table below :

Formula	Name	
N ₂ O ₄		
	iodine monochloride	
OF ₂		
	dihydrogen oxide	
PCI5		
	sulfur hexafluoride	
NO		
	phosphorous pentachloride	
CS ₂		
	nitrogen trifluoride	
P ₂ O ₃		

	BINARY COMPOUNDS - prefix method							
	Write Formulas		Write Names					
1.	carbon dioxide	26.	H ₂ O					
2.	carbon monoxide	27.	SiO ₂					
3.	sulphur dioxide	28.	SO ₂					
4.	sulphur trioxide	29.	NO ₂					
5.	carbon tetrachloride	30.	СО					
6.	nitrogen dioxide	31.	CCl ₄					
7.	diphosphorus pentoxide	32.	P ₂ O ₃					
8.	nitrogen monoxide	33.	As ₂ O ₃					
9.	silicon dioxide	34.	Cl ₂ O ₇					
10.	Dinitrogen tetroxide	35.	P ₂ O ₅					
11.	sulfur trioxide	36.	CBr ₄					
12.	phosphorus pentabromide	37.	SF ₆					
13.	dinitrogen trioxide	38.	SeO ₂					

56

14.	carbon tetrachloride		39.	SiBr ₂	
15.	tetraphosphorus hexoxide		40.	As ₄ O ₆	
16.	selenium disuphide		41.	As ₂ Br ₅	
17.	iodine heptafluoride		42.	N ₂ H ₅	
18.	dinitrogen pentoxide		43.	P_4S_{10}	
19.	diboron nonoxide		44.	S_2O_7	
20.	. selenium dicarbide		45.	Br ₃ O ₈	
21.	. phosphorus trifluoride		46.	As ₃ P ₆	
22.	dichlorine octoxide		47.	B ₂ S ₅	
23.	phosphorus pentafluoride		48.	CS ₂	
24.	selenium tetrafluoride		49.	B ₄ H ₉	
25.	Dinitrogen monoxide		50.	PBr ₅	
	nd Match : Try these (aq)	5.	H ₃ I	2O3 (ad)	
NO ₂		6.	6. HNO ₂ (aq)		
Pb(NO ₂) ₂		7.	2. CuClO		
H ₂ S(aq)		8.	Fe	FeSO ₄	
Give f	formulas for :				
nitric acid		8.	nit	rogen (IV) oxide	_
acetic acid		9.	Ph	osphorous (III) oxide	
carbon (II) oxide		10.	SO	lium perchlorate	
phosphorous acid		11.	din	itrogen oxide	
carbon tetraiodide		12.	xei	xenon tetrafluoride	
Copper (II) phosphide		13.	silv	er phosphite	_
calcium nitride		14.	gol	d (I) nitrite	_

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

pg 103 (20,21), pg 105(23,24), pg 106 (1-4) do review page 107 (2,3,7,8,9,14,15,16,17,18,19,22)