

on Physical Sciences

CLASS TEST

GRADE 11

PHYSICAL SCIENCES: PHYSICS Test 2: Waves, sound and light

MARKS: 45

TIME: 1 hour

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. You may use non-programmable calculators.
- 3. You may use appropriate mathematical instruments.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Data sheets are attached for your use.
- 6. Wherever motivation, discussion, et cetera is required, write brief answers.

SECTION A

QUESTION 1: ONE-WORD ANSWERS

Give ONE word or term for EACH of the following descriptions. Write only the word or term next to the question number (1.1–1.2).

- 1.1 Sound waves with frequencies greater than 20 kHz. (1)
- 1.2 An upright image produced by a lens. (1)

[2]

QUESTION 2: FALSE STATEMENTS

Correct the following FALSE statements. Write the correct statement next to the question number (2.1–2.2).

- 2.1 The pitch of the sound is dependent on the amplitude of the wave. (2)
- 2.2 A compound microscope uses a converging and a diverging lens to magnify a tiny object.

(2) **[4]**

QUESTION 3: MULTIPLE-CHOICE QUESTIONS

Choose the correct answer to the following questions. Write only the letter (A–D) next to the question number (3.1–3.2).

- 3.1 In the eye of a person with normal vision, the image is formed ...
 - A at F
 - B between F and 2F
 - C further than 2F
 - D between F and the optical centre (2)
- 3.2 The wavelength of the third harmonic in a string of length L is ...
 - ΑI
 - B 3L/2
 - C 3L/4
 - D 2L/3

(2) **[4]**

TOTAL SECTION A: 10

SECTION B

INSTRUCTIONS AND INFORMATION

- 1. The formulae and substitutions must be shown in ALL calculations.
- 2. Round off your answers to TWO decimal places where applicable.

QUESTION 4

A learner observes water waves produced in a ripple tank. She finds that the distance between ten consecutive crests is 270 mm. She also finds that the time taken for one crest to travel 60 mm is 3 s.

Calculate:

- 4.1 the wavelength of the wave (2)
- 4.2 the speed of the waves (3)
- 4.3 the frequency of the waves. (3)

QUESTION 5

Lenses can converge or diverge light rays and form images. An image of an object is produced on a screen by a convex lens placed 40 cm from the screen. The image is magnified four times.

- 5.1 When will a lens not form an image? (1)
- 5.2 What type of lens will form only virtual images? (1)
- 5.3 Draw an accurate diagram to determine the focal length of the lens. (3)
- 5.4 Determine the distance of the object from the lens. (5)
- 5.5 What kind of lens is used for the following:
 - 5.5.1 the eye piece of an astronomical telescope
 - 5.5.2 the objective of a compound microscope
 - 5.5.3 to correct myopia? (3)

[13]

[8]

QUESTION 6

A man, facing a cliff, observes that an echo is heard 5,5 seconds after he makes a sharp sound. After walking 250 m directly towards the cliff, an echo is heard 4 seconds after he makes the sharp sound.

- 6.1 What is an echo? (2)
- 6.2 Calculate the speed of sound in air from these observations. (4)
- 6.3 How far from the cliff was the man when he made his second observation of the echo?

(4) [10]

[4]

QUESTION 7

The velocity of sound in air on a certain day is 352 m·s⁻¹. If the frequency of the music note, middle C, is 256 Hz, calculate the wavelength in air of upper C, which is an octave above middle C.

TOTAL SECTION B: 35 GRAND TOTAL: 45

DATA FOR PHYSICAL SCIENCES GRADE 11 PHYSICS

PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m·s ⁻²
Speed of light in a vacuum	С	3,0 × 10 ⁸ m·s ⁻¹
Gravitational constant	G	6,67 × 10 ⁻¹¹ N·m ² ·kg ⁻²
Coulomb's constant	k	9,0 × 10 ⁹ N·m ² ·C ⁻²
Charge on electron	e ⁻	-1,6 × 10 ⁻¹⁹ C
Electron mass	$m_{\rm e}$	9,11 × 10 ⁻³¹ kg
Permittivity of free space	ϵ_0	8,85 × 10 ⁻¹² F·m ⁻¹

FORMULAE

MOTION

$v_{\rm f} = v_{\rm i} + a\Delta t$	$\Delta x = v_i \Delta t = \frac{1}{2} a \Delta t^2$
$v_{\rm f}^2 = v_{\rm i}^2 + 2a\Delta x$	$\Delta x = \left(\frac{v_{\rm f} + v_{\rm i}}{2}\right) \Delta t$

FORCE

$F_{net} = ma$	p = mv
$F = \frac{Gm_1m_2}{r^2}$	$F\Delta t = \Delta p = mv - mu$
$\mu_{\rm s} = \frac{f_{s(max)}}{N}$	$\mu_{k} = \frac{f_{k}}{N}$

WEIGHT AND MECHANICAL ENERGY

$F_{\rm g} = {\rm m}g$	$U = E_{p} = mgh$
$K = E_{\rm k} = \frac{1}{2} \mathrm{m} v^2$	

Printed with permission, National Department of Education

WAVES, LIGHT AND SOUND

$v = f \lambda$ or $v = v \lambda$	$T = \frac{1}{f}$ or $T = \frac{1}{v}$
------------------------------------	--

ELECTROSTATICS

$F = \frac{kQ_1Q_2}{r^2}$	$(k = 9.0 \times 10^9 \mathrm{N \cdot m^2 \cdot C^{-2}})$	$E = \frac{F}{q}$
$E = \frac{kQ}{r^2}$	$(k = 9.0 \times 10^9 \mathrm{N \cdot m^2 \cdot C^{-2}})$	$E = \frac{V}{d}$
$V = \frac{W}{Q}$		W = QEs
$U = \frac{kQ_1Q_2}{r}$	$(k = 9.0 \times 10^9 \mathrm{N \cdot m^2 \cdot C^{-2}})$	$C = \frac{Q}{V}$
$C = \frac{\varepsilon_0 A}{d}$		

ELECTROMAGNETISM

$\varepsilon = -N \frac{\Delta \Phi}{\Delta t}$	$\Phi = BA$
$\frac{V_{\rm s}}{V_{\rm p}} = \frac{N_{\rm s}}{N_{\rm p}}$	F = qvB

CURRENT ELECTRICITY

$I = \frac{Q}{\Delta t}$	$R = \frac{V}{I}$
emf = I(R + r)	$R = r_1 + r_2 + r_3 + \dots$
$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \dots$	

Printed with permission, National Department of Education