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� Based on: Interest Rate Risk Modeling : The Fixed 

Income Valuation Course. Sanjay K. Nawalkha, Gloria 

M. Soto, Natalia A. Beliaeva, 2005, Wiley Finance. 

– Chapters 1, 2, 4, 5, 9, 10

� Goals:Goals:

– Understand interest rate Risk: What it is? How to 

manage it?manage it?

– Explain the main models for interest rate risk 

management and discuss some empirical evidencemanagement and discuss some empirical evidence.
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Introduction

� Interest rate risk is the risk that the value of an interest-dependent 

asset such as a loan or a bond will worsen due to interest rateasset, such as a loan or a bond, will worsen due to interest rate 

movements. 

� Interest risk management is very important for financial institutions, 

because most of their assets and liabilities are affected by changes 

in interest rates.

� Financial institutions then measure and manage interest rate risk. 

But: how they do it?

� The exposition addresses this question by explaining the most 
popular models in the area of interest rate risk management over the p p g
past two decades.
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Our goal is to understand interest risk g

management

Interest rate risk comes from movements on 

the term structure of interest rates
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Duration and Convexity Modely

� Duration is the most commonly used risk measure for measuring the y g

interest rate risk exposure of a security.

C it ll l t d ti idi l� Convexity usually complements duration, providing a closer 

approximation to interest rate risk.

� Consider a bond with cash flows Ct, payable at time t.  The bond 

ll f i P d i i d i t t t fsells for a price P, and is priced using a term structure of 

continuously compounded zero-coupon yields given by y(t).

� Duration is the weighted-average maturity of a bond, where weights 

are the present values of the bond’s cash flows, given as p , g

proportions of bond’s price: 
= ⎧ ⎫=   = ⎨ ⎬∑ with /

Nt t

tC
D t w w P

7

=

=  , = ⎨ ⎬
⎩ ⎭

∑
1

with  /t t ty
t t

D t w w P
e



Duration

� The traditional duration model can be used to approximate the pp

percentage change in the bond price as follows: 

Δ
≅ Δ  

P
D y≅ − Δ  D y

P

� This expression assumes that:

– The change in the yield, Δy, is equal for all bonds regardless of 

their coupons and maturities. The shift in the term structure is 

assumed to be parallelassumed to be parallel.

– The yield curve experiences infinitesimal shifts For non-The yield curve experiences infinitesimal shifts For non

infinitesimal shifts, a second order effect (convexity), is needed.
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Convexityy

� Convexity is given as the weighted-average of maturity-squares of a y g g g y q

bond, where weights are the present values of the bond’s cash flows, 

given as proportions of bond’s price: 

=

=

= ∑
1

2
Nt t

t

t t

CON t w

� For large changes in the interest rates, duration and convexity are 

used to derive a two-term Taylor series expansion for approximating 

h h i h b d i f llthe percentage change in the bond price as follows: 

Δ
≅ − Δ + Δ 21

( )
P

D y CON y

� Convexity measures the gain in a bond’s value due to the second 

≅ Δ + Δ( )
2

D y CON y
P

order effect of a large and parallel shifts in the term structure of 

interest rates. This suggests that for bonds with identical durations, 

higher convexity is always preferable Is this really true?higher convexity is always preferable. Is this really true?
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M-Squareq

� Higher convexity may not be desirable when the assumption of g y y p

parallel yield curve shifts implicit in the traditional model does not 

hold.

Euro yield curve (Jan. 2007 – May 2010)

11



M-Squareq

� An alternative view of convexity, which is based upon a more y, p

realistic economic framework, relates convexity to slope shifts in the 

term structure.

� This view of convexity was proposed by Fong and Vasicek [1983, 

1984] and Fong and Fabozzi [1985] through the introduction of M1984] and Fong and Fabozzi [1985] through the introduction of M-

square, which is a linear transformation of convexity.  

� For a better understanding of this measure and the rest of models, 

consider how to express the shifts in the term structure of interest 

rates. Two main approaches are:

– Define shifts in the term structure of zero-coupon yields

– Define shifts in term structure of instantaneous forward rates
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Measuring Shifts: Zero-Coupon Yieldsg p

� When expressed in terms of the term structure of zero-coupon yields, p p y ,

the bond price is given as follows: 

C C C C F
= + + + + +

1 1 2 2 3 3( ) ( ) ( ) ( ) ( )
...

N N N Ny t t y t t y t t y t t y t t

C C C C F
P

e e e ee

where each cash flow is discounted by the zero-coupon yield y(t) 

corresponding to its maturity t. 

� For example, we can assume a simple polynomial form for the term 

structure of zero-coupon yields as follows:structure of zero coupon yields, as follows:

( ) = + ⋅ + ⋅ + ⋅ +2 3

0 1 2 3 ...y t A A t A t A t

where parameters A0, A1, A2, and A3, are the height, slope, curvature, 

and the rate of change of curvature (and so on) of the term structure.  
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Measuring Shifts: Zero-Coupon Yieldsg p

� In this case, a change in the term structure of zero-coupon yields , g p y

can be expressed as:

+ Δ  '( ) ( ) ( )y t y t y t= + Δ  

Δ Δ Δ Δ Δ2 3

( ) ( ) ( )

where, 

( )

y t y t y t

t A A t A t A t

� The shift in the term structure of zero-coupon yields is then defined 

Δ = Δ + Δ ⋅ + Δ ⋅ + Δ ⋅ +2 3

0 1 2 3( ) ...y t A A t A t A t

similarly as a function of the changes in height, slope, curvature, and 

other parameters. 
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Measuring Shifts: Forward Ratesg

� In many instances, it is easier to work with instantaneous forward y ,

rates, as certain interest rate risk measures and fixed income 

derivatives are easier to model using forward rates.

� The relationship between the term structure of zero-coupon yields 

and the term structure of instantaneous forward rates can be givenand the term structure of instantaneous forward rates can be given 

as follows:

⋅ =  ∫0
( ) ( )

t

y t t f s ds

where y(t) is the zero-coupon-yield for term t, and f(t) is the 

instantaneous forward rate for term t (which is the same as the 

forward rate that can be locked-in at time zero for an infinitesimally 

small interval t to t + dt) 
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Measuring Shifts: Forward Ratesg

� Given the term structure of zero-coupon yields, it is possible to p y , p

obtain the term structure of instantaneous forward rates by taking 

the derivative of both sides of the previous equation as follows: 

= ⋅ ∂ ∂ +( ) ( ) / ( )f t t y t t y t

� As can be seen, if the term structure of zero-coupon yields is rising 

(falling) then ∂y(t)/∂t>0 (<0) and instantaneous forward rates will be(falling), then ∂y(t)/∂t>0 (<0), and instantaneous forward rates will be 

higher (lower) than zero-coupon yields. 

� The bond price can be expressed in terms of the instantaneous 

forward rates as follows:

= + + + + +  
∫ ∫ ∫ ∫ ∫

1 2 3

0 0 0 0 0
( ) ( ) ( ) ( ) ( )

...
N N

f s ds f s ds f s ds f s ds f s ds

C C C C F
P

e e e e e
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Measuring Shifts: Forward Ratesg

� When the term structure of zero-coupon yields is expressed as a p y p

simple polynomial, the term structure of instantaneous forward rates 

has also a polynomial form, given as:

( ) = + ⋅ + ⋅ + +

           + + ⋅ + ⋅ + ⋅ +    

2

1 2 3

2 3

( 2 3 ... )

( )

f t t A A t A t

A A t A t A t

( )

           + + ⋅ + ⋅ + ⋅ +    

+ + + +

0 1 2 3

2 3

( ...)

or

2 3 4

A A t A t A t

f t A A t A t A t

� As shown, both the term structure of zero-coupon yields and the 

t t t f i t t f d t h th h i ht

( ) = + ⋅ + ⋅ + ⋅ +0 1 2 32 3 4 ...f t A A t A t A t

term structure of instantaneous forward rates have the same height, 

but the later has twice the slope, and three times the curvature (and 

four times the rate of change of curvature, and so on) of the termfour times the rate of change of curvature, and so on) of the term 

structure of zero coupon yields.  This illustrates that the term 

structure of forward rates is more volatile, especially for longer 

t itimaturities. 
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Measuring Shifts: Forward Ratesg

� Under the polynomial form, the shift in the term structure of p y ,

instantaneous forward rates is given as follows:

Δ = Δ + Δ ⋅ + Δ ⋅ + Δ ⋅ +2 3

0 1 2 3( ) 2 3 4f t A A t A t A t

where the new term structure is given as: 

Δ Δ + Δ + Δ + Δ +0 1 2 3( ) 2 3 4 ...f t A A t A t A t

= + Δ  '( ) ( ) ( )f t f t f t
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M-Squareq

� The M-square risk measure is defined as the weighted average of q g g

the squared differences between cash flow maturities and the 

planning horizon H, where weights are the present values of the 

b d’ ( b d tf li ’ ) h fl i ti fbond’s (or a bond portfolio’s) cash flows, given as proportions of 

bond’s (or the bond portfolio’s) price: 

= Nt t=

=

= − ⋅  ∑
1

2 2( )
Nt t

t
t t

M t H w

� Unlike convexity, the M-square measure is specific to a given 

planning horizon. 
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M-Squareq

� Given an arbitrary shift in the term structure of instantaneous y

forward rates, there exists a lower bound on the future value VH of 

the bond portfolio at the planning horizon H, given as (no short 

iti )position): 
Δ

≥ − − ⋅ Δ − ⋅  2

4

1
( ) ( )

2
H

H

V
D H f H K M

V

where                                for all t such that, 0 ≤ t ≤ tN.

H

≥ ∂ Δ ∂4 [ ( )] /K f t t

� The minimum bound depends on two risk measures which are under 

the control of the portfolio manager: traditional duration and M-

square.  Ceteris paribus, the smaller the magnitude of M-square, the 

lower the risk exposure of the bond portfolio.

� The M-square model selects the bond portfolio that minimizes the 

M-square of the bond portfolio, subject to the duration constraint (i.e., 

duration = planning horizon H).   
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M-Square versus Convexityq y

� A linear relationship exists between M-square and convexity:  p q y

= − ⋅ ⋅ +  2 22M CON D H H

� For the special case when H=0, M-square converges to the 

convexity of the bond.

� If duration is kept constant, then M-square is an increasing function 

of convexity. 

� This last result leads to the convexity-M-square paradox: in 

traditional duration analysis higher convexity is beneficial since ittraditional duration analysis higher convexity is beneficial since it 

leads to higher returns; however, according to M-square model, M-

square should be minimized in order to minimize immunization risk. 
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M-Square versus Convexityq y

� The “convexity view” and the “M-square view” have exactly opposite y q y pp

implications for bond risk analysis and portfolio management:

– Convexity emphasizes the gain in the return on a portfolio, 

i t l d ll l hift i th t t t f i t tagainst large and parallel shifts in the term structure of interest 

rates.  

On the other hand M square emphasizes the risk exposure of a– On the other hand, M-square emphasizes the risk exposure of a 

portfolio due to slope-shifts in the term structure of interest rates.

� Which view is valid depends upon the extent of the violation of the 

parallel term structure shift assumption.

� Actually, the convexity view is not consistent with bond market 

ilib i hil th M i i i t t ith ilib iequilibrium, while the M-square view is consistent with equilibrium 

conditions and it requires no specific assumptions regarding the 

shape of the shifts in the term structure.shape of the shifts in the term structure. 
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An Empirical Investigation of M-squarep g q

� Among others, Lacey and Nawalkha [1993, JFI] have analyzed 

empirically whether convexity adds risk or extra return. 

� Data: CRSP government bond data over the period January 1976 

through November 1987.

� Exercise 1: Test the sign of γ2 in β β γ ε− = + ⋅ + ⋅ +0 1 2( ) ( )FR H R H D CONg γ2 β β γ0 1 2( ) ( )F

� Results:  High 

positive-positive

convexity is not 

associated with 

positive excess 

returns over the 

riskless return ariskless return, a 

conclusion that 

rejects the 

23
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An Empirical Investigation of M-squarep g q

� Exercise 2: Compute volatility of excess returns for duration-

matching bond portfolios with different convexity exposure. 

� Results: Holding duration constant, and increasing the absolute size 

of convexity leads to higher immunization risk for bond portfolios. 
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M-Absolute

� Unlike M-square model, that requires two risk measures for hedging q , q g g

(i.e., both duration and M-square), Nawalkha and Chambers [1996] 

derive the M-absolute model, which only requires one risk measure 

f h d i i t ll l i ld hiftfor hedging against non-parallel yield curve shifts. 

� M absolute is defined as the weighted average of the absolute� M-absolute is defined as the weighted average of the absolute 

differences between cash flow maturities and the planning horizon, 

where the weights are the present values of the bond’s (or a bond g p (

portfolio’s) cash flows, given as proportions of bond’s (or the bond 

portfolio’s) price:

=

=

= − ⋅  ∑
1

Nt t
A

t

t t

M t H w

� Unlike duration but similar to M-square, the M-absolute measure is 

specific to a given planning horizonspecific to a given planning horizon. 
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M-Absolute

� Given an arbitrary shift in the term structure of instantaneous y

forward rates, there exists a lower bound on the future value VH of 

the bond portfolio at the planning horizon H, given as (no short 

position)position): 
Δ

≥ − ⋅3

AH

H

V
K M

V

where                                for all t such 

that, 0 ≤ t ≤ tN.

HV

( ) ( )= ≤ Δ ≤3 1 2 1 2Max , andK K K K f t K

that, 0 ≤ t ≤ tN.  

� That is, K3 depends on the term structure movements and gives the , 3 p g

maximum absolute deviation of the term structure of the initial 

forward rates from the term structure of the new forward rates.
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M-Absolute

� A portfolio manager can control the portfolio’s M-absolute but not K3 .p g p 3 

� The smaller the magnitude of M-absolute, the lower the g

immunization risk of the portfolio. 

� Therefore, the immunization objective of the M-absolute model is to 

select a portfolio that minimizes the portfolio’s M-absolute: 

=

⎡ ⎤
   ⎢ ⎥

⎣ ⎦
∑

1

Min
J

A

i i

i

p M

 ≥∑

. .

=1 0 for all 1 2
J

s t

p p i J

where MA
i defines the M-absolute of the ith bond

=

 ≥ =∑ K
1

=1, 0, for all 1,2, ,i i

i

p p i J

where M i defines the M absolute of the ith bond. 
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M-Absolute versus Duration

� The relative desirability of the duration model or the M-absolute y

model depends on the nature of term structure shifts expected: 

– If height shifts completely dominate slope, curvature, and other 

higher order term structure shifts, then the traditional duration 

model will outperform the M absolute modelmodel will outperform the M-absolute model. 

If however slope curvature and other higher order shifts are– If, however, slope, curvature, and other higher order shifts are 

relatively significant in comparison with height shifts, then the M-

absolute model may outperform the traditional duration model. 
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Duration, M-square and M-absolute , q

(summary)

� The traditional duration model (duration + convexity) completely 

immunizes against the height shifts but ignores the impact of slope, 

curvature, and other higher order term structure shifts. 

M th i i ti i k f d ti h d d� M-square measures the immunization risk of duration-hedged 

portfolios, and hence, is able to provide significant enhancement in 

the immunization performance over the traditional duration model.the immunization performance over the traditional duration model. 

� The M-absolute model only requires one risk measure for hedging y q g g

against non-parallel yield curve shifts, and its relative desirability 

over the duration model depends on the nature of term structure 

hift t dshifts expected. 
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An Empirical Investigation of M-absolutep g

� Nawalkha and Chambers [1996, FAJ] test M-absolute against [ , ] g

duration.

� Data: McCulloch’s term structure data over the period 1951 throughData: McCulloch s term structure data over the period 1951 through 

1986.

� Exercise: Compute absolute deviations between effective andExercise:  Compute absolute deviations between effective and 

target returns of the M-Absolute strategy and the traditional duration 

strategy (with maximum diversification among bonds) for bond 

portfolios with a holding period of 4 years (32 overlapping four-year 

periods within the period of study).  

� Result: The M-absolute strategy reduces the immunization risk 

inherent in the duration model by more than half. 
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An Empirical Investigation of M-absolutep g

� Implication: Changes in the height of the term structure of 

instantaneous forward rates must be accompanied by significant 

changes in the slope, curvature, and other higher order term 

structure shape parameters.  

31



Interest Rate Risk Modeling: An Overviewg

� IntroductionIntroduction

� Duration and Convexity

� M-Square and M-Absolute Models

� Duration Vector Models

� Key Rate Duration Model

� Principal Component Duration Model� Principal Component Duration Model

� Summaryy

32



Duration Vector Models

� Once it is recognized that height changes in the term structure are g g g

accompanied by changes in in the slope, curvature, and other higher 

order term shape parameters, multifactor models are required in 

d t d i t t t i korder to measure and manage interest rate risk. 

� The most usual approach has been to assume a parametric fitting of 

th t t t d th d i th di d tithe term structure and then derive the corresponding duration 

vector:

– Granito [1984, JAI Press], Chambers, Carleton, and McEnally

[1988, JFQA], Prisman and Shores [1988, JBF], Prisman and 

Tian [1994 JFQA] Nawalkha [1995] and Grandville [2001 MITTian [1994, JFQA], Nawalkha  [1995] and Grandville [2001, MIT 

Press] consider a polynomial function.

Willner [1996 JFI] and Diebold Ji and Li [2006 Edward Elgar]– Willner [1996, JFI] and Diebold, Ji and Li [2006, Edward Elgar] 

propose the exponential function given by Nelson and Siegel 

[1987, JBus].
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Duration Vector Models

Α

te
 c
h
a
n
g
e
s

Α0

Α2 Polynomial function

e
ro
‐c
o
u
p
o
n
 ra
t

Α1 = + × + × + × +2 3

0 1 2 3( ) ...y t A A t A t A t

Z

Term

g
e
s

Δα1

Exponential function

u
p
o
n
 ra
te
 c
h
a
n
g

Δα2

Exponential function

( ) ( )β ββα α α α− −= + + − −/ /
1 2 3 3( ) 1 t ty t e e

t

Z
e
ro
‐c
o
u

Term

Δα3

t

34



Duration Vector Models

� In the simplest version (only lineal effects, polynomial function for p ( y , p y

zero-coupon rates), the polynomial duration vector model expresses 

the instantaneous percentage change in the current value of a 

tf liportfolio as:

Δ
= − × Δ − × Δ − × Δ − × Δ −0 (1) (2) (3) (4)

V
D A D A D A D A

� The risk of the portfolio is captured by a vector of risk measures

= − × Δ − × Δ − × Δ − × Δ −K0 1 2 3

0

(1) (2) (3) (4)D A D A D A D A
V

� The risk of the portfolio is captured by a vector of risk measures, 

given as D(1), D(2), D(3), D(4), etc., defined as:

= ⎧ ⎫Nt t C=

=

⎧ ⎫= ⋅ =   ⎨ ⎬
⎩ ⎭

∑
1

0( )
( ) ,  and /  

Nt t
m t

t t y t t
t t

C
D m w t w V

e

� The shift vector expresses the change in the height ΔA0, the slope 

ΔA1, the curvature ΔA2, the rate of change of curvature ΔA3 , and so 

f th t t t f ton of the term structure of zero-coupon rates. 
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Duration Vector Models

� Moreover, based on the derivation of the M-vector of Nawalkha and ,

Chambers [1997, JPM] and Nawalkha, Soto and Zhang [2003, JBF], 

it can be demonstrated that even not restricting the term structure 

hift t b f l i l f ti f T l i f thshifts to be of a polynomial function form, a Taylor expansion of the 

bond return function also gives this vector of polynomial-type 

duration measures.
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Duration Vector Models

� In particular, given a instantaneous shift in the term structure of p , g

forward rates from f(t) to f’(t) such that f’(t) = f(t) + Δf(t), the 

instantaneous percentage change in the current value of the 

tf li b dportfolio can be expressed as:

[ ]Δ
= − Δ0            (1) (0)

V
D f

V
[ ]

( ) ( )
⎡ ⎤⎛ ⎞∂ Δ

− − Δ⎢ ⎥⎜ ⎟

0

2

( ) ( )

( )1
(2) (0)

V

f t
D f( )

( ) ( )

=

Δ⎢ ⎥⎜ ⎟
∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ Δ∂ Δ
Δ Δ⎢ ⎥⎜ ⎟

0

2
3

                      (2) (0)
2

( )1 ( ( ))
(3) 3 (0) (0)

t

D f
t

f tf t
D f f

( ) ( )
=

∂ Δ
− − ⋅ Δ + Δ⎢ ⎥⎜ ⎟

∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

3

2

0

( )1 ( ( ))
                      (3) 3 (0) (0)

3!
t

f t
D f f

t t

M                          

( )
−

−

⎡ ⎤⎛ ⎞∂ Δ
− + + Δ             ⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

M

1

1
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                      ( ) ... (0)

!

Q
Q

Q

f t
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Duration Vector Models

� In this general case:g

– The first element of the duration vector is the traditional duration 

measure given as the weighted-average time to maturity, and themeasure given as the weighted average time to maturity, and the 

first shift vector element captures the change in the level of the 

forward rate curve for the instantaneous term, given by Δf(0); 

– The second shift vector element captures the difference between 

the square of this change and the slope of the change in the 

forward rate curve (given by ∂Δf(t)/∂t at t = 0); 

– The third shift vector element captures the effect of the third 

power of the change in the level of the forward rate curve, the 

interaction between the change in the level and the slope of the 

change in the forward rate curve and the curvature of thechange in the forward rate curve, and the curvature of the 

change in the forward rate curve (given by ∂2Δf(t)/∂t2 at t =0);

and so on– and so on.  
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Duration Vector Models

� The model converges to the traditional duration model with duration g

and convexity when only shifts in the height of the term structure are 

considered.

� Similar to the controversy between “convexity view” and the “M-

square view”, it has been found that the magnitudes of the higher 

d d i ti i th hift t l t ( hift i th horder derivatives in the shift vector elements (shifts in the shape 

parameters of the term structure) dominate the magnitudes of higher 

powers (second order effects of the shifts and beyond).powers (second order effects of the shifts and beyond).

� For this reason, the polynomial model is a good approximation of 

this general modelthis general model. 

� Generally, the first three to five duration vector measures are 

sufficient to capture all of the interest rate risk inherent in bondsufficient to capture all of the interest rate risk inherent in bond 

portfolios.
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Duration Vector Models

� To immunize a portfolio for a planning horizon of H years, the p p g y ,

duration vector model requires setting the portfolio duration vector to 

the duration vector of a hypothetical default-free zero coupon bond 

t i t Hmaturing at H.  

� Since the duration vector elements of a zero coupon bond are given� Since the duration vector elements of a zero-coupon bond are given 

as its maturity, maturity squared, maturity cubed, etc., the 

immunization constraints are given as follows: g

= =

= ⋅ =          = ⋅ =∑ ∑ 2 2(1) , (2)
N Nt t t t

t tD w t H D w t H
= =

= =

= ⋅ =   = ⋅ =  

∑ ∑

∑ ∑
1 1

3 3(3) ... ( )
N N

t t

t t t t

t t t t
Q Q

t tD w t H D Q w t H
= =
∑ ∑

1 1

( ) ( )t t

t t t t
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Empirical Investigations

� Nawalkha and Chambers [1997, JPM] perform an empirical 

p g

[ , ] p p

analysis to determine an appropriate value of Q for the duration 

vector model. 

� Data: McCulloch term structure data for the period 1951 through 

1986. 

� Exercise: Compute the absolute deviations of actual portfolio values 

from target values of simulated bond portfolios immunized for 

planning horizons of 4 years.

� Results: Hedging performance improves steadily as the length of the 

duration vector increases. About three to five duration vector 

constraints (i.e., Q = 3 to 5) have shown to almost perfectly 

immunize against the risk of non parallel yield curve shiftsimmunize against the risk of non-parallel yield curve shifts.
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Empirical Investigationsp g

� The results of the tests are similar over two sub-periods, providing 

empirical confirmation that the duration vector model is independent 

of the particular stochastic processes for term structure movements. 
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Empirical Investigations

� Soto [2001, JBF] perform an empirical analysis to determine the 

p g

[ , ] p p y

performance of the model using real (not simulated) bond data. 

� Data: Daily prices for Spanish government bonds for the periodData: Daily prices for Spanish government bonds for the period 

1992 through 1995. 

� Exercise: Compute the mean absolute deviations between theExercise: Compute the mean absolute deviations between the 

realized return and the initial zero-coupon rate of real bond portfolios 

immunized for holding periods of 1 and 2 years.

� Results: Hedging performance improves as the length of the 

duration vector increases. In general, a minimum of three duration 

constraints (D(1), D(2) and D(3)) are required to guarantee 

immunization, with the only exception of portfolios including a bond 

maturing at the end of the horizon which perform well undermaturing at the end of the horizon, which perform well under 

traditional duration in short holding periods. 
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Empirical Investigations

� Ventura and Pereira [2006, JBF] perform an empirical analysis to 

determine the performance of the M-vector model using real (not

p g

determine the performance of the M-vector model using real (not 

simulated) bond data. 

� Data: Daily prices for Portuguese government bonds for the period� Data: Daily prices for Portuguese government bonds for the period 

August 1993 through September 1999. 

E i C t th d i ti b t th li d t d� Exercise: Compute the deviations between the realized return and 

the initial zero-coupon rate of real bond portfolios immunized for 

holding periods of 2 years (also sensibility analysis for 4 years)g p y ( y y y )

� Results: Hedging performance improves as the length of the 

duration vector increases Three duration constraints are sufficientduration vector increases. Three duration constraints are sufficient 

to guarantee a return close to the target. Additional constraints 

beyond third contributes little to increasing hedging performance and 

( fcan even cause the results to deteriorate (more frequent 

reallocations). The only exception are duration-matching portfolios 

including a bond maturing at the end of the holding period for whichincluding a bond maturing at the end of the holding period, for which 

traditional duration is enough. 
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Key Rate Duration Modely

� The key rate duration model describes the shifts in the term y

structure as a discrete vector representing the changes in the key 

zero-coupon rates of various maturities.

� Key rate durations are defined as the sensitivity of the portfolio value 

to the given key rates at different points along the term structureto the given key rates at different points along the term structure.

� Any smooth change in the term structure of zero-coupon yields can� Any smooth change in the term structure of zero-coupon yields can 

be represented as a vector of changes in a number of properly 

chosen key rates:

( )= Δ Δ ΔK1 2( ), ( ) , ( )mTSIR shift y t y t y t

where y(ti) is the zero-coupon rate for term ti and y(t1), y(t2), … , y(tm), 

define the set of m key rates.
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Key Rate Changes

� The changes in all other interest rates are approximated by linear 

y g

g pp y

interpolation of the changes in the adjacent key rates, thus obtaining 

a piecewise linear approximation for the shift in the term structure. 
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Key Rate Durations

� The set of key rate shifts can be used to evaluate the change in the 

y

y g

price of any fixed-income security.

� An infinitesimal and instantaneous shift in a specific key rate, y(ti), 

results in an instantaneous price change given as:

Δ
= − ⋅ Δ( ) ( ) i

i

P
KRD i y t

P

where KRD(i) is the i-th key rate duration, defined as the (negative) 

percentage change in the price resulting from the change in the i-thpercentage change in the price resulting from the change in the i th

key rate: 

∂1
( )

P∂
= −

∂
1

( )
( )i

P
KRD i

P y t
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Key Rate Durations

� The set of KRDs forms a vector of  m risk measures, representing 

y

, p g

the first-order price sensitivities of the portfolio to the m key rates:

⎡ ⎤= ⎣ ⎦K︵1 ︶ ︵2 ︶ ︵ ︶KRD KRD KRD KRD m

� The total percentage change in price due to an infinitesimal shift in 

the term structure can be obtained as the sum of the effect of each 

key rate shift on the security pricekey rate shift on the security price.

Δ = Δ + Δ + + Δ1 2 ... mP P P P

� The total percentage change in price in terms of the KRD and key 

rate shifts is:

=

Δ
= − ⋅ Δ∑

1

( ) ( )
m

i
i

P
KRD i y t

P

51

1i



Key Rate Durations

� Key rate durations give the risk profile of fixed-income portfolios 

y

y g p p

across the whole term structure.

� For example, for a coupon-bearing bond:For example, for a coupon bearing bond:
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Limitations of the Key Rate Modely

� There are three limitations of the key rate model:y

– Arbitrary choice of the key rates.

– Unrealistic shapes of the individual key rate shifts.

– Loss of efficiency caused by not modeling the history of term 

structure movements.
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Limitations of the Key Rate Modely
The Choice of Key Rates

� The model allows for any number of key rates.

� Therefore interest rate risk can be modeled and hedged to a high� Therefore, interest rate risk can be modeled and hedged to a high 

degree of accuracy.

� However the number of key rates durations to be used and the� However, the number of key rates durations to be used and the 

corresponding choice of key rates remain quite arbitrary.

D it th h i f th i k f t i i t t th k t d l� Despite the choice of the risk factors is important, the key rate model 

offers no guidance about how to make the choice.

Wh h d l fi i d d b H [1992 JFI] h� When the model was first introduced by Ho [1992, JFI], he 

suggested using as many as 11 key rates.

� In order to reduce the number of risk factors, the manager could 

narrow the choice based upon the maturity structure of the portfolio.

54



Limitations of the Key Rate Modely
The Shape of Key Rate Shifts

� Each individual key rate shift has a historically implausible shape. 

� Each key rate shock implies a kind of forward rate saw-tooth shift 

which is unrealistic.
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Limitations of the Key Rate Modely
The Shape of Key Rate Shifts

� In order to address this shortcoming, a natural choice is to focus on 

the forward rate curve instead of the zero-coupon curve.

� Johnson and Meyer [1989, FAJ] first proposed this methodology and 

called it the partial derivative approach or PDA.

� According to PDA, the forward rate structure is split up into many 

linear segments and all forward rates within each segment are g g

assumed to change in a parallel way.

� While under the key rate model each key rate only affects the y y y

present value of the cash flows around the term of the rate, under 

the PDA approach each forward rate affects the present value of all 

h fl i ithi ft th t f th f d tcash flows occurring within or after the term of the forward rate.
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Limitations of the Key Rate Modely
The Shape of Key Rate Shifts

Partial durations versus key rate durations of a coupon-bearing bond
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Limitations of the Key Rate Modely
Loss of Efficiency

� Some assert that the key rate model is not an efficient one in 

describing the dynamic of the term structure.

� This is because historical volatilities of interest rates provide useful 

information about the behavior of the different segments of the term 

structure, and the key model disregards this information.

� Since each key rate change is assumed to be independent of the y g p

changes in the rest of key rates, the model deals with movements in 

the term structure whose probabilities may be too small to worry 

aboutabout.

� As a result, the use of the key rate model for interest rate risk 

t i t t i ti tf limanagement imposes too severe restrictions on portfolio 

construction that lead to increased costs and a loss of degrees of 

freedom when managing or hedging.
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Limitations of the Key Rate Modely
Loss of Efficiency

� A number of variations of the key rate model that try to deal with this 

undesirable consequence have gone through the inclusion of the 

covariance of interest rate changes into the analysis For example:covariance of interest rate changes into the analysis. For example:

– Falkenstein and Hanweck [1996, JFI] propose a covariance-

i t t k t h d i hi h i t fi di thconsistent key rate hedging, which consists on finding the 

portfolio that minimizes the variance of the portfolio returns.

– Reitano [1996, JPM] proposes a stochastic immunization program, 

which searches for the portfolio that minimizes a risk measure 

defined as a weighted average of the portfolio’s return variancedefined as a weighted average of the portfolio s return variance 

and the worst case risk given by the magnitude of the key rate 

durations.
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Principal Component Duration Modelp p

� The principal component model assumes that term structure p p p

movements can be summarized by a few composite variables.

� These new variables are constructed by applying a statistical 

technique called principal component analysis (PCA) to the past 

of interest rate changesof interest rate changes.

� By construction the first principal component explains the maximum� By construction, the first principal component explains the maximum 

percentage of the total variance of interest rate changes. The 

second component is linearly independent of the first, and explains 

the maximum percentage of the remaining variance, and so on.

� TSIR shifts are now expressed in terms of the principal components:

( )= Δ Δ ΔK1 2, , mTSIR shift c c c
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Principal Component Duration Model

� Principal components are linear combination of interest rate 

p p

p p

changes:

Δ = Δ =∑ K( ) 1, ,
m

j ji ic u y t j m

where uji are called principal component coefficients.

=
∑

1

( ) , ,j ji i
i

y j

� And inversely, the changes in the m interest rates are a lineal 

combination of the principal components: 

=
Δ = Δ =∑ K

1

( ) 1, ,  
m

i ji j
j

y t u c i m
j
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Principal Component Duration Model

� When the principal components are standardized to have a unit 

p p

p p p

variance, interest rate changes are expressed as:

m

=
Δ = Δ =∑ K*

1

( ) 1, ,  
m

i ij j
j

y t l c i m

where lij are called factor loadings.

� Since principal components are ordered according to their 

explanatory power, retaining only the first components does not 

implies a significant losing of informationimplies a significant losing of information.

� This not only helps obtaining a low-dimensional parsimonious model,This not only helps obtaining a low dimensional parsimonious model, 

but also reduces the noise in the data due to unsystematic factors.
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Principal Component Duration Model

� Numerous studies for different periods and countries reveal that 

p p

p

three principal components are sufficient in explaining the variation 

of interest rates in Treasury bond markets.

� The table shows the eigenvectors and eigenvalues of the 

covariance matrix of monthly changes in the U.S. zero-coupon rates 

f J 2000 t D 2002from Jan. 2000 to Dec. 2002.

Rate PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8)

1 0.270 -0.701 -0.565 0.292 -0.138 -0.085 0.060 -0.026

2 0.372 -0.385 0.227 -0.423 0.459 0.445 -0.240 0.132

3 0.396 -0.120 0.315 -0.328 -0.037 -0.605 0.244 -0.442

4 0 395 0 028 0 296 0 103 0 411 0 182 0 054 0 7354 0.395 0.028 0.296 0.103 -0.411 -0.182 -0.054 0.735

5 0.382 0.124 0.243 0.346 -0.415 0.476 -0.166 -0.483

7 0.350 0.252 -0.031 0.344 0.444 0.149 0.682 0.102

9 0 332 0 334 -0 225 0 266 0 397 -0 348 -0 614 -0 0479 0.332 0.334 0.225 0.266 0.397 0.348 0.614 0.047

10 0.312 0.393 -0.576 -0.556 -0.270 0.162 0.085 0.022

Eigenvalues 0.605 0.057 0.009 0.001 0.001 0.000 0.000 0.000

% of variance explained 89.8% 8.5% 1.3% 0.2% 0.1% 0.1% 0.0% 0.0%
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Principal Component Duration Model

� The figure shows the shape of the eigenvectors corresponding to 

p p

g p g p g

the first three components.
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� Accordingly, PC (1) is a level or height factor,  PC(2) is a slope or 

twist factor and PC(3) is a curvature factor
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Principal Component Duration Model

� Assuming that these first three components are retained, interest 

p p

g p ,

rate changes can be expressed as:

( ) 1t l l l i( ) 1, ,s ci ih h is icy t l c l c l c i mΔ ≈ Δ + Δ + Δ = K

where h refers to the height factor, s to the slope factor and c to the 

curvature factor.

� Principal component durations and convexities can be computed 

from the first and the second partial derivatives of portfolio value 

with respect to the three factors as follows:with respect to the three factors as follows:

∂
= − =

∂
1

( ) , ,
P

PCD i i h s c
P c∂

( )
iP c

∂21
( )

P
PCC i j i j h s c
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Principal Component Duration Model

� Using a second-order Taylor series approximation, the percentage 

p p

g y pp , p g

change in portfolio value is given as:

= = =

Δ
= − ⋅ Δ + ⋅ Δ ⋅ Δ∑ ∑ ∑

, , , , , ,

1
( ) ( , )

2i i j
i h s c i h s c j h s c

P
PCD i c PCC i j c c

P

� Since the principal components are orthogonal, cross effects can be 

di d d hi h idisregarded, which gives:

= =

Δ
= − ⋅ Δ + ⋅ Δ∑ ∑ 2

, , , ,

1
( ) ( , )

2i i
i h s c j h s c

P
PCD i c PCC i i c

P
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Principal Component Duration Model

� Immunizing a portfolio for a given horizon requires choosing a 

p p

g p g q g

portfolio whose three principal component durations equal those of a 

zero-coupon bond maturing at the end of the planning horizon:

= = ⋅ =( ) ( ) , ,PORT zero H iPCD i PCD i H l i h s c

where H is the length of the planning horizon and lHi is the loading 

of the i-th principal component on the zero-coupon rate for term Hof the i-th principal component on the zero-coupon rate for term H. 
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Principal Component Duration Modelp p
Main advantages

� The benefits of using the PCA are:

– A significant reduction in dimensionality when compared with 

other models.

– It is able to produce orthogonal risk factors, which makes 

i t t t i k t d t i l t kinterest rate risk measurement and management a simpler task, 

because each risk factor can be treated independently.
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Principal Component Duration Modelp p
Main shortcomings

� The principal component model has a couple of shortcomings:

– The static nature of the technique is unable to deal with the non-

stationary time-series behavior of interest rate changes.

– Principal components are purely constructions that summarize 

i f ti i l t d t b t d t l l d tinformation in  correlated systems, but do not always lead to an 

economic interpretation.
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Limitations of the Principal Component Modelp p
Static Factors Arising from a Dynamic Structure

� Application of PCA to term structure movements implies that:

The covariance structure of interest rate changes is constant– The covariance structure of interest rate changes is constant

– The shape of the principal components are stationary

� These are critical, because if the shapes of the principal 

components change frequently, then these components cannot p g q y, p

explain the future volatility of interest rates.

� According to Bliss[1997] or Soto [2004b], the dynamic pattern in 

the volatility of interest rates affects the stability of the principal 

componentscomponents.
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Limitations of the Principal Component Modelp p
Static Factors Arising from a Dynamic Structure

� An example: Monthly changes 

of U.S. zero-coupon rates for 

years 2000, 2001, 2002. 
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A conceptual comparison of the modelsp p
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An empirical comparison of the modelsp p

� Soto [2004a] analyzes the hedging performance of different [ ] y g g p

strategies, including multiple factor models, trying to determine if 

performance is primarily attributable to the particular model chosen 

t th b f i k f t id dor to the number of risk factors considered. 

� Data: Daily prices for Spanish government bonds for the period 

1992 th h 19991992 through 1999. 

� Exercise: Compute the deviations between the realized return and 

the initial zero-coupon rate of real bond portfolios immunized for 

holding periods of 1, 2 and 3 years, and also the variability of these 

deviationsdeviations.

� Results: (i) traditional immunization is easily bettered by more 

realistic strategies; (ii) the number of risk factors considered has arealistic strategies; (ii) the number of risk factors considered has a 

greater influence on the result than the particular model chosen; and 

(iii) three-factor immunization strategies offer the highest 
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An empirical comparison of the modelsp p
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