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History

“Death bed letter”

Dear Hardy,

“I am extremely sorry for not writing you a single letter up to

now.. . . I discovered very interesting functions recently which I call

“Mock” ϑ-functions. . . . they enter into mathematics as beautifully

as the ordinary theta functions. I am sending you with this letter

some examples.”

Ramanujan, January 12, 1920.
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History

Some examples

f (q) := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

ω(q) :=

∞∑

n=0

q2n2+2n

(1 − q)2(1 − q3)2 · · · (1 − q2n+1)2
,

λ(q) :=
∞∑

n=0

(−1)n(1 − q)(1 − q3) · · · (1 − q2n−1)qn

(1 + q)(1 + q2) · · · (1 + qn−1)
.
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Aftermath of the letter

Although Ramanujan’s secrets died with him, we have:

Works by Atkin, Andrews, Dyson, Selberg, Swinnerton-Dyer,
and Watson on these 22 series.
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History

Aftermath of the letter

Although Ramanujan’s secrets died with him, we have:

Works by Atkin, Andrews, Dyson, Selberg, Swinnerton-Dyer,
and Watson on these 22 series.

Bolster the view that Ramanujan had found something.
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History

G. N. Watson’s 1936 Presidential Address

“Ramanujan’s discovery of the mock theta functions makes it

obvious that his skill and ingenuity did not desert him at the

oncoming of his untimely end.

As much as any of his earlier work. . . , the mock theta functions

are an achievement sufficient to cause his name to be held in

lasting remembrance. ...”
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History

G. N. Watson’s 1936 Presidential Address

“Ramanujan’s discovery of the mock theta functions makes it

obvious that his skill and ingenuity did not desert him at the

oncoming of his untimely end.

As much as any of his earlier work. . . , the mock theta functions

are an achievement sufficient to cause his name to be held in

lasting remembrance. ...”



The legacy of Ramanujan’s mock theta functions: Harmonic Maass forms in number theory

History

Andrews unearths the “Lost Notebook” (1976)

Forgotten in the Trinity College archives.
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History

“Lost Notebook” identities useful for...

Hypergeometric functions

Partitions and Additive Number Theory

Mordell integrals

Artin L-functions

Mathematical Physics

Probability theory. . .
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History

“Lost Notebook” identities useful for...

Hypergeometric functions

Partitions and Additive Number Theory

Mordell integrals

Artin L-functions

Mathematical Physics

Probability theory. . .

“Mock theta-functions give us tantalizing hints of a grand synthesis

still to be discovered... This remains a challenge for the future.”

Freeman Dyson, 1987
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Back to the future

The future is now

In his Ph.D. thesis under Zagier (’02), Zwegers investigated:

“Lerch-type” series and Mordell integrals.

Resembling q-series of Andrews and Watson on mock thetas.

Stitched them together give non-holomorphic Jacobi forms.
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Back to the future

Important Realizations

Ramanujan’s 22 examples are pieces of Maass forms.

Previously thought to be difficult to construct.

...giving clues of general theory which in turn have
applications.
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Back to the future

Some applications

Partition Theory and q-series.

q-series identities (“mock theta conjectures”)

Congruences (Dyson’s ranks)

Exact formulas

Arithmetic and Modular forms.

Donaldson invariants

Eichler-Shimura Theory

Moonshine for affine Lie superalgebras

Borcherds-type automorphic products

L-functions and the BSD numbers
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Back to the future

Four samples

I. (Maass form congruences)
Extend the scope of Serre, Swinnerton-Dyer, Deligne, Ribet....

II and III. (Exact formulas for Maass forms)
Extend and generalize phenomena obtained previously by

Rademacher and Zagier∗.
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Back to the future

Four samples

I. (Maass form congruences)
Extend the scope of Serre, Swinnerton-Dyer, Deligne, Ribet....

II and III. (Exact formulas for Maass forms)
Extend and generalize phenomena obtained previously by

Rademacher and Zagier∗.

IV. (Birch and Swinnerton-Dyer Numbers)
Unify work of Waldspurger and Gross-Zagier on BSD numbers +ǫ.
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Since I, II, and III are very broad topics, I shall choose
partitions to illustrate our results.
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Back to the future

Comments

Since I, II, and III are very broad topics, I shall choose
partitions to illustrate our results.

Along the way, I will explain some of the essential features
(e.g. definitions) of the theory.
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Integer Partitions

Adding and counting

Definition

A partition is any nonincreasing sequence of integers summing to n.

p(n) := #{partitions of n}.
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Integer Partitions

Adding and counting

Definition

A partition is any nonincreasing sequence of integers summing to n.

p(n) := #{partitions of n}.

Example

The partitions of 4 are:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1,

and so p(4) = 5.
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Integer Partitions

Ramanujan’s Congruences

Theorem (Ramanujan)

For every n, we have

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).
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Integer Partitions

Ramanujan’s Congruences

Theorem (Ramanujan)

For every n, we have

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

Remark

Attempting to explain them, Dyson defined the “rank.”
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Integer Partitions

Dyson’s Rank

Definition

The rank of a partition is its largest part minus its number of parts.

N(m, n) := #{partitions of n with rank m}.
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Integer Partitions

Dyson’s Rank

Definition

The rank of a partition is its largest part minus its number of parts.

N(m, n) := #{partitions of n with rank m}.

Example

The ranks of the partitions of 4:

Partition Largest Part # Parts Rank

4 4 1 3 ≡ 3 (mod 5)
3 + 1 3 2 1 ≡ 1 (mod 5)
2 + 2 2 2 0 ≡ 0 (mod 5)

2 + 1 + 1 2 3 −1 ≡ 4 (mod 5)
1 + 1 + 1 + 1 1 4 −3 ≡ 2 (mod 5)
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Integer Partitions

Dyson’s Conjecture

Definition

If 0 ≤ r , t, then let

N(r , t; n) := #{partitions of n with rank ≡ r mod t}.
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Integer Partitions

Dyson’s Conjecture

Definition

If 0 ≤ r , t, then let

N(r , t; n) := #{partitions of n with rank ≡ r mod t}.

Conjecture (Dyson, 1944)

For every n and every r , we have

N(r , 5; 5n + 4) = p(5n + 4)/5,

N(r , 7; 7n + 5) = p(7n + 5)/7.
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Integer Partitions

A famous theorem

Theorem (Atkin and Swinnerton-Dyer, 1954)

Dyson’s Conjecture is true.
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Integer Partitions

A famous theorem

Theorem (Atkin and Swinnerton-Dyer, 1954)

Dyson’s Conjecture is true.

Remark

The proof depends on the generating function:

R(w ; q) =
∑

m,n

N(m, n)wmqn := 1 +
∞∑

n=1

qn2

(wq; q)n(w−1q; q)n
,

where

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1).
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Integer Partitions

Revealing specializations

Example

For w = 1 and q := e2πiz , we have the modular form

q−1R(1; q24) =
∞∑

n=0

p(n)q24n−1.
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Integer Partitions

Revealing specializations

Example

For w = 1 and q := e2πiz , we have the modular form

q−1R(1; q24) =
∞∑

n=0

p(n)q24n−1.

For w = −1, we have Ramanujan’s mock theta

R(−1; q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.
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Integer Partitions

Modular Forms

“Definition”

A modular form is any meromorphic function f (z) on H for which

f

(
az + b

cz + d

)
= (cz + d)k f (z)

for all

(
a b

c d

)
∈ Γ ⊂ SL2(Z).
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Integer Partitions

Natural Hope

Question

Since the deepest facts about p(n) come from modular form

theory, is R(w ; q), for roots of unity w 6= 1, modular?
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Integer Partitions

Natural Hope

Question

Since the deepest facts about p(n) come from modular form

theory, is R(w ; q), for roots of unity w 6= 1, modular?

“Theorem” (Bringmann-O)

If w 6= 1 is a root of unity, then R(w ; q) is the holomorphic part

of a harmonic Maass form.



The legacy of Ramanujan’s mock theta functions: Harmonic Maass forms in number theory
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Defining Maass forms

Notation. Throughout, let z = x + iy ∈ H with x , y ∈ R.
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Maass forms

Defining Maass forms

Notation. Throughout, let z = x + iy ∈ H with x , y ∈ R.

Hyperbolic Laplacian.

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.
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Maass forms

Harmonic Maass forms

“Definition”

A harmonic Maass form is any smooth function f on H satisfying:
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Maass forms

Harmonic Maass forms

“Definition”

A harmonic Maass form is any smooth function f on H satisfying:

1 For all A =
(

a b
c d

)
∈ Γ ⊂ SL2(Z) we have

f

(
az + b

cz + d

)
= (cz + d)k f (z).
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Maass forms

Harmonic Maass forms

“Definition”

A harmonic Maass form is any smooth function f on H satisfying:

1 For all A =
(

a b
c d

)
∈ Γ ⊂ SL2(Z) we have

f

(
az + b

cz + d

)
= (cz + d)k f (z).

2 We have that ∆k f = 0.
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Dyson’s ranks

A bit more precisely

Definition

If 0 < a < c are integers, then let

S
(a

c
; z

)
:= B(a, c)

∫ i∞

−z̄

Θ
(

a
c
; ℓcτ

)
√

−i(τ + z)
dτ,
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Dyson’s ranks

A bit more precisely

Definition

If 0 < a < c are integers, then let

S
(a

c
; z

)
:= B(a, c)

∫ i∞

−z̄

Θ
(

a
c
; ℓcτ

)
√

−i(τ + z)
dτ,

and define D
(

a
c
; z

)
by

D
(a

c
; z

)
:= −S

(a

c
; z

)
+ q− ℓc

24 R(ζa
c ; qℓc )

⇑ ⇑
Θ − integral Dyson’s series
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Dyson’s ranks

The first theorem

Theorem (Bringmann-O)

If 0 < a < c, then D
(

a
c
; z

)
is a weight 1/2 harmonic Maass form.
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Dyson’s ranks

The first theorem

Theorem (Bringmann-O)

If 0 < a < c, then D
(

a
c
; z

)
is a weight 1/2 harmonic Maass form.

Remark

By exhibiting Maass forms, this is already interesting.
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Dyson’s ranks

Partition congruences revisited

Theorem (O, 2000)

For primes Q ≥ 5, there are infinitely many non-nested

progressions An + B for which

p(An + B) ≡ 0 (mod Q).
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Dyson’s ranks

Partition congruences revisited

Theorem (O, 2000)

For primes Q ≥ 5, there are infinitely many non-nested

progressions An + B for which

p(An + B) ≡ 0 (mod Q).

Examples. Simplest ones for 17 ≤ Q ≤ 31:

p(48037937n + 1122838) ≡ 0 (mod 17),

p(1977147619n + 815655) ≡ 0 (mod 19),

p(14375n + 3474) ≡ 0 (mod 23),

p(348104768909n + 43819835) ≡ 0 (mod 29),

p(4063467631n + 30064597) ≡ 0 (mod 31).
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Dyson’s ranks

I. Maass form congruences

Theorem (Bringmann-O)

There are progressions An + B s.t. for all 0 ≤ r < t

N(r , t;An + B) ≡ 0 (mod Q).
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Dyson’s ranks

I. Maass form congruences

Theorem (Bringmann-O)

There are progressions An + B s.t. for all 0 ≤ r < t

N(r , t;An + B) ≡ 0 (mod Q).

Remark

This is a Dyson-style proof of

p(An + B) ≡ 0 (mod Q).
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“Proof” of the second theorem
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Proofs of the two theorems

“Proof” of the second theorem

The Fourier expansions in q := e2πiz are special:

D
(a

c
; z

)
= q− ℓc

24 R(ζa
c ; qℓc ) +

∑

n∈Z

B(a, c , n)γ(c , y ; n)q−ℓ̃cn
2
.
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Proofs of the two theorems

“Proof” of the second theorem

The Fourier expansions in q := e2πiz are special:

D
(a

c
; z

)
= q− ℓc

24 R(ζa
c ; qℓc ) +

∑

n∈Z

B(a, c , n)γ(c , y ; n)q−ℓ̃cn
2
.

The “bad” coefficients are so sparse that the proof becomes

Shimura correspondence + ℓ-adic Galois repns + ǫ.
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Exact formulas for Maass forms

II. Exact formulas of Rademacher-type

Problem (Rademacher)

Define α(n) by

f (q) = R(−1; q)

=
∞∑

n=0

α(n)qn = 1 + q − 2q2 + · · · + 487q47 + 9473q89 − · · · .
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Exact formulas for Maass forms

II. Exact formulas of Rademacher-type

Problem (Rademacher)

Define α(n) by

f (q) = R(−1; q)

=
∞∑

n=0

α(n)qn = 1 + q − 2q2 + · · · + 487q47 + 9473q89 − · · · .

Find an exact formula for

α(n) =N(0, 2; n) − N(1, 2; n)

⇑ ⇑
even rank odd rank,
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Exact formulas for Maass forms

Rademacher-type exact formula

Conjecture (Andrews-Dragonette, 1966)

If n is a positive integer, then

α(n) = π(24n − 1)−
1
4

×
∞∑

k=1

(−1)⌊
k+1

2
⌋A2k

(
n − k(1+(−1)k )

4

)

k
· I 1

2

(
π
√

24n − 1

12k

)
,

where Ak(n) is a “Kloosterman-type sum”.
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Exact formulas for Maass forms

II. Exact formulas for Maass forms

Theorem (Bringmann-O, 2006)

The Andrews-Dragonette Conjecture is true.
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II. Exact formulas for Maass forms

Theorem (Bringmann-O, 2006)

The Andrews-Dragonette Conjecture is true.

Idea of the Proof.
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Exact formulas for Maass forms

II. Exact formulas for Maass forms

Theorem (Bringmann-O, 2006)

The Andrews-Dragonette Conjecture is true.

Idea of the Proof.

By the first theorem, the holomorphic part of the Maass form
D

(
1
2 ; z

)
is q−1R(−1; q24).
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Exact formulas for Maass forms

II. Exact formulas for Maass forms

Theorem (Bringmann-O, 2006)

The Andrews-Dragonette Conjecture is true.

Idea of the Proof.

By the first theorem, the holomorphic part of the Maass form
D

(
1
2 ; z

)
is q−1R(−1; q24).

Construct the “right” Poincaré series

P(z) =
2√
π

∑

M∈Γ∞\Γ0(2)

χ(M)−1(cz + d)−
1
2 φ(Mz),

where φ is a Whittaker function.



The legacy of Ramanujan’s mock theta functions: Harmonic Maass forms in number theory

Exact formulas for Maass forms

Idea of the proof

The “right” one has a Fourier expansion

P(24z) = Nonholomorphic function +

∞∑

n=1

β(n)q24n−1,

where the β(n)’s equal the expressions in the conjecture.
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Exact formulas for Maass forms

Idea of the proof

The “right” one has a Fourier expansion

P(24z) = Nonholomorphic function +

∞∑

n=1

β(n)q24n−1,

where the β(n)’s equal the expressions in the conjecture.

Somehow prove that D
(

1
2 ; z

)
− P(24z) is 0.

�
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Exact formulas for Maass forms

II. Exact formulas for Maass forms

Theorem (Bringmann-O)

We have formulas for all harmonic Maass forms with weight ≤ 1/2.
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Exact formulas for Maass forms

II. Exact formulas for Maass forms

Theorem (Bringmann-O)

We have formulas for all harmonic Maass forms with weight ≤ 1/2.

Remark

Gives the theorem of Rademacher-Zuckerman for non-positive

weight modular forms as a special case.
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Fourier expansions and ξ

Relation to classical modular forms

Sk(Γ) := weight k cusp forms on Γ,

H2−k(Γ) := weight 2 − k

harmonic Maass forms on Γ.
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Fourier expansions and ξ

Relation to classical modular forms

Sk(Γ) := weight k cusp forms on Γ,

H2−k(Γ) := weight 2 − k

harmonic Maass forms on Γ.

Lemma

If w ∈ 1
2Z and ξw := 2iyw ∂

∂z
, then

ξ2−k : H2−k(Γ) −→ Sk(Γ).

Moreover, this map is surjective.
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Fourier expansions and ξ

Harmonic Maass forms have two parts (q := e2πiz)

Fundamental Lemma

If f ∈ H2−k and Γ(a, x) is the incomplete Γ-function, then

f (z) =
∑

n≫−∞

c+
f (n)qn +

∑

n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

l l
Holomorphic part f + Nonholomorphic part f −
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Fourier expansions and ξ

Relation with classical modular forms

Fundamental Lemma

If ξw := 2iyw ∂
∂z

, then

ξ : H2−k −→ Sk

satisfies

ξ(f ) = ξ(f − + f +) = ξ(f −).
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Fourier expansions and ξ

Relation with classical modular forms

Fundamental Lemma

If ξw := 2iyw ∂
∂z

, then

ξ : H2−k −→ Sk

satisfies

ξ(f ) = ξ(f − + f +) = ξ(f −).

Question

What does the holomorphic part f + unearth?
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Fourier expansions and ξ

Source of rich information

Question

Can one use holomorphic parts of Maass forms to unearth hidden

information related to Sk(Γ)?
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Fourier expansions and ξ

Source of rich information

Question

Can one use holomorphic parts of Maass forms to unearth hidden

information related to Sk(Γ)?

Answer. Yes, and we discuss two applications:
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Fourier expansions and ξ

Source of rich information

Question

Can one use holomorphic parts of Maass forms to unearth hidden

information related to Sk(Γ)?

Answer. Yes, and we discuss two applications:

III. Exact formulas for Maass forms of Zagier-type.

BSD numbers
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Exact formulas as Galois traces

Rademacher’s “exact formula”

Theorem (Rademacher (1943))

If n is a positive integer, then

p(n) = CRAZY convergent infinite sum.
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III. Exact formulas of Zagier-type

Theorem (Bruinier-O)

Let F be the Maass form for which ξ−2(F ) is in S4(6).
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III. Exact formulas of Zagier-type

Theorem (Bruinier-O)

Let F be the Maass form for which ξ−2(F ) is in S4(6).Then

P(z) := −
(

1

2πi
· d

dz
+

1

2πy

)
F (z)

has the property that its sum over disc −24n + 1 CM points is

p(n) =
1

24n − 1
· (P(αn,1) + P(αn,2) + · · · + P(αn,hn

)) .
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Exact formulas as Galois traces

III. Exact formulas of Zagier-type

Theorem (Bruinier-O)

Let F be the Maass form for which ξ−2(F ) is in S4(6).Then

P(z) := −
(

1

2πi
· d

dz
+

1

2πy

)
F (z)

has the property that its sum over disc −24n + 1 CM points is

p(n) =
1

24n − 1
· (P(αn,1) + P(αn,2) + · · · + P(αn,hn

)) .

Moreover, each (24n − 1)P(αn,m) is an algebraic integer.
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Exact formulas as Galois traces

Hard proof that p(1) = 1.

If β := 161529092 + 18648492
√

69, then

1

23
· P

(−1 +
√
−23

12

)
=

1

3
+

β2/3 + 127972

6β1/3
,

1

23
· P

(−13 +
√
−23

24

)
=

1

3
− β2/3 + 127972

12β1/3
+

β2/3 − 127972

4
√
−3β1/3

,

1

23
· P

(−25 +
√
−23

36

)
=

1

3
− β2/3 + 127972

12β1/3
− β2/3 − 127972

4
√
−3β1/3

,
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Exact formulas as Galois traces

Hard proof that p(1) = 1.

If β := 161529092 + 18648492
√

69, then

1

23
· P

(−1 +
√
−23

12

)
=

1

3
+

β2/3 + 127972

6β1/3
,

1

23
· P

(−13 +
√
−23

24

)
=

1

3
− β2/3 + 127972

12β1/3
+

β2/3 − 127972

4
√
−3β1/3

,

1

23
· P

(−25 +
√
−23

36

)
=

1

3
− β2/3 + 127972

12β1/3
− β2/3 − 127972

4
√
−3β1/3

,

and we see directly that

p(1) = 1 =
1

23
(P(α1) + P(α2) + P(α3)) .
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Exact formulas as Galois traces

First few minimal polynomials

n xhn − (24n − 1)p(n)xhn−1 + . . .

1 x3 − 23 · 1x2 + 3592
23 x − 419

2 x5 − 47 · 2x4 + 169659
47 x3 − 65838x2 + 1092873176

472 x + 1454023
47

3 x7 − 71 · 3x6 + 1312544
71 x5 − 723721x4 + 44648582886

712 x3

+9188934683
71 x2 + 166629520876208

713 x + 2791651635293
712

4 x8 − 95 · 5x7 + 9032603
95 x6 − 9455070x5 + 3949512899743

952 x4

−97215753021
19 x3 + 9776785708507683

953 x2

−53144327916296
192 x − 134884469547631

54·19
.
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Zagier’s famous Berkeley lectures

Zagier’s Berkeley lectures give modular generating fcns for
such algebraic traces when
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Using different ideas (i.e. theta integrals with Kudla-Millson
kernels), we obtain the general framework.
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Exact formulas as Galois traces

Zagier’s famous Berkeley lectures

Zagier’s Berkeley lectures give modular generating fcns for
such algebraic traces when

ξ2−k(F ) = 0.

Using different ideas (i.e. theta integrals with Kudla-Millson
kernels), we obtain the general framework.

Generating fcns are holomorphic parts f + of Maass forms.
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Exact formulas as Galois traces

III. Exact formulas of Zagier-type

Theorem (Bruinier-O)

The generating function for the CM Galois traces of a good

Q-rational Maass form with Laplacian eigenvalue λ = −2 is the

holomorphic part f + of a weight −1/2 harmonic Maass form.
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Exact formulas as Galois traces

III. Exact formulas of Zagier-type

Theorem (Bruinier-O)

The generating function for the CM Galois traces of a good

Q-rational Maass form with Laplacian eigenvalue λ = −2 is the

holomorphic part f + of a weight −1/2 harmonic Maass form.

Remark (Bruinier-O-Sutherland)

The coeffs are computable using CM and the CRT.
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Algebraicity of Maass forms and L-functions

IV: BSD Numbers

Group Law
E : y2 = x3 + Ax + B

Theorem (Mordell-Weil)

The rational points of an elliptic curve over a number field form a

finitely generated abelian group.
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Example

1 The number 6 is congruent since it is the area of (3, 4, 5).
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Algebraicity of Maass forms and L-functions

The Congruent Number Problem

Problem (Open)

Determine the integers which are areas of rational right triangles.

Example

1 The number 6 is congruent since it is the area of (3, 4, 5).

2 The number 157 is congruent, since it is the area of

(
411340519227716149383203

21666555693714761309610
,
680 · · · 540

411 · · · 203
,
224 · · · 041

891 · · · 830

)
.
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Algebraicity of Maass forms and L-functions

A Classical Diophantine Criterion

Theorem (Easy)

An integer D is congruent if and only if the elliptic curve

ED : Dy2 = x3 − x

has positive rank.
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Algebraicity of Maass forms and L-functions

Quadratic twists

Definition

Let E/Q be the elliptic curve

E : y2 = x3 + Ax + B.

If ∆ is a fund. disc., then the ∆-quadratic twist of E is

E (∆) : ∆y2 = x3 + Ax + B.
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Algebraicity of Maass forms and L-functions

Birch and Swinnerton-Dyer Conjecture

Conjecture

If E/Q is an elliptic curve and L(E , s) is its L-function, then

ords=1(L(E , s)) = rank of E (Q).
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Birch and Swinnerton-Dyer Conjecture

Conjecture

If E/Q is an elliptic curve and L(E , s) is its L-function, then

ords=1(L(E , s)) = rank of E (Q).

A good question. How does one compute ords=1(L(E , s))?
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Algebraicity of Maass forms and L-functions

Kolyvagin’s Theorem

Theorem (Kolyvagin)

If ords=1(L(E , s)) ≤ 1, then

ords=1(L(E , s)) = rank of E .
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Algebraicity of Maass forms and L-functions

Kolyvagin’s Theorem

Theorem (Kolyvagin)

If ords=1(L(E , s)) ≤ 1, then

ords=1(L(E , s)) = rank of E .

Question

How does one compute L(E , 1) and L′(E , 1)?
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Algebraicity of Maass forms and L-functions

Formulas for L-values and derivatives

Formulas for L(E (∆), 1)

Theorem (Shimura-Kohnen/Zagier-Waldspurger)

There is a modular form

g(z) =

∞∑

n=1

bE (n)qn

such that if ∆ < 0 and
(
∆
p

)
= 1, then

L(E (∆), 1) = αE (∆) · bE (|∆|)2.
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Algebraicity of Maass forms and L-functions

Formulas for L-values and derivatives

The Gross-Zagier Theorem

Question

What about derivatives?

Theorem (Gross and Zagier)

If ∆ > 0 and
(
∆
p

)
= 1, then for suitable d < 0 the global

Neron-Tate height on J0(p)(H) of y∆,r (−n, h) is

βE (∆, d) · L(E (d), 1) · L′(E (∆), 1).
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Algebraicity of Maass forms and L-functions

Formulas for L-values and derivatives

Natural Question

Question

Find an extension of the Kohnen-Waldspurger theorem giving both

L(E (∆), 1) and L′(E (∆), 1).



The legacy of Ramanujan’s mock theta functions: Harmonic Maass forms in number theory

Algebraicity of Maass forms and L-functions

Results on L-values and derivatives

Theorem (Bruinier-Ono)

There is a nice Maass form fg (z) ...which fits into the picture



The legacy of Ramanujan’s mock theta functions: Harmonic Maass forms in number theory

Algebraicity of Maass forms and L-functions

Results on L-values and derivatives

Theorem (Bruinier-Ono)

There is a nice Maass form fg (z) ...which fits into the picture

E/Q
l

fg = f +
g + f −g −→ g −→ G

∩ ∩ ∩
H+

1
2

(4p) −→ S+
3/2(4p) −→ S2(p)

⇑ ⇑ ⇑
ξ Kohnen-Shimura Modularity
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Results on L-values and derivatives

L-values and derivatives

Theorem (Bruinier-O)

The following are true:

1 If ∆ < 0 and
(
∆
p

)
= 1, then

L(E (∆), 1) = α̃E (∆) · c−g (∆)2.
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Algebraicity of Maass forms and L-functions

Results on L-values and derivatives

L-values and derivatives

Theorem (Bruinier-O)

The following are true:

1 If ∆ < 0 and
(
∆
p

)
= 1, then

L(E (∆), 1) = α̃E (∆) · c−g (∆)2.

2 If ∆ > 0 and
(
∆
p

)
= 1, then

L′(E (∆), 1) = 0 ⇐⇒ c+
g (∆) is algebraic.



The legacy of Ramanujan’s mock theta functions: Harmonic Maass forms in number theory

Algebraicity of Maass forms and L-functions

Results on L-values and derivatives

Example for E : y 2 = x3 + 10x2 − 20x + 8.

∆ c+
g (−∆) L′(E (∆), 1)

−3 1.0267149116 . . . 1.4792994920 . . .
−4 1.2205364009 . . . 1.8129978972 . . .
...

...
...

−136 −4.8392675993 . . . 5.7382407649 . . .
−139 −6 0
−151 −0.8313568817 . . . 6.6975085515 . . .

...
...

...
−815 121.1944103120 . . . 4.7492583693 . . .
−823 312 0
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Results on L-values and derivatives

Overview of the proof

The first formula follows from ξ.

The equivalence of L′(E (∆), 1) = 0 and the algebraicity of
c+
g (∆) involves a detailed study of Heegner divisors.
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Algebraicity of Maass forms and L-functions

Results on L-values and derivatives

Overview of the proof

The first formula follows from ξ.

The equivalence of L′(E (∆), 1) = 0 and the algebraicity of
c+
g (∆) involves a detailed study of Heegner divisors.

Algebraicity is dictated by the vanishing of Heegner divisors,
and Gross-Zagier gives the connection to

L′(E (∆), 1).
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Algebraicity of Maass forms and L-functions

Results on L-values and derivatives

“Detailed study” of Heegner divisors

Theorem (Bruinier-O)

We have that η∆(z , fg ) := −1
2∂Φ∆(z , fg ) is a differential on X0(p)

with Heegner divisor. Moreover, we have

η∆(z , fg ) =

ρfg ,ℓ − sgn(∆)

√
∆

∑

n≥1

∑

d |n

n

d

(
∆

d

)
c+
g ( |∆|n2

4Nd2 )e(nz)


 · 2πi dz .
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Summary

Ramanujan =⇒ harmonic Maass forms.

Building general theory has applications, such as:

I. (Maass form congruences)
Extend the scope of Serre, Swinnerton-Dyer, Deligne, Ribet....

II and III. (Exact formulas for Maass forms)
Extend and generalize phenomena obtained previously by

Rademacher and Zagier∗.

IV. (Birch and Swinnerton-Dyer Numbers)
Unify work of Waldspurger and Gross-Zagier on BSD numbers +ǫ.


