
Why network size is so important

0
ne critical aspect neural
network designers face
today is choosing an
appropriate network size

for a given application. Network size
involves in the case of layered neural
network architectures, the number of
layers in a network, the number of
nodes per layer, and the number of
connections. Roughly speaking, a
neural network implements a nonlinear
mapping of u=G(x). The mapping
function G is established during a
training phase where the network
learns to correctly associate input pat-
terns x to output patterns U. Given a set
of training examples (x, U), there is
probably an infinite number of differ-
ent size networks that can learn to map
input patterns x into output patterns U.

The question is, which network
size is more appropriate for a given
problem? Unfortunately, the answer
to this question is not always obvious.
Many researchers agree that the quali-
ty of a solution found by a neural net-
work depends strongly on the
network size used. In general, net-
work size affects network complexity,
and learning time. It also affects the
generalization capabilities of the net-
work; that is, its ability to produce
accurate results on patterns outside its
training set.

Here is a very illustrative analogy
between neural network learning and
curve fitting that highlights the impor-
tance of network size. There are two
problems in curve fitting: 1) finding
out the order of the polynomial, and
2) finding out the coefficients of the
polynomial. Thus, given a set of data
points, first we decide on the order of
the polynomial we will use and then
we compute the coefficients of the
polynomial. This way we minimize
the sum of the squared differences
between required and predicted val-
ues. Once the coefficients have been
computed, we can evaluate any value

of the polynomial given a data point,
even for data points that were not in
the initial data set.

If the order of the polynomial cho-
sen is very low, the approximations
obtained are not good, even for points
contained in the initial data set. On the
other hand, if the order of the polyno-
mial chosen is very high, very bad val-
ues may be computed for points not
included in the initial data set. Fig. 1
illustrates these concepts. Similarly, a
network having a structure simpler
than necessary cannot give good
approximations even for patterns
included in its training set. A more

complicated than necessary structure,
“ovefits” the training data, that is, it
performs nicely on patterns included
in the training set but performs very
poorly on unknown patterns.

What does
the theory say?

Generally, the number of nodes in
the input and output layers can be
determined by the dimensionality of
the problem. However, determining
the number of hidden nodes is not
straightforward. It requires first the
determination of the number of hid-

den lavers. There is a

good /$ fit bad fit 0

Fig. 1 Good and bad fits

numbe-r of theoretical
results concerning the
number of hidden lay-
ers in a network.
Specifically, Nielsen
has shown that a net-
work with two hidden
layers can approximate
any arbitrary nonlinear
function and generate
any complex decision
region for classification
problems.

Later Cybenko

OCTOBERINOVEMBER 1994 0278-6648/94/$4.00 0 1994 IEEE 27

showed that a single layer is enough to
form a close approximation to any non-
linear decision boundary. (Furthermore,
it was shown that one hidden layer is
enough to approximate any continuous
function with arbitrary accuracy-when
the accuracy is determined by the num-
ber of nodes in the hidden layer; also,
one hidden layer is enough to represent
any Boolean function).

Recently, Hornik and Stinchombe
have come up with a more general theo-
retical result. They have shown that a
single hidden layer feedforward net-
work, with arbitrary sigmoid hidden
layer activation functions, can approxi-
mate an arbitrary mapping from one
finite dimensional space to another.
This tells us that feed-forward networks
can approximate virtually any function
of interest to any desired degree of
accuracy, provided enough hidden units
are available.

Although the above theoretical
results are of great importance, they
don’t give us an indication of how to
choose the number of hidden units
needed per hidden layer. Also, even if
one hidden layer may be enough theo-
retically, in practice more than one
hidden layer should be utilized for
faster, more efficient problem solving.
For example, we mentioned that one
hidden layer is enough to approximate
any continuous function. However, in
some problems, a large number of hid-
den nodes may be required to achieve
the desired accuracy. Thus, a network
with two hidden layers and much
fewer nodes should solve the same
problem more efficiently. Hence ,
choosing an appropriate network size
for a given problem is still something
of an art.

very beneficial in

Why are small and simple
networks better?

In determining network size, one is
only guided by intuition and some spe-
cific knowledge about the problem. For
example, when the input is an image, it
is more reasonable to define local
receptive fields (that is, to use local
connections), instead of full connectivi-
ty. This is because nearby pixels in the
image are probably more correlated
than pixels located far away from each
other.

Unfortunately, when no a-priori
knowledge about the problem is avail-
able, one has to determine the network

Modify error function Sensitivitycalculation

size by trial and error. Usually, one has
to train different size networks and if
they don’t yield an acceptable solution,
then they are discarded. This procedure
is repeated until an appropriate network
is found.

Experience has shown that using the
smallest network which can learn the
task, is better for both practical and the-
oretical reasons. Smaller networks
require less memory to store the con-
nection weights and can be implement-
ed in hardware more easily and
economically. Training a smaller net-
work usually requires less computations
because each iteration is less computa-
tionally expensive. Smaller networks
have also very short propagation delays
from their inputs to their outputs. This is
very important during the testing phase
of the network, where fast responses are
usually required.

Bigger networks generally need larg-
er numbers of training examples to
achieve good generalization perfor-
mance. It has been shown that the train-
ing examples needed grows almost
linearly with the number of hidden
units. However, in many practical cases
we have only a limited number of train-
ing data. This may lead to a very poor
generalization. Finally, although bigger
networks can perform more complicat-
ed mappings, when trained with limited
training data they exhibit poor general-
ization.

Modifying the
network architecture

W e can see that solving a given
problem using the smallest possible net-
work provides a lot of advantages.
However, choosing a smaller network
over a larger one means that we actually
restrict the number of free parameters in
the network. Consequently, the error
surface of a smaller network is more
complicated and con-
tains more local rnini-
ma compared with the
error surface of a larg-
er network. Local min-
ima in the error surface
can seriously prevent a
network from reaching
a good solution. Thus,
although smaller net-
works can prove to be

require a lot of effort.
A number of techniques attempt to

improve the generalization capabilities
of a network by modifying not only the
connection weights but also the archi-
tecture as training proceeds. These tech-
niques can be divided into two
categories. The first category includes
methods that start with a big network
and gradually eliminate the unnecessary
nodes or connections. These methods
are called pruning methods.

The second category includes meth-
ods that start with a small network and
gradually add nodes or connections as
needed. These methods are called con-

structive methods. Fig. 2 illustrates the
classification of these methods.

Pruning methods
These methods attempt to find a

quick solution by starting with a large
network and reducing it. Considering
the curve fitting problem, this approach
implies that we start with a high order
polynomial and gradually eliminate the
higher order terms which do not con-
tribute significantly to the fit. There are
two main subcategories of pruning
methods: (i) pruning based on modify-
ing the error function and (ii) pruning
based on sensitivity measures.

Modifying the error function
The basic idea is to modify the error

function of the network in such a way
that the unnecessary connections will
have zero weight (or near zero) after
training. Then, these connections can be
removed without degrading the perfor-
mance of the network. These approach-
es, which are also called weight decay
approaches, actually encourage the
learning algorithm to find solutions that
use as few weights as possible. The
simplest function can be formed by
adding to the original error function a
term proportional to the sum of squares

~

Algorithms for Optimal Network Architectures

Start big and remove Start small and add

n

28 IEEE POTENTIALS

of weights:

E = E,, + y c c w,,2
(J

where E, is the original error function
(sum of the squared differences
between actual and desired output val-
ues), y is a small positive constant
which is used to control the contribution
of the second term, and w,, is the weight
of the connection between node j of a
layer, and node i of the immediately
higher indexed layer. The above error
function penalizes the use of more w,’s
than necessary. To show this, lets see
how the weight updating rule is
changed. Assuming that we apply the
gradient descent procedure to minimize
the error, the modified weight update
rule is given by:

where t denotes the t-th iteration and a
denotes the learning rate. This expres-
sion can be written as:

We can show that the magnitude of
the weights decreases exponentially
towards zero by computing the weight
values after r weight adaptations:

(assuming 11-2yal < 1). This approach
has the disadvantage that all the weights
of the network decrease at the same
rate. However, it is more desirable to
allow large weights to persist while
small weights tend toward zero. This
can be achieved by modifying the error
function so that small weights are
affected more significantly than large
weights. This can be done, for example,
by choosing the following modified
function:

The weight updating rule then
becomes:

In this case, small weights decrease
more rapidly than large ones.

Sensitivity based methods
The general idea is to train a net-

work in performing a given task and
then compute how important the exis-

tence is of a connection or node. The
least important connections or nodes
are removed and the remaining net-
work is retrained. In general, the sensi-
tivity measurement does not interfere
with training; however, it does require
an extra amount of computational
effort.

The key issue is finding a way to
measure how a solution reacts to
removing a connection or a node. Early
approaches attempt to remove a connec-
tion by evaluating the change in the net-
work’s output error. If the error
increases too much, then the weight
must be restored.

More sophisticated approaches eval-
uate the change in error for all the con-
nections and training data, and then
remove the one connection which pro-
duces the least error increment. Obvi-
ously, both approaches are extremely
time consuming, especially when large
networks are considered.

A more heuristic approach is the
“skeletonization” procedure proposed
by Mozer and Smolensky. In their
approach, the relevance of a connection
is computed by measuring the error
increase when the connection is
removed. However, the relevance of a
connection is computed by using infor-
mation about the error surface’s shape
near the network’s current minimum.

This is performed using the partial
derivative of the error with respect to
the connection to be removed. Connec-
tions with relevance below a certain
threshold are then removed.

“Optimal brain damage” is another
approach proposed by Le Cun and his
co-workers. In this approach, the salien-
cy of connections is measured using the
second derivative of the error with
respect to the connection. In particular,
the saliency S,, of a connection w,, is
given by

where the second derivative measures
the sensitivity of the error to small per-
turbations in w,. Thus, connections with
small weight values having a significant
influence on the solution are not
removed.

Constructive methods
These start with a minimal network

and add new nodes during training.
Small networks get easily trapped to
local minima, so new hidden nodes are

added to change the shape of the weight
space and to escape the local minima.
Considering the curve fitting problem
again, the constructive approach implies
that we start with a very low order poly-
nomial and we add higher order terms
every time the current polynomial can-
not provide a good fit.

There are a lot of interesting algo-
rithms falling into this category and var-
ious heuristics are employed during the
network growth process. To understand
how these algorithms operate, we will
focus on two of them: the Upstart algo-
rithm which appears to be very success-
ful for binary mappings, and the
Cascade Correlation algorithm which
appears to be very successful for real
valued mappings. Both algorithms build
a tree-like network by dividing the input
space successively.

The Upstart algorithm builds a tree-
like network in a top-down fashion. The
nodes of the network are linear thresh-
old units. The output of a node is either
0 or 1 . The number of input-output
nodes is determined by the nature of the
problem. In the following description,
we assume that the network consists of
a single output node, that is, the net-
work can assign an input pattern into
two possible classes (one is represented
by 0 and the other by I). The steps can
be summarized as follows:

Step 1 . Initially, a single node is
assumed which is connected to each
input of the network. This node is
trained to learn as many associations as
possible.

Step 2. If that node creates wrong
classifications, two “child” nodes are
created to correct the erroneous “0” and
“1” classifications of their ‘parents’.

Step 3. The weights from the inputs
to the parent node are frozen. The child
nodes are connected to the inputs of
the network. Each child node is trained
to correct the erroneous “0” classifica-
tions and the erroneous ‘‘I” classifica-
tions.

Step 4. The child node which cor-
rects erroneous “0” is connected to its
parent node with a large positive
weight. The child node that incorrectly
fixes the 1’s cases is connected to its
parent node with a large negative
weight.

Step 5 . Two nodes are added for
each child node in order to correct their
wrong classifications. The old child
nodes are treated as parent nodes now
and the added nodes as new child

OCTOBER/NOVEMBER 1994 29

nodes. Training continues until all the
data are classified correctly.

The Upstart algorithm is guaranteed
to converge because each subnode is
guaranteed to classify at least one of its
targets correctly. This is true because
for binary patterns, it is always possible
to cut off a corner of the binary hyper-
cube with a plane. The number of nodes
grows linearly with the number of pat-
terns. The resulting hierarchical archi-
tecture can be converted into an
equivalent two layer network. This
algorithm can easily be extended to be a
classifier with more than one classes.

The Cascade Correlation algorithm
also builds a tree-like network but in a
bottom-up fashion. The number of
input-output nodes is determined a-pri-
ori based on the problem‘s characteris-
tics. The hidden units are added to the
network one at a time and are connected
in a cascaded way. The activation func-
tions for the nodes may be sigmoidal
functions or any mixture of non-linear
activation functions. The main steps of
the algorithm follow:

Step 1. Connect each input node to
each output node and train the network
over the entire training set to learn as
many associations as possible.

Step 2 . When no significant error
reduction has occurred after a certain
number of training iterations, run the
network one last time over the entire
training set to measure the error.

Step 3. If the error is less than a
threshold then stop, otherwise add a
new hidden node (candidate), and con-
nect it with every input node and every
pre-existing hidden node. Don’t connect
i t to the output nodes yet.

Step 4. Freeze all the weights of the
network. Adjust only the new hidden
unit’s input weights by trying to maxi-
mize the magnitude of the correlation
between the new unit’s output and the
network’s output error.

Step 5. If the new hidden unit stops
improving (i .e . . the error doesn’t
decrease), freeze its input weights and
connect it to the output nodes.

Step 6. Train the network adjusting
only the connections from the new hid-
den unit to the output nodes. Then. go
back to step 3.

Step 4 of the algorithm actually max-
imize$ the magnitude of the correlation
between the candidate node’s output
and the network’s error. Specifically.

the function to be maximized has the
form

where V,, is the candidate node output
when the p-th training pattern is pre-
sented to the network. The E,,,, is the
output error of the o output node when
the p-th training pattern is presented to

the network. Furthermore, V and E are
the averages of V,, and E,>,> over all the
training patterns. Each new node added
to the network actually learns a map-
ping which has the best possible corre-
lation with the errors of the previous
network .

The way the hidden output weights
are modified is the following: if a hid-
den unit correlates positively with the
error at a given output node, it will
develop a negative connection weight to
that node, attempting to cancel some of
the error. Otherwise, i t will develop a
positive connection weight. The main
advantages of the Cascade Correlation
algorithm are: (i) i t learns fast, (ii) i t

builds reasonably small networks, and
(iii) it requires no back-propagation of
error signals.

Just a few more words ...
So far we have discussed pruning

and constructive approaches without
comparing them. It is really difficult to
say which approach performs better.
Pruning has the disadvantage that often
larger than the required size networks
are chosen as starting points. Since a lot
of time is spent training before pruning
really starts, this may be computational-
ly wasteful. In addition, since many
medium-size networks can learn the
same problem, the pruning procedure
may not be able to find a small-size net-
work because it may get stuck with one
of these medium-size networks.

Construct i ve a pp ro ac h e s tend to
result with networks having long propa-
gation delays from network inputs to

network outputs. In addition, new nodes
are usually assigned random weights
which are likely to disrupt the approxi-
mate solution already found.

A probably superior approach would
be a combination of constructive
approaches with pruning. For example,
the authors of the Cascade Correlation
algorithm suggest that to keep the depth
of the network small and to minimize the
number of connections to the hidden and
output nodes, simply use a weight decay

approach by adding a penalty term to the
error function. A general procedure for
coupling constructive and pruning
approaches would be the following:
allow a small network to grow enough
during training until a reasonable solu-
tion is found. Prune the network in order
to achieve a smaller and faster network
which provides the desired solution more
efticiently and accurately.

Our discussion would be incomplete
without mentioning two emerging
approaches: weight sharing and Genetic
algorithms.

Weight sharing tries to reduce the
number of weights in a network by first
assigning a local receptive field to each
hidden node. Then the weights of hid-
den nodes, having receptive fields at
different locations of their inputs, are
given the same values. Thus. hidden
nodes that have receptive fields with
common weights actually try to detect
the same kind of features but at differ-
ent locations of their input. Weight
sharing has been applied by Le Cun and
his co-workers on a handwritten digit
recognition task.

Genetic algorithms are a class of
optimization procedures inspired by the
biological mechanisms of reproduction.
A genetic algorithm operates iteratively
on a population of structures. Each one
represents a candidate solution to the
problem the algorithm is trying to solve.
On each iteration, a new population is
produced by first applying on the old
population three fundamental opera-
tions: reproduction, crossover, and
mutation. Then, each member of the
population is evaluated through a fitness
function. Members assigned a bad eval-
uation are discarded, while members
assigned a good evaluation survive in
future populations.

The key issue is how an architecture
should be translated to be utilized by the
genetic algorithm. and how much infor-
mation about the architecture should be
encoded into this representation. For
example, Miller, Todd. and Hyde repre-
sent the network architecture as a con-
nection matrix, mapped directly into a
bit-string. Then, a number of different
size networks are encoded in this way in
order to form the initial population. The
genetic operators act on this population.
New populations are formed. A decod-
ing procedure is applied on each mem-
ber of t h e population in order to
transform a bit-string into a legitimate
network architecture. The fitness of

30 IEEE POTENTIALS

each network is evaluated by training it
for a certain number of epochs, and
recording the network’s error. There has
been some preliminary success associat-
ed with the problem of optimizing the
network size but there is still a lot to be
accomplished.

Read more about it
J. Hertz, A. Krogh, and R. Palmer,

Introduction to the theory o j Neural
Computation, Addison Wesley, 199 1.

D. Hush and B. Home. “Progress in
supervised Neural Networks,” IEEE
Signal Processing Magazine, Jan. 1993,

R. Reed, “Pruning algorithms - a
survey,” IEEE Trrmsactions on Neural
Networks, vol. 4, no. 5 , Sept. 1993, pp.

M. Wynne-Jones, “Constructive
algorithms and pruning: improving the
multilayer perceptron,” in Proc. of the
13th M A C S World Congress on Com-
putation and Applied Mathematics, R.
Vichnevetsky and J . Miller, Eds.. 1991,

R. Hetcht-Nielsen, “Theory of the
backpropagation neural networks,”

pp. 8-39.

740-747.

pp. 747-750.

Proc. Inter. Joint Conf Neurul Net-
works, vol. I, June 1989, pp. 593-61 1 .

G. Cybenko, “Approximation by
superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and
Systetns, vol. 2, 1989, pp. 303-314.

K Hornik and M . Stinchombe,
“Multilayer feed-forward networks are
universal approximators,” in Artificial
Neural Networks: Approximation and
Learning Theory, H. White et. al., Eds.,
Blachvell press, Oxford, 1992.

A. Blum and R. Rivest, “Training a
3-node neural network is NP-complete,”
Proc. of the 1988 Workshop on Compu-
tational Learning, 1988, pp. 9-18.

M. Frean, “The Upstart algorithm:
a method for constructing and training
feed-forward networks,” Neural Com-
putation, vol. 2 , 1990, pp. 198-209.

S. Fahlman and C. Lebiere, “The
Cascade-Correlation learning architec-
ture,” in Advances in Neural Informa-
t ion Processing Systems 11, ed. D.
Touretzky, 1990, pp. 524-532.

Y. Le Cun, B. Boser, J. Denker, D.
Henderson. R. Howard. W. Hubbard,
and L. Jackel, “Backpropagation
applied to handwritten zip code recogni-

tion,” Neural Computation, vol. 1, pp.

G. Miller, P. Todd and S. Hegde,
“Designing Neural Networks using
Genetic Algorithms,” Third Intemation-
a1 Conference on Genetic Algorithms,

541 -55 1,1989.

pp. 379-384, 1989.

About the authors
George Bebis is currently a Ph.D.

student at the Electrical and Computer
Engineering Department of the Univer-
sity of Central Florida. He has a B.S. in
Mathematics, and a Masters in Comput-
er Science, both from the University of
Crete, Iraklion, Greece. His research
interests lie in the areas of Computer
Vision and Neural Networks.

Michael Georgiopoulos is an Associ-
ate Professor at the Electrical and Com-
puter Engineering Department of the
University of Central Florida. He has a
Diploma in EE from the National Tech-
nical University of Athens, Greece, a
Masters in EE and a Ph.D. in EE, both
from the University of Connecticut,
Storrs, CT. His research interests
include communication systems and
neural networks.

ONE OF THE MOST ACTIVE I€€€ SOCIETIES
The Microwave Theory and Technigues Society BENEFITS OF MTFS MEMBERSHIP

for microwaves and applications over a frequency range
typically I to 300 GHZ. m-s represents the entire
microwave community including all industrial, academic
and government activities from basic scientific research
through applied There are ovec 75 m-s
local chapters and over 9,000 members worldwide.

Student membership is &ee for the first year and includes
the m - S Newsletter.

. -
To: IEEE Service Center, PO. Box 1331, I

445 Hoes Lane, Piscataway, NJ 086551331, USA! AREAS

Yes1 I‘m an IEEE Student Member and I want to
join MTT-S (free for the first year).

Membership number I +Monolithic Circuits + Digital Microwave Systems

+ Computer Aided Design
Name I

Address ... I + Network Theory + Low Noise Techniques

: +Field Theory + High Power Techniques

m-s) Ofthe IEEE is the premier society
g World’s Largest Annual Miaowave Conference and Exhibition

*I Student Papa Contest

4 Graduate Fellowships, Awards

g Local Chapter activities include opportunities to participate in
technical meetiags, meet with industry leaders, hear
distinguished lecturers, etc.

*I Quarterly Newsletter included in membership

4 Transactions on Microwave Theory and Techniques, Microwave
and Guided Wave Letters available at greatly reduced rate

I

f
I + Integrated Circuits + Automated RF Techniques (ARFTG

+ Solid-state Devices + Wireless Components & Systems

..
I

I + Superconductivity + Fiber and Integrated Optics
.. + Millimeter waves

I

City StateRip
Act#9170744001 PPOT1795 E999

+ Femte Components + Biologcal& Medical Applications

OCTOBER/NOVEMBER 1994 31

