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Burrows–Wheeler transform), achieving a compression ratio comparable to that of bzip2. We also
provide a compressed representation of suffix trees (and their associated text) in a total space that is
comparable to that of the text alone compressed with gzip.

Categories and Subject Descriptors: E.1 [Data]: Data Structures; E.2 [Data]: Data Storage Represen-
tations; E.4 [Data]: Coding and Information Theory—Data compaction and compression; E.5 [Data]:
Files—Sorting/searching; H.3 [Information Storage and Retrieval]; F.2 [Analysis of Algorithms
and Problem Complexity]; I.7.3 [Document and Text Processing]: Index Generation

General Terms: Algorithms, Design, Experimentation, Theory

Additional Key Words and Phrases: Entropy, text indexing, Burrows–Wheeler Transform, suffix array

1. Introduction

Suffix arrays and suffix trees are ubiquitous data structures at the heart of several
text and string algorithms. They are used in a wide variety of applications, includ-
ing pattern matching, text and information retrieval, Web searching, and sequence
analysis in computational biology Gusfield [1997]. We consider the text as a se-
quence T of n symbols, each drawn from the alphabet � = {0, 1, . . . , σ }. The raw
text T occupies n log |�| bits of storage.

The suffix tree is a powerful text index (in the form of a compact trie) whose
leaves store each of the n suffixes contained in the text T . Suffix trees [Manber
and Myers 1993; McCreight 1976] allow fast, general searching of patterns in T
in O(m log |�|) time, but require 4n log n bits of space—16 times the size of the
text itself, in addition to needing a copy of the text. The suffix array is another
well-known index structure. It maintains the permuted order of 1, 2, . . . , n that
corresponds to the locations of the suffixes of the text in lexicographically sorted
order. Suffix arrays [Gonnet et al. 1992; Manber and Myers 1993] (that also store
the length of the longest common prefix) are nearly as good at searching. Their
search time is O(m + log n) time, but they require a copy of the text; the space cost
is only n log n bits (which can be reduced about 40% in some cases).

Compressed suffix arrays [Grossi and Vitter 2005; Rao 2002; Sadakane 2002,
2003] and opportunistic FM-indexes [Ferragina and Manzini 2001, 2005] represent
modern trends in the design of advanced indexes for full-text searching of docu-
ments. They support the functionalities of suffix arrays and suffix trees (which are
more powerful than classical inverted files [Gonnet et al. 1992]), yet they overcome
the aforementioned space limitations by exploiting, in a novel way, the notion of
text compressibility and the techniques developed for succinct data structures and
bounded-universe dictionaries [Brodnik and Munro 1999; Pagh 2001; Raman et al.
2002].

A key idea in these new schemes is that of self-indexing. If the index is able
to search for and retrieve any portion of the text without accessing the text itself,
we no longer have to maintain the text in raw form—which can translate into
a huge space savings. Self-indexes can thus replace the text as in standard text
compression. However, self-indexes support more functionality than standard text
compression.

Grossi and Vitter [2005] developed the compressed suffix array using 2n log |�|
bits in the worst case with o(m) searching time. [Sadakane 2002, 2003] extended
its functionality to a self-index and related the space bound to the order-0 empirical
entropy H0. Ferragina and Manzini devised the FM-index [2001, 2005], which is
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based on the Burrows–Wheeler transform (bwt) and is the first to encode the index
size with respect to the hth-order empirical entropy Hh of the text, encoding in
(5 + ǫ)nHh + o(n) bits. Grossi et al. [2003] exploited the higher-order entropy Hh

of the text to represent a compressed suffix array in just nHh + o(n) bits. The
index is optimal in space, apart from lower-order terms, achieving asymptotically
the empirical entropy of the text (with a multiplicative constant of 1). More results
appeared subsequently, and we refer the reader to the survey in Navarro and Mäkinen
[2006] for the state of the art.

The above self-indexes are so powerful that the text is implicitly encoded in them
and is not needed explicitly. Searching decompresses a negligible portion of the
text and is competitive with previous solutions. In practical implementation, these
new indexes occupy around 25–40% of the text size and do not need to keep the
text itself.

1.1. OUR RESULTS. In this article, we provide an experimental study of com-
pressed suffix arrays in order to evaluate their practical impact. In doing so, we
exploit the properties and intuition of our earlier result [Grossi et al. 2003] and
develop a new design that is driven by experimental analysis for enhanced perfor-
mance. Briefly, we mention the following new contributions.

Since compressed suffix arrays hinge on succinct dictionaries, we provide a
new practical implementation of succinct dictionaries that takes less space than
the predicted space based on a worst-case analysis. We then use these dictionaries
(organized in a wavelet tree), along with run-length encoding (RLE) andγ encoding,
to achieve a simplified “encoding” for high-order contexts. This construction shows
that Move-to-Front (MTF) [Bentley et al. 1986], arithmetic, and Huffman encoding
are not strictly necessary to achieve high-order compression with the Burrows–
Wheeler Transform (bwt). Recent work of Ferragina et al. [2005] shows how to
find an optimal partition of the bwt to attain the same goal; we take a different route
and show that the wavelet tree implicitly leads to an optimal partition when using
RLE and integer encoding.

We then extend the wavelet tree so that its search can be sped up by fractional
cascading and an a-priori distribution on the queries. In addition, we describe an
algorithm to construct the wavelet tree in O(n + min(n, nHh) × log |�|) time,
introducing the novel concept that indexing/compression time should be related
to the compressibility of the data. (Said in another way, highly compressible data
should not only be more compact when compressed, but should also require less
time to index and compress.) Recently, Hon et al. [2003] have shown how to build
the compressed suffix array and FM-index in O(n log log |�|) time. One of our main
results in this article is to give an analysis of our practically-motivated structure
and show that it still has competitive theoretical guarantees on space consumption,
namely, 2nHh + o(n) bits of space.

We also detail a simplified version of our structure which serves as a powerful
compressor for the Burrows–Wheeler Transform (bwt). In experiments, we obtain
a compression ratio comparable to that of bzip2. In addition, we go on to obtain a
compressed representation of fully equipped suffix trees (and their associated text)
in a total space that is comparable to that of the text alone compressed with gzip.

In the rest of the article, we use “bps” to denote the average number of bits
needed per text symbol or per dictionary entry. In order to get the compression ratio
in terms of a percentage, it suffices to multiply bps by 100/8.
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1.2. OUTLINE OF ARTICLE. The rest of the article is organized as follows: In the
next section, we build the critical framework in describing our practical dictionaries,
providing both theoretical and practical intuition on our choice. We then describe
a simple scheme for fast access to our dictionaries in practice. In Section 3, we
describe our wavelet tree structure, which forms the basis for our compression
format wzip. In Section 4, we describe a practical implementation of compressed
suffix arrays [Grossi and Vitter 2005; Grossi et al. 2004], grounded firmly with
theoretical analysis. In Section 5, we discuss a space-efficient implementation of
suffix trees. We conclude in Section 6.

2. A Simple Yet Powerful Dictionary

As previously mentioned, compressed suffix arrays make crucial use of succinct
dictionaries. Thus, we first focus on our implementation of them. We recall that
succinct dictionaries are constant-time rank and select data structures occupying
tiny space. They store t entries chosen from a bounded universe [0 · · · n − 1] in
⌈log

(

n
t

)

⌉ ≤ n bits, plus additional bits for fast access to the entries. The bound
comes from the information-theoretic observation that we need ⌈log

(

n
t

)

⌉ bits to
enumerate each of the

(

n
t

)

possible subsets of [0 · · · n − 1]. Equivalently, this is
the number of bitvectors B of length n (the universe size) with exactly t 1s, such
that entry x is stored in the dictionary if and only if B[x] = 1. The dictionaries
support several operations. The function rank1(B, i) returns the number of 1s in B
up to (and including) position i . The function select1(B, i) returns the position of
the i th 1 in B. Analogous definitions hold for 0s. The bit B[x] can be computed as
B[x] = rank1(B, x) − rank1(B, x − 1). In the following, we consider the succinct
dictionaries called fully indexable dictionaries [Raman et al. 2002], which support
the full repertoire of rank and select for both 0s and 1s in ⌈log

(

n
t

)

⌉ + o(n) bits.
Let p(1) = t/n be the empirical probability of finding a 1 in bitvector B, and

p(0) = 1 − p(1). We define the empirical entropy H0 as

H0 = −p(0) log p(0) − p(1) log p(1).

As shown in Grossi et al. [2003], the empirical entropy H0 can be approximated

by 1
n

log
(

n
t

)

. Thus, we can think of succinct dictionaries as 0th-order compressors
that can also retrieve any individual bit in constant time. Specifically, the data
structuring framework in Grossi et al. [2003] uses suffix arrays to transform succinct
dictionaries into a high-order entropy-compressed text index. As a result, we stress
the important consideration of dictionaries in practice, since they contribute fast
access to data as well as solid, effective compression. In particular, such dictionaries
avoid a complete sequential scan of the data when retrieving portions of it. They also
provide the basis for space-efficient representation of trees and graphs [Jacobson
1989; Munro and Raman 1999].

2.1. PRACTICAL DICTIONARIES. We now explore practical alternatives to dic-
tionaries for use in compressed text indexing data structures. When implementing
a dictionary D, there are two main space issues to consider:

—The second-order space term o(n), which is often incurred to improve access
time to the data, is non-negligible and can dominate the log

(

n
t

)

term.
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—The log
(

n
t

)

term is not necessarily the best possible in practice. As with strings,

we can achieve “entropy” bounds that are better than log
(

n
t

)

∼ nH0.

Before describing our practical variant of dictionaries, let’s focus on a basic
representation problem for the dictionary D seen as a bitvector BD. Do we always
need log

(

n
t

)

bits to represent BD? For instance, if D stores the even numbers in a
bounded universe of size n, a simple argument based on the Kolmogorov complexity
of BD implies that we can represent this information with O(log n) bits. Similarly,
if D stores n/2 elements of a contiguous interval of the universe, we can again
represent this information with O(log n) bits. The log

(

n
t

)

term treats these two
cases the same a random set of t = n/2 integers stored in D; thus, the worst-case
bound is log

(

n
n/2

)

∼ n bits of space. That is, it is a worst-case measure that does not

account for the distribution of the 1s and 0s inside BD, which may allow significant
compression (as in the previous examples). In other words, the log

(

n
t

)

bound only
exploits the sparsity of the data we wish to retain.

This observation sparks the realization that many of the bitvectors in common
use are probably compressible, even if they represent a minority among all possi-
ble bitvectors. Is there then some general method by which we can exploit these
patterns? The solution is surprisingly simple and uses elementary notions in data
compression [Witten et al. 1999]. We briefly describe those relevant notions.

Run-length encoding (RLE) represents each subsequence of identical symbols (a
run) as the pair (ℓ, s), where ℓ is the number of times that symbol s is repeated. For
a binary string, we do not need to encode s, since its value will alternate between
0 and 1. (We explicitly store the first bit.)

The length ℓ is then encoded in some fashion. One such method is the
γ code, which represents the length ℓ in two parts: The first encodes 1 + ⌊log ℓ⌋
in unary, followed by the value of ℓ − 2⌊log ℓ⌋ encoded in binary, for a total
of 1 + 2⌊log ℓ⌋ bits. For example, the γ codes for ℓ = 1, 2, 3, 4, 5, . . . are
1, 01 0, 01 1, 001 00, 001 01, . . . , respectively. The δ code requires asymptotically
fewer bits by encoding 1+⌊log ℓ⌋ via the γ code rather than in unary, thus requiring
1 + ⌊log ℓ⌋ + 2⌊log log 2ℓ⌋ bits. For example, the δ codes for ℓ = 1, 2, 3, 4, 5, . . .
are 1, 010 0, 010 1, 011 00, 011 01, . . . , respectively. Byte-aligned codes are an-
other simple encoding for positive integers. Let lb(ℓ) = 1 + ⌊log ℓ⌋, the minimal
number of bits required to represent the positive integer ℓ. A byte-aligned code
splits the lb(ℓ) bits into groups of 7 bits each, prepending a “continuation” bit as
most significant to indicate whether there are more bits of ℓ in the next byte. We
refer to [Witten et al. 1999] for other encodings.

We can represent a conceptual bitvector BD by a vector of nonnegative “gaps”
G = {g1, g2, . . . , gt}, where BD = 0g110g21 · · · 0gt 1 and each gi ≥ 0. We assume
that BD ends with a 1; if not, we can use an extra bit to denote this case and encode
the final gap length separately. We also assume that t ≤ n/2 or else we reverse the
role of 0 and 1. Using gap encoding we cannot require less than

E(G) =
t

∑

i=1

lb(gi + 1) (1)

to store the gaps corresponding to BD. We now show that E(G) is closely related
to the optimal worst-case encoding of BD, which takes log

(

n
t

)

bits.
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FACT 1. For a conceptual bitvector BD of known length n, such that BD ends
with a 1, its gap encoding G satisfies E(G) < log

(

n
t

)

+ 1/2 log(t(n − t)/n) +
log e [(1/(12t) + 1/(12(n − t)) − 1/(12n + 1)] + log

√
2π , where t ≤ n/2 is the

number of 1s in BD.

PROOF. By convexity, the worst-case optimal cost occurs when the gaps are of
equal length, i.e. gi + 1 ≤ n/t , giving E(G) =

∑t
i=1 lb(gi + 1) ≤ t lb(n/t) ≤

t + t log(n/t) ≤ (n − t) log(n/(n − t))+ t log(n/t), since t ≤ (n − t) log(n/(n − t))
when t ≤ n/2. By Stirling’s inequality, log

(

n
t

)

> t log(n/t)+(n−t) log(n/(n−t))−
1/2 log(t(n − t)/n) − [(1/(12t) + 1/(12(n − t)) − 1/(12n + 1)] log e − log

√
2π ,

thus proving the fact.

An approach that works better in practice, although not quite as well in the
worst case, is to represent BD by the vector of positive run-length values L =
{ℓ1, ℓ2, . . . , ℓ j } (with j ≤ 2t and

∑

i ℓi = n) where either BD = 1ℓ10ℓ21ℓ3 · · ·
or BD = 0ℓ11ℓ20ℓ3 · · · . (We can determine which case by a single additional bit.)
Using run-length encoding, we cannot require less than

E(L) =
j

∑

i=1

lb(ℓi ) (2)

bits. By a similar argument to Fact 1, we can prove the following:

FACT 2. For a conceptual bitvector BD of known length n, such that BD ends
with a 1, its run-length encoding L satisfies E(L) < log

(

n
t

)

+ t + 1/2 log(t(n −
t)/n)+ log e [(1/(12t) + 1/(12(n − t)) − 1/(12n + 1)]+ log

√
2π , where t ≤ n/2

is the number of 1s in BD.

PROOF. We first consider the case where we encode each run of 1s in unary
encoding, that is, we encode each 1 using one bit. In total, the t 1s require t total
bits. We encode each run ℓ of 0s in lb(ℓ) bits; thus, the encoding of 0s is unchanged.
(Note that this scheme is still decodeable when the γ code is used instead of lb,
since there are no zero-length runs and γ codes begin with 0.) It is plain to see that
E(L) ≤ E(G) + t . If we change our encoding of 1s to use lb instead of unary,
encoding the runs of 1s will certainly take no more than t bits, thus proving the
fact.

We do not claim that E(G) or E(L) is the minimal number of bits required to
store D. For instance, storing the even numbers in BD implies that ℓi = 1 (for all i),
and thus E(L) ≈ log

(

n
t

)

≈ 2t = n. Using RLE twice to encode BD, we obtain
O(log n) required bits, as indicated by Kolmogorov complexity. On the other hand,
finding the Kolmogorov complexity of an arbitrary string is undecidable [Li and
Vitanyi 1997].

Despite its theoretical misgivings, we give experimental results on random data
in Table I showing that E(L) ≤ log

(

n
t

)

. Data generated are bitvectors BD whose
gap encoding G is produced by choosing a maximum gap length and generating
uniformly random gaps in G between 0 and that maximum length (reported on
a logarithmic scale in the first column). The second column, denoted RLE+γ ,
reports the average number of bits per gap (bpg) required to encode BD using RLE
to generate L and the γ code to encode the integers in L , as described before. The
third column, denoted Gap+γ , reports the average number of bits per gap required
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TABLE I. COMPARISON BETWEEN RLE ENCODING (RLE+γ ), GAP

ENCODING (GAP+γ ), AND RELATED MEASURES (log
(

n
t

)

, E(L), AND E(G))a

log(gap) RLE+γ Gap+γ log
(

n

t

)

E(L) E(G)

1 1.634 2.001 1.378 1.315 1.500
2 2.900 3.000 2.427 2.199 2.000
3 4.477 4.000 3.439 3.111 2.500
4 6.256 5.625 4.442 3.998 3.313
5 8.142 7.374 5.445 5.000 4.187
6 10.091 9.193 6.440 5.995 5.097
7 12.067 11.116 7.443 6.993 6.058
8 14.075 13.073 8.444 7.989 7.037
9 16.056 15.030 9.444 8.990 8.015

10 18.124 17.029 10.449 10.004 9.014

aEach bitvector BD is produced by choosing a maximum gap length and
generating uniformly random gaps of 0s between consecutive 1s. The gap
column indicates the maximum gap length on a logarithmic scale. The values
in the table are the bits per gap (bpg) required by each method.

to encode BD using the gaps in G represented with the γ code. The fourth column
reports the value of log

(

n
t

)

, where n is the length of BD and t is the number of 1s
in it. Since t is also the number of gaps in G, the figure is still the average number
of bits per gap. In the last two columns, we report similar results for the average
number of bits per gap in E(L) and E(G).

E(L) outperforms log
(

n
t

)

for real data sets, since the worst case for RLE (all
equally spaced 1s) hardly occurs. We also observe that RLE+γ outperforms Gap+γ
for small gap sizes (namely 4 or less). This behavior motivates our choice for RLE
to implement succinct dictionaries (in the context of compressed text indexing),
since many gap sizes are small in our distributions.

2.2. EMPIRICAL DISTRIBUTION OF RLE VALUES AND γ CODES. To validate
our choice of using RLE+γ encoding, we generated real data sets for succinct
dictionaries and performed experiments, comparing the space occupancy of several
different encodings instead of the γ code. We took text files from the Canterbury
and Calgary Corpora, obtained their Burrows–Wheeler transform (bwt), performed
the wavelet tree construction on the bwt according to the text indexing structure
of Grossi et al. [2003], and recorded the sets of integers that need to be stored
succinctly. On these sets, we ran the experiments summarized in Table II and
Table III. We measured the total amount of bits required by every encoding for
each text file and divided that amount by the length of each file; hence, the values
in the tables are the bits per symbol (bps) required by each encoding method.

For Table II, each encoding scheme is used in conjunction with RLE to provide
the results in the table. (We also report Gap+γ for comparison purposes.) Golomb
uses the median value as its parameter b. Maniscalco refers to code [Nelson 2003]
that is tailored for use with RLE in bwt. Bernoulli is the skewed Bernoulli model
with the median value as its parameter b. MixBernoulli uses just one bit to encode
gaps of length 1, and for other gap lengths, it uses one bit plus the Bernoulli
code. This experiment shows that the underlying distribution of gaps in our data
is Bernoulli. (When b = 1, the skewed Bernoulli code is equal to γ .) Notice that,
except for random.txt, γ codes are less than 1 bps from E(L). For random text,
γ codes do not perform as well as expected. E(G) and Gap+γ outperform their
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TABLE II. COMPARISON OF VARIOUS CODING METHODS WHEN USED WITH RUN-LENGTH (RLE)
AND GAP ENCODINGa

File E(L) E(G) RLE+γ Gap+γ RLE+δ Golomb Maniscalco Bernoulli MixBernoulli

book1 1.650 2.736 2.597 3.367 2.713 20.703 20.679 2.698 2.721

bible.txt 1.060 2.432 1.674 2.875 1.755 15.643 16.678 1.726 1.738

E.coli 1.552 1.591 2.226 2.190 2.520 2.562 2.265 2.448 2.238

random.txt 5.263 4.871 8.729 6.761 8.523 25.121 18.722 8.818 8.212

aUnless stated otherwise, the listed coding method is used with RLE. The files indicated are from the
Canterbury Corpus. The values in the table are the bits per symbol (bps) required by each method.

TABLE III. COMPARISON OF VARIOUS CODING METHODS WHEN USED WITH RUN-LENGTH

(RLE) ENCODINGa

File γ δ γ +escape arithm. Huffman a = 0.88 adaptive a
alice29.txt 2.3527 2.5816 2.5934 2.4964 2.3296 2.3247 2.3272
asyoulik.txt 2.6304 2.9104 2.9129 2.7324 2.5946 2.5875 2.5873
bible.txt 1.6109 1.7677 1.7839 1.8190 1.5963 1.5901 1.5903
cp.html 2.6949 2.9554 2.9310 2.7170 2.6487 2.6465 2.6543
fields.c 2.4387 2.6145 2.5894 2.4645 2.3228 2.4186 2.4186
grammar.lsp 2.8121 3.0636 2.9948 2.9282 2.6694 2.7648 2.7648
kennedy.xls 1.4269 1.6051 1.4718 1.6834 1.3521 1.3998 1.3968
lcet10.txt 2.0933 2.2902 2.3047 2.1727 2.0736 2.0650 2.0684
plrabn12.txt 2.4686 2.7469 2.7521 2.6591 2.4354 2.4277 2.4269
ptt5 0.7731 0.8600 0.8617 0.9983 0.7613 0.7582 0.7580
random.txt 6.7949 7.9430 7.7460 6.1273 6.0004 6.5210 6.4187
sum 2.9500 3.2324 3.1803 2.9184 2.8765 2.8792 2.8698
world192.txt 1.4699 1.5890 1.6095 1.5815 1.4555 1.4540 1.4550
xargs.1 3.3820 3.7303 3.6564 3.3763 3.3068 3.3404 3.3404

aThe files indicated are from the Canterbury and Calgary Corpora. The values in the table are the
bits per symbol (bps) required by each method.

respective counterparts on random.txt, which represents the worst case for RLE.
Finally, we do not get improved results by using RLE and δ codes as shown in
Table II, namely just E(L)+

∑ j
i=1⌊log log(2ℓi )⌋ bits by Fact 2. Although γ coding

requires 2E(L) − t bits, it outperforms δ in practice, since γ is more efficient for
small run-lengths. Table II suggests γ as best encoding to couple with RLE.

A natural question arises as to the choice of the simplistic γ encoding, since
theoretically speaking, a number of other prefix codes (δ, ζ , and skewed Golomb,
for instance) outperform γ codes. However, γ encoding seems extremely robust ac-
cording to the experiments above. We consider further comparisons with fractional
coding and Huffman prefix codes [Witten et al. 1999] in Table III. In the table, the
fourth column reports the bps required for the γ code in which any run-length other
than 1 is encoded using γ , whereas a sequence of s 1s is encoded with the γ code for
1 followed by the γ code for s; the fifth to Moffat’s arithmetic coder in Section 2.3;
the sixth column refers to the Huffman code in which the cost of encoding the
(large!) prefix tree is not counted (which explains its size being smaller than that
of the arithmetic code). The last two columns refer to the rangecoder mentioned in
Section 2.3, where we employ either a fixed slack parameter a = 0.88 or choose
the best value of a adaptively. These results reinforce the observation that γ encod-
ing is nearly the best. In Section 2.3, we formalize this experimental finding more
clearly by curve-fitting the distribution implied by γ onto the distribution of the
run-lengths.
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FIG. 1. The x axis shows the distinct RLE values for bible.txt in increasing order. Left: The em-
pirical cumulative distribution together with our fitting function cdf from (3). Center: The empirical
probability density function together with our fitting function pdf from (4). Right: The empirical prob-
ability density function together with the fitting function 6

π2·x2 , where 6

π2 = 1
∑∞

i=1 1/ i2 is the normalizing
factor.

Improving upon γ to encode these RLE values requires a significant amount of
work with more complicated methods. For the purposes of illustration, consider
the comparison of γ encoding to that of an optimal Huffman encoding, given in
Table III. The γ code differs from Huffman encoding by at most 0.1 bps (except
for random.txt, where the difference is 0.8 bps), and as such, this means that the
majority of RLE values are encoded into codewords of roughly the same length by
both Huffman and γ encoding. This news is both encouraging and discouraging.
It seems that there is no real hope to improve upon γ using prefix codes, since
Huffman codes are optimal prefix codes [Witten et al. 1999]. Further improvement
then, in some sense, necessitates more complicated techniques (such as arithmetic
coding), which have their own host of difficulties, most often a greatly increased
encoding/decoding time.

2.3. STATISTICAL EVIDENCE JUSTIFYING THE STATIC MODEL OF γ CODES. We
motivate our choice of γ encoding more formally, with statistical evidence suggest-
ing that the underlying distribution of RLE values matches the distribution that the
γ code (or equivalently Bernoulli, with b = 1) encodes optimally. For instance,
consider the empirical cumulative distribution of the RLE values for bible.txt,
shown in Figure 1. This distribution is fitted by the function

cdf (x) = exp(−a/x) x ∈ N+, (3)

where parameter a ∈ R+ is a constant depending on the data file. For instance,
in the Canterbury Corpus, we observe that a ∈ [0.5, 1.8], depending on the file
(e.g., a = 0.9035 for bible.txt). We compute the derivative of cdf as if it were
a continuous function and we obtain the probability density function

pdf (x) =
(

a ∗ exp(−a/x)

x2

)/( ∞
∑

i=1

a ∗ exp(−a/ i)

i2

)

, i, x ∈ N+, a ∈ R+

(4)

where the term
∑∞

i=1
a∗exp(−a/x)

i2 is the normalization factor. As one can see from
Figure 1, function (4) fits the empirical probability density of the RLE values for
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bible.txt extremely well, suggesting that approximating the cdf by a continuous
function incurs negligible error.1

Since pdf (x) ∼ 1
x2 as x approaches infinity, we have

lim
x→∞

exp(−a/x) = 1 ⇒
(

a ∗ exp(−a/x)

x2

)/( ∞
∑

i=1

a ∗ exp(−a/ i)

i2

)

≈
1

x2
.

Since the γ code is optimal for distributions proportional to 1/x2, we finally have
some reasonable motivation for the success of the γ code on an RLE stream. How-
ever, these results only indicate the measure of success on prefix codes; encodings
which can assign fractional bits may yet yield significant improvement.

We performed various tests with Moffat’s implementation of an arithmetic coder,2

but the results were not satisfying when compared with the γ code. To resolve this
problem, we use the statistical model of cdf to tailor an arithmetic coder to perform
well on RLE values. Recall that both pdf and cdf depend on the knowledge of the
parameter a in formula (3), which in turn depends on the file being encoded. (We
ran experiments with a fixed a = 0.88, which also yielded good results on most
files that we tested.) To this end, we take a fast (and free) arithmetic-style coder
used in szip called range coder [Schindler 1999]. We encode the RLE length ℓ by
assigning it an interval of length cdf (ℓ + 1) − cdf (ℓ) = pdf (ℓ).3 With this kind of
compressor, we improve the compression ratio by 1–5% with respect to γ encoding.
(See Table III for the comparison.) We then transform our arithmetic compressor
so that the parameter a could be changed adaptively during execution, hoping for
a better compression ratio. We need a cue to infer a from the values already read,
so we use a maximum likelihood estimation (MLE) algorithm.

The main hurdle to simply using a maximum likelihood estimator (MLE) is
its assumption of independent trials. (In our terminology, this assumption would
imply that each run-length ℓ is independently drawn from its pdf.) We compute the
(normalized) autocovariance of the RLE values to get an idea of “how independent”
our RLE values are. This method is widely adopted in signal theory [Smith 2003]
as a good indicator of independence of a sequence of values, though it does not
necessarily imply independence. In our case, the correlation between consecutive
RLE values is very low for the files in Canterbury corpus [2001], which again,
though it does not imply independence in the strict sense, is a strong indication
nonetheless. With this observation in mind, we assume statistical independence of
the RLE values in order to define the likelihood function

lx (a, x1, . . . , xk) =
k

∏

i=1

pdf (xi ) =

(

k
∏

i=1

a ∗ exp(−a/xi )

x2
i

) (

∞
∑

i=1

a ∗ exp(−a/ i)

i2

)−k

.

We want to find the value of a where lx reaches its maximum. Equivalently, we
can find the maximum of log lx (a, x1, . . . , xk) = L x (a, x1, . . . , xk). We differentiate

1 We employed the MATLAB function called LSQCurvefit, which finds the best fitting function in
terms of the least square error between the function and the raw data to be approximated.
2The code (written in Java at <http://mg4j.dsi.unimi.it>) is inspired by the arithmetic coder of
J. Carpinelli, R. M. Neal, W. Salamonsen, and L. Stuiver, which is in turn based on Moffat et al. [1998].
3 This encoding appears to be faster than using the cumulative counts of the frequency of values
already scanned, like other well-known arithmetic coders.
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L x with respect to a and get

−
∂

∂a
log

(

∞
∑

i=1

exp(−a/ i)

i2

)

=
1

k

k
∑

i=1

1

xi

= H (x)−1,

where H (x) is the Harmonic mean of the sequence x . By denoting the left hand
term by f (a), we have a = f −1(H (x)−1). Unfortunately, f (·) is not an analyti-
cal function and is very difficult to compute, even for fixed a. For instance, when
a = 0, we have f (a) = ζ (3)

ζ (2)
= 0.7307629, where ζ (·) is the Riemann Z func-

tion. We apply numerical methods to approximate the function for a ∈ [0.5, 1.8]
(which is the range of interest for us). Surprisingly, all this work leads to a small
improvement with respect to the non-adaptive version (where a = 0.88). Look-
ing again at Table III, the improvement is negligible, ranging from 1–2% at best.
The best case is the file random.txt (in the Calgary corpus), for which the hy-
pothesis of independence of RLE values holds with high probability by its very
construction.

2.4. FAST ACCESS OF EXPERIMENTAL-ANALYSIS-DRIVEN DICTIONARIES. In
this section, we focus on the practical implementation of our scheme that encodes
the conceptual bitvector BD by RLE+γ encoding and uses additional directories
on this encoding to support fast access. In particular, we propose a simplified version
that exploits the specific distribution of run-lengths when dictionaries are employed
for text indexing purposes. Our dictionaries support rank and select primitives in
O(log t) time (with a very small constant) to obtain low space occupancy for our
dictionary D seen as a bitvector BD (with t 1s). We represent BD by the vector of
run-length values L = {ℓ1, ℓ2, . . . , ℓ j } (with j ≤ 2t and

∑

i ℓi = n), where either

BD = 1ℓ10ℓ21ℓ3 . . . or BD = 0ℓ11ℓ20ℓ3 . . . . (We use a single extra bit to denote
which case occurs.)

(1) Let γ (x) denote the γ code of the positive integer x . We store the stream
γ (ℓ1) · γ (ℓ2) · · · γ (ℓ j ) of encoded run-lengths. We store the stream in double
word-aligned form. Each portion of such an alignment is called a segment, is
parametric, and contains the maximum number of consecutive encoded run-
lengths that fit in it. We pad each segment with dummy 1s, so that they all have
the same length of O(1) words. (This padding adds a total number of bits which
is negligible.) Let S = S1 · S2 · · · Sk be the sequence of segments thus obtained
from the stream.

(2) We build a two-level (and parametric) directory on S for fast decompression.

—The bottom level stores |Si |0 and |Si |1 for each segment Si , where
|Si |0 (respectively, |Si |1) denotes the sum of run-lengths of 0s (re-
spectively, 1s) relative to Si . We store each value of the sequence
|S1|0, |S1|1, |S2|0, |S2|1, . . . , |Sk |0, |Sk |1 using byte-aligned codes with a con-
tinuation bit. We then divide the resulting encoded sequence into groups
G1, G2, . . . , Gm , each group containing several values of |Si |0 and |Si |1 for
consecutive values of i . The size of each group is O(1) words.

—The top level is composed of two arrays (A0 for 0s, and A1 for 1s) of word-
aligned integers. Let |G j |0 (respectively, |G j |1) denote the sum of run-lengths
of 0s (respectively, 1s) relative to G j . The i th entry of A0 stores the prefix
sum

∑i
j=1 |G j |0. The entries of A1 are similarly defined. We also keep an
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array of pointers, where the i th pointer refers to the starting position of G i

in the byte-aligned encoding at the bottom level (since the first two arrays
can share the same pointer). To perform the binary search in A0 or A1, we
require O(log t) time. All other work (accessing the array of pointers and
traversing the bottom level) is O(1) time.

The implementation of rank and select follows the same algorithmic structure.
For example, to compute select1(x) we perform a binary search in A1 to find the
position j of the predecessor x ′ = A1[ j] of x . (Interpolation search does not help
in practice to get O(log log t) expected time in this case.) Then, using the j th
pointer, we access the byte-aligned codes for group G j and scan G j sequentially

with partial sums looking at O(1) |Si |0 and |Si |1 values until we find the position of
the predecessor x ′′ for x − x ′ inside G j . At that point, a simple offset computation
leads to the correct segment Si (due to our padding with dummy bits). We scan the
O(1) words of Si to find the predecessor of x − x ′ − x ′′ in Si . We accumulate the
partial sum of bits that are to the left of this predecessor. This sum is the value to
be returned as select1(x). In rank, we reverse the role of the partial sums in how
they guide the search, but the search is largely the same.

As should be clear, the access is constant-time except for the binary search in
A0 or A1. In Section 3, we will organize many of these dictionaries into a tree of
dictionaries, performing a series of select operations along an upward traversal of
p nodes/dictionaries in the tree. Since we need to perform a binary search in each
of these p dictionaries, we obtain a cost of O(p log t) time. This cost is prohibitive:
we now describe a method to reduce the time to O(p + log t) using an idea similar
to fractional cascading [Chazelle and Guibas 1986].

Suppose dictionary D is the child of dictionary D′ in the tree. Suppose also that
we have just performed a binary search in A0 of D. We can predict the position
in A0 of D′ to continue searching. So instead of searching from scratch in A0 of D′,
we retain a shortcut link from D to indicate the next place to search in A0 of D′,
with a constant number of additional search steps. Thus, the binary search in p
dictionaries along a path in the tree will be costly only for the first node in the path
(the root). This approach requires an additional array of pointers for the shortcut
links, though as we will show in Section 4.4, the additional space required can be
made negligible in practice.

3. Wavelet Trees

In this section, we describe the wavelet tree, which forms the basis for both our
indexing and compression methods. Grossi et al. [2003] introduce the wavelet tree
for reducing the redundancy inherent in maintaining separate dictionaries for each
symbol appearing in the text. To remove redundancy among dictionaries, each
successive dictionary only encodes those positions not already accounted for pre-
viously. Encoding the dictionaries this way achieves the high-order entropy of the
text. However, the lookup time for a particular item is now linear in the number
of dictionaries, as a query must backtrack through all the previous dictionaries to
reconstruct the answer. The wavelet tree relates a dictionary to an exponentially
growing number of dictionaries, rather than simply all prior encoded dictionar-
ies. Consider the example wavelet tree in Figure 2, built on the bwt of the text
mississippi#, where # is an end-of-text symbol.
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FIG. 2. Left: An example wavelet tree. Right: an RLE encoding of the wavelet tree. Bottom: actual
encoding in memory of the right tree in heap layout with γ encoding.

We implicitly associate each left branch with a 0 and each right branch with a 1.
Each internal node u is a dictionary with the elements in its left subtree stored as 0,
and the elements in its right subtree stored as 1. For instance, consider the leftmost
internal node in the left tree of Figure 2, whose leaves are p and s. The dictionary
(aside from the leading 0) indicates that a singlep appears in thebwt string, followed
by two s’s, and so on. We don’t actually store the leaves of the wavelet tree; we
have included them here for clarity. The second tree indicates an RLE encoding of
the dictionaries, and the bottom bitvector indicates its actual storage on disk in heap
layout with a γ encoding of the run-lengths described previously. The leading 0 in
each node of the wavelet tree creates a unique association between the sequence of
RLE values and the bitvector.

Since there are at most |�| dictionaries (one per symbol), any symbol from the
text can be decoded in just O(log |�|) time by using a balanced wavelet tree. This
functionality is also sufficient to support multikey rank and select, which we support
for any symbol c ∈ �. See Grossi et al. [2003] for further discussion of the wavelet
tree.

We introduce two improvements for further speeding up the wavelet tree—use of
fractional cascading and adoption of a Huffman prefix tree shape. First, we imple-
ment shortcut links for fractional cascading as described at the end of Section 2.4.
Second, we minimize access cost to the leaves by rearranging the wavelet tree. One
can prove that theoretically, the space occupancy of the wavelet tree is oblivious
to its shape Grossi et al. [2003]. (We defer the details of the proof in the interest
of brevity, though the reader may be satisfied with the observation that the lin-
ear method of evaluating dictionaries is nothing more than a completely skewed
wavelet tree.)

We performed experiments to verify the truth of this theoretical observation
in practice. Briefly, we generated 10, 000 random wavelet trees and computed the
space required for various data. Our experiments indicated that a Huffman tree shape
was never more than 0.006 bps more than any of our random wavelet trees. Those
savings were less than a 0.1% improvement in the compression ratio with respect
to the original data. Most generated trees (over 90%) were actually worse than
our baseline Huffman arrangement, and did not justify the additional computation
time.
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TABLE IV. EFFECT ON PERFORMANCE OF WAVELET

TREE USING FRACTIONAL CASCADING AND/OR A
HUFFMAN PREFIX TREE SHAPEa

Huffman Cascading bible.txt book1

No No 1.344 1.249
No Yes 1.269 1.296
Yes No 1.071 0.972
Yes Yes 1.000 1.000

aThe columns for Huffman and Cascading indicate
whether that technique was used in that row. The val-
ues in the table represent a ratio of performance nor-
malized with the case in the last row. (Lower numbers
are better.)

Since the shape does not seem to affect the space required, we can organize the
wavelet tree to minimize the access cost (for instance), under the assumption that the
distribution of calls to the wavelet tree is known a priori. To describe the above more
formally, let f (c) be the estimated number of accesses to leaf c ∈ � in the wavelet
tree (which again is not stored explicitly). We build an optimal Huffman prefix tree
by using f (c) as the probability of occurrence for each c. It is well-known that the
depth of each leaf is at most 1 + log

∑

x f (x)/ f (c), which is nearly the optimal
average access cost to c. Thus, on average, we require 1 + log

∑

x f (x)/ f (c) calls
to rank or select involving leaf c.

LEMMA 1. Given a distribution of accesses to the wavelet tree in terms of the
estimated number f (c) of accesses to each leaf c, we can shape it so that the
average access cost to leaf c is at most 1 + log

∑

x f (x)/ f (c). The worst-case
space occupancy of the wavelet tree does not change.

In the experiments below, we make the empirical assumption that f (c) is the
frequency of c in the text (other metrics are equally suitable as seen in Lemma 1),
reducing the weighted average depth of the wavelet tree to H0 ≤ log |�|. We
performed experiments to demonstrate the effectiveness of fractional cascading
and the Huffman-style tree shaping. Some results are summarized in Table IV.
Each row contains one of the four possible cases indicating whether Huffman (first
column) and fractional cascading (second column) were used. The last two columns
report the corresponding timings for two text files, obtained by decompressing the
entire file using repeated calls to the wavelet tree. This method is not the most
efficient way to decompress a file, but it does give a good measure of the average
cost of a call to the wavelet tree. Timings are normalized with the case in the last
row. As can be seen from the data, fractional cascading does not always improve
the performance, while Huffman shaping gives a respectable improvement.

The resulting wavelet tree is itself an index that achieves 0-order compression and
allows decoding of any symbol in O(H0) expected time. In particular, it’s possible
to decompress any substring of the compressed text using just the wavelet tree.
This structure is a perfect example where indexing is compression. We performed
some experiments to evaluate the 0-order compression of wave, obtained by using
the RLE+γ encoding with the wavelet tree. We do not add additional structures
supporting fast access in wave.

We obtained the figures reported in Table V for some text files from the Canter-
bury and Calgary Corpora [2001], and some new files available on TREC Tip-
ster 3 [2000]. Our results for wave are in the second column. The arithmetic
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TABLE V. WAVELET TREE WITH RLE+γ ENCODING AS A PLAIN 0-ORDER COMPRESSOR (COLUMN

wave) AND APPLIED TO THE bwt STREAM (COLUMN wzip)a

File wave arit bzip2 gzip lha vh1 zip wzip

book1 5.335 4.530 2.992 2.953 2.967 4.563 2.954 2.619
bible.txt 5.004 4.309 1.931 1.941 1.939 4.353 1.941 1.631
E.coli 2.248 2.008 2.189 2.337 2.240 2.246 2.337 2.181
world192.txt 5.572 3.043 1.736 1.748 1.743 5.031 1.749 1.519
ap90-64.txt 5.392 4.913 2.189 2.995 2.862 4.938 2.995 1.668

aRemaining columns are for other compressors. The values in the table are in bits per symbol (bps).

code [Rissanen and Langdon 1979] gives better results than wave when run on
the same files, as reported in the third column arit. The next five columns report
the figures for other compressors on the same files. In these columns, bzip2 version
1.0.2 is the Unix implementation of block sorting based on the Burrows–Wheeler
transform; gzip is version 1.3.5; lha is version 1.14i [Oki 2003]; and vh1 is Karl
Malbrain and David Scott’s implementation of Jeffrey Scott Vitter’s dynamic Huff-
man codes; zip is version 2.3. Note that a direct comparison of the methods may not
be meaningful in some cases because of different parameters; for example, bzip2
works on blocks of 900Kb and book1 is the only file within this size (768771 bytes).
The purpose of Table V is to show that wave is not particular efficient as a 0-order
compressor when applied directly to a text file. Surprisingly, when applied to the
bwt stream obtained from that file (denoted wzip), its performance improves a lot
with respect to wave, as shown in the last column of Table V.

The lesson learned so far suggests that the wavelet tree, coupled with RLE and
γ encoding, is a simple but effective means for compressing the output of block-
sorting transforms such as bwt.

3.1. EFFICIENT CONSTRUCTION OF THE WAVELET TREE. In this section, we
discuss efficient methods of constructing our wavelet tree. In particular, we detail
an algorithm to create the wavelet tree in just O(n + min(n, nHh) × log |�|) time.
Directories that enable fast access to our wavelet tree can be created in the same time.
We can add these directories to our wzip format for fast access. We now describe
wzip in detail. The header for wzip contains three basic pieces of information: the
text length n, the block size b, and the alphabet size �. The body of the encoding is
then ⌈n/b⌉ blocks, each block encoding b contiguous text symbols (except possibly
the last block). Recall that the nodes of the wavelet tree are stored in heap ordering
(example in Figure 2). We break this stream into blocks and encode it. The format
for a block is given below:

—A (possibly compressed) bitvector of |�| bits that stores the symbols actually
occurring in the block. Let σ ≤ |�| be the number of symbols present. (For
large �, we may store the bitvector in the header, with smaller bitvectors in the
blocks that refer only to the symbols stored in the bitvector in the header).

—The dictionaries encoded with RLE+γ , concatenated together according to heap
order. The wavelet tree has σ implicit leaves and σ − 1 internal nodes with
dictionaries. (See Figure 2 for an example.)

We do not need to store the length of each encoding, as it is already implicitly
encoded. When processing, the encoding for the root node of the wavelet tree ends
when the sum of the encoded RLEs equals n. (These run-lengths may be spread
over several blocks.) At this point, we know the total number of 0s and 1s, plus the
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(dummy) leading 0. The number of 0s is the sum of the RLE values in the left child
of the root, and the number of 1s is the sum of the RLE values in the right child
of the root. We can go on recursively this way, down to the implicit leaves, from
which we can infer the frequency of the occurrences of each symbol in the block.

3.2. COMPRESSION WITH bwt2wzip. In this section, we describe our compres-
sion method bwt2wzip, which takes as input the bwt stream (the � function
in Grossi et al. [2003]) of the file and compresses it efficiently using our wavelet
tree techniques. Our approach introduces a novel method of creating the wavelet
tree in just O(n + min(n, nHh) × log |�|) time, which is also faster in practice,
as the entropy factor can significantly lower the time required. This behavior relates
the speed of compression to the compressibility of the input. Thus, we introduce
a new consideration into the notion of compressibility—highly compressible data
should be easier to handle, both in terms of space and time.

If we were to build the wavelet tree naively from the bwt stream, we would
run multiple scans on the bwt to set up the bitvector in each individual node of
the wavelet tree. Then, we would compress the resulting dictionaries with RLE+γ
encoding. A single-scan method is made possible by placing one item at a time in
each of the internal nodes from its root-to-leaf path via an upward walk. Given any
internal node in the tree, the set of values stored there are produced in increasing
order, without explicitly creating the corresponding bitvector. Since processing
each symbol in the bwt could take up to O(log |�|) time, it requires O(n log |�|)
time in total. We describe a refinement of this construction method requiring O(n +
min(n, nHh) × log |�|) time. This method is faster in practice, since the entropy
factor can significantly lower the time required for compressible text.

Let c be the current symbol in the bwt stream, and let u be its corresponding leaf
in the wavelet tree. (Recall that the numbering of internal nodes follows the heap
layout.) While traversing the upward path in the wavelet tree to the root, we decide
whether the run of bits in the current node should be extended or switched (from
0 to 1 or vice, versa). However, we do not perform this task individually for each
symbol. Instead, we process consecutive runs of equal symbols c, say rc in number,
in the input simultaneously. We then extend the runs in each internal node of the
wavelet tree rc units at a time. Let nr be the number of such runs that we process
for the entire bwt stream.

To make things more concrete, we use the following auxiliary information to
compress the input string bwt. Notice that the leaves of the wavelet tree are not
explicitly represented; given a symbol c ∈ �, it suffices to know its leaf number
leaf[c]. We also allocate enough space for the dictionaries dict[u] of the internal
nodes u. We keep a flag bit[u] for each internal node u, which is 1 if and only if
we are currently encoding a run of 1s in u. Below, we describe and comment the
main loop of the compression. We do not specify the task of encoding the RLE
values with γ codes, as it is a standard computation performed on the dictionaries
dict[u] of the internal nodes u.

1 while ( bwt != end ) {
2 for ( c = *bwt, r_c = 1; bwt != end && c == *(++bwt);

r_c++ ) ;
3 u = leaf[c];
4 while ( u > 1 ) {
5 if ( (u & 0x1) != bit[u >>= 1] ) {
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6 bit[u] = 1 - bit[u]; *(++dict[u]) = 0; }
7 *(dict[u]) += r_c;
8 }
9 }

We scan the input symbol c from the current position in the bwt to determine rc,
the length of the run of c (line 2). We determine the heap number of the (virtual)
leaf u associated with c (line 3) and start an upward traversal (lines 4–7). We close
the run in the current node u and start a new run in the following two cases:

(1) We arrive from the left child of u and the current run in u is made up of 1s; or

(2) We arrive from the right child of u and the current run in u is made up of 0s.

We express this condition succinctly in line 5, where (u & 0x1) is 1 when u is a
right child, and u >>= 1 denotes u’s parent whose flag bit indicates if the current
run is of 1s. We complement its value and prepare for the next entry in the current
dictionary (line 6). We then extend the current run-length by rc (line 7). We exit the
loop at the root (when u = 1 in line 4).

The time required to perform these actions over the whole bwt input stream is
O(n) to scan the bwt stream, and O(nr × log |�|), to perform the nr traversals of
the wavelet tree, taking O(log |�|) time. It turns out that the number of runs nr

processed by our algorithm is nr = O(min(n, nHh)), proving our bound. Since
nr ≤ n trivially, we show that nr = O(nHh), thus capturing precisely the high-
order entropy of the text. Note that nr is asymptotically upper-bounded by the
number of runs nd in all of the dictionaries of the internal nodes in the wavelet tree.
This bound holds, since either the beginning or the end of a run in the bwt stream
must correspond to the beginning or the end (or vice versa) of at least one distinct
run in a dictionary. (Otherwise, we could extend the run in the bwt stream, except
possibly for the first or the last run). Thus, nr = O(nd). Since each run length will
require at least one bit to encode (i.e., lb(ℓ) ≥ 1 for any ℓ ≥ 1), we can simply
bound the sum of the logarithm of their run-lengths. Theorem 2 proves that a single
wavelet tree encoded with RLE+γ achieves O(nHh) bits of space, thus proving that
nr = O(nHh). The proof technique makes use of the framework in Grossi et al.
[2003], and is proved in Section 4.2.

3.3. DECOMPRESSION WITH wzip2bwt. Decompression is a fairly straightfor-
ward task once the encoding has been done, though some care must be taken when
decomposing sets of runs. The decompression algorithm first performs a downward
traversal to identify the symbol c to decompress. It then performs an upward traver-
sal, analogous to that in bwt2wzip, except that it decrements the RLE values by rc,
producing in output rc instances of c. However, the value of rc is not necessarily
the last RLE value examined along this path; rather it is the minimum among them.
The reason stems from the fact that the runs in the dictionaries in the internal nodes
(except for the root) may correspond to a union of runs that were disjoint in the input
string bwt. Fortunately, the minimum value among those in an upward traversal
from a leaf refers to an individual run in the bwt stream, and it is the value rc.

To decompress, we use auxiliary information in bwt2wzip, a variable
alphabetsize and an array symbol. The former denotes the actual number of
symbols in the bwt stream; the symbols are numbered from 0 to alphabetsize
- 1. To recover the original value, we remap them using array symbol. We now
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comment on our main loop for decoding. (Again, we do not describe how to decode
the RLE values with the γ code, as it is a standard task.)

1 while( r_c = *(dict[u=1]) ) {
2 while ( (u = (u << 1) | bit[u]) < alphabetsize )
3 if ( *(dict[u]) < r_c ) r_c = *(dict[u]);
4 c = u - alphabetsize;
5 while ( u > 1 )
6 if ( !(*(dict[u >>= 1]) -= r_c) ) {
7 bit[u] = 1 - bit[u]; ++dict[u]; }
8 for( c = symbol[c]; r_c--; *(bwt++) = c ) ;
9 }

We start with the RLE value in the dictionary of the root (u = 1 in line 1).
We perform the downward traversal (line 2), guided by the current run of 1s or
0s, looking at the flag bit[u] to branch either to the left (bit[u] = 0) or the right
(bit[u] = 1) in the heap layout. We also keep the minimum RLE value in rc (line 3),
as previously mentioned. When we reach a leaf, we find the rank of the symbol to
decode (line 4). Note that lines 4 and 8 are the analogue of line 2 in bwt2wzip,
except that we output symbol c after remapping it, with symbol in the current
position indicated by the bwt stream. The upward traversal in lines 5–7 is similar
to the downward traversal in lines 4–7 of bwt2wzip, except that we decrease the
RLE values in the dictionaries. The time required for decompression follows the
same argument as for compression.

3.4. PERFORMANCE AND EXPERIMENTS FOR wzip. In this section, we discuss
our experimental setup and detail our results for the speed of access of our compres-
sion algorithm. We used several platforms to test our algorithms: ATH = Athlon
AMD 1GHz 512MB Linux, gcc version 3.3.2 (Debian); AXP = AMD Athlon XP
1.8GHz 512MB Linux, gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5); PIII
= Intel Pentium III 1GHz 512MB Windows XP, gcc version 3.2 (mingw special
20020817-1); PIV = Pentium IV 2GHz 1GB Windows XP, gcc version 3.2 (mingw
special 20020817-1); and XEO = Intel Xeon 2GHz 2GB Linux, gcc version 3.3.1
20030626 (Debian prerelease). We drew our data from the Canterbury and Calgary
corpora. The first three rows of Table VI are files from those corpora; the last two
rows are the concatenation of all the files in the same.

We compare our performance with a simple routine that copies the input bwt
stream into another array. We normalize the timings of our routines with respect
to this simple copy operation. We don’t compare with the scan operation, as the
compiler often cheats and doesn’t generate code to scan for an empty loop. In
our experiments, bwt2wzip (compression) is 2–6 times slower than a simple copy
operation, and wzip2bwt (decompression) is 3–7 times slower. The difference in
performance depends mainly on the architecture of the processor rather than the
input file. (Consult Table VI for proof of this fact, with bold figures for the minimum
and the maximum.) The computation of RLE takes roughly 30% of the total time
in bwt2wzip and 40% in wzip2bwt.

With regard to fine tuning performance in the code for bwt2wzip and wzip2bwt,
each time we access an entry pointed to by dict[u], we may initiate a cache miss.
Also, we need to pre-allocate more space to accommodate all the dictionaries
(whose final size is known only at the end of the compression, which is too late).
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TABLE VI. RUNNING TIMES FOR bwt2wzip AND wzip2bwt NORMALIZED WITH THAT OF A

SIMPLE COPY ROUTINEa

bwt2wzip wzip2bwt

File ATH AXP PIII PIV XEO ATH AXP PIII PIV XEO
ap5.txt 4.811 2.822 2.244 4.878 5.250 6.736 4.200 3.438 6.232 6.500
bible.txt 4.093 2.688 2.162 3.473 4.370 5.302 3.656 2.910 4.746 5.037
world95.txt 3.077 2.375 1.946 2.705 3.800 3.744 3.167 2.698 3.750 4.450
calgary 4.465 3.481 2.566 4.162 5.565 6.256 5.148 3.939 5.643 6.826
canterbury 4.419 3.091 2.324 3.255 5.625 5.839 4.318 3.522 4.614 6.625

aFile sizes in bytes are 5,000,000 for ap5.txt, 4,047,392 for bible.txt, 2,899,483 for
world95.txt, 3,215,493 for calgary, and 2,810,784 for canterbury.

We alleviate this problem by synchronizing the access to the decoded RLE val-
ues. In particular, we can provide the same access pattern during the execution of
bwt2wzip and wzip2bwt. Some care must be taken at initialization to maintain
this information.

Consequently, the RLE values are scrambled among the dictionaries and follow
the access pattern of wzip2bwt. To solve this problem, we no longer keep a pointer
in dict[u]; instead, we temporarily store the current RLE value for u. As a result,
except for dict[u], bit[u], and symbol, access to the other structures is sequential,
which enables us to exploit the many levels of cache. Moreover, we do not need to
allocate temporary storage to keep the RLE values that we will encode. Rather, we
can produce each RLE value and encode it on the fly. A drawback of this approach
is that we lose compatibility with the text indexing functionalities in Section 4.

It is worth noting that the total cost of compression and decompression is much
larger than what discussed so far, once we take into account the cost of suffix
sorting in order to obtain the bwt stream from the input text file (in addition to
that of bwt2wzip) and the cost of obtaining the text file from the bwt stream (in
addition to that of wzip2bwt).

4. Exploiting Suffix Arrays: Indexing Equals Compression

We explored dictionary methods which perform well in practice. Now, we apply
these dictionary methods to compressed suffix arrays [Grossi et al. 2003; Grossi
and Vitter 2005; Sadakane 2002, 2003] and show both experimental success as
well as a theoretical analysis of these practical methods. First, we provide some
background notions from Grossi and Vitter [2005] and Grossi et al. [2003].

4.1. COMPRESSED SUFFIX ARRAYS (CSA). To recap, a standard suffix array
[Gonnet et al. 1992; Manber and Myers 1993] is an array containing the position of
each of the n suffixes of text T in lexicographical order. In particular, SA[i] is the
starting position in T of the i th suffix in lexicographical order, T

[

SA[i], n
]

. The
size of a suffix array is �(n log n) bits, as each of the positions stored uses log n
bits. A suffix array allows constant time lookup to SA[i] for any i . The compressed
suffix array [Grossi and Vitter 2005] contains the same information as a standard
suffix array.

Definition 1. Given a text T of length n, a compressed suffix array [Grossi and
Vitter 2005; Sadakane 2002, 2003] for T supports the following operations without
requiring explicit storage of T or its (inverse) suffix array:
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—compress produces a compressed representation that encodes (i) text T , (ii) its
suffix array SA, and (iii) its inverse suffix array SA−1;

—lookup in SA returns the value of SA[i], the position of the i th suffix in lexico-
graphical order, for 1 ≤ i ≤ n; lookup in SA−1 returns the value of SA−1[ j], the
rank of the j th suffix in T ;

—substring decompresses the portion of T corresponding to the first c symbols (a
prefix) of the suffix in SA[i], for 1 ≤ i ≤ n and 1 ≤ c ≤ n − SA[i] + 1.

The data structure is recursive in nature, where each of the ℓ = log log n lev-
els indexes half the elements of the previous level. Hence, the kth level indexes
nk = n/2k elements. The recursive decomposition is given below:

(1) Start with SA0 = SA, the suffix array for text T .

(2) For each 0 ≤ k < log log n, transform SAk into a more succinct representation
through the use of a bitvector Bk , rank function rank(Bk, i), neighbor function
�k , and SAk+1 (representing the recursion).

(3) The final level, ℓ = log log n is written explicitly, using n bits.

SAk is not explicitly stored (except at the last level ℓ), but we refer to it for the sake
of explanation. Bk is a bitvector such that Bk[i] = 1 if and only if SAk[i] is even.
Even-positioned suffixes are divided by 2 and represented in SAk+1. In order to
retrieve odd-positioned suffixes, we employ the neighbor function �k , which maps
a position i in SAk containing the value p into the position j in SAk containing the
value p + 1. We describe it by the following formula (also handling the case when
SAk[i] = n):

�k(i) = { j such that SAk[ j] = (SAk[i] mod n) + 1 }. (5)

A lookup for SAk[i] can be answered in the following way:

SAk[i] =
{

2 · SAk+1[rank(Bk, i)] if Bk[i] = 1

S Ak[�k(i)] − 1 if Bk[i] = 0.

The representation of Bk and rank(Bk, i) uses standard techniques and is easy
to compress. The major hurdle for compression remains in the representation of
�k , which is at the heart of compressed suffix arrays and indexing in general.
The key to the compression of �k (which leads to a bound in terms of nHh) is
that we can partition the function �k into a series of increasing subsequences (or
sublists) that refer to positions in the text storing the concatenated string yx , for
each symbol y ∈ � and context x ∈ P∗

h , the optimal prefix cover [Ferragina
et al. 2005] for contexts of length at most h. These sublists 〈x, y〉 can be stored
by succinct dictionaries using log

( nx
k

n
x,y
k

)

bits, where nx
k is the number of suffixes of

T prefixed by context x at level k and n
x,y
k is the number of suffixes in T prefixed

by the concatenated string yx at level k. Additionally, each sequence of sublists
related to yx1, yx2, . . . , yxc, where c = |P∗

h | and xi ∈ P∗
h is lexicographically

before xi+1, also forms an increasing subsequence. We call these lists �-lists, one
for each symbol y in the text. Each dictionary is stored according to a much-reduced
universe size using the wavelet tree; we refer the reader to Grossi et al. [2003] for
further details on the consequences of this observation with regard to compression.

4.2. PRACTICAL CONSIDERATIONS FOR COMPRESSED SUFFIX ARRAYS. In this
section, we apply our practical dictionaries to the CSA framework we described



When Indexing Equals Compression 631

in Section 4.1, achieving practical data structures that implicitly achieve at most
twice the high-order entropy of the text.

THEOREM 1. We can encode the nk entries in all sublists at level k of the
compressed suffix array using at most 2nHh + o(n) bits, if we store each sublist as
a succinct dictionary D using RLE+γ encoding.

PROOF. Each of our dictionaries D takes at most E(L) +
∑

log(gi + 1) bits
of space (since they are RLE+gamma dictionaries). Since E(L) ≤ E(G) + t by
Fact 1 and E(G) =

∑

log(gi + 1) + t by Fact 2, we can bound the size of each
dictionary by 2E(G). Thus, we can replace our dictionaries with the ones in the
analysis in Grossi et al. [2003], at most doubling the theoretical worst-case bounds.
The result follows automatically from the analysis in Grossi et al. [2003].

This discovery brings up a remarkable point—our practical dictionary is blind to
the universe size that was so carefully constructed in Grossi et al. [2003] to allow
the use of the fully indexable dictionaries from Raman et al. [2002] (whose space
occupancy is almost linearly dependent on the universe size).

We propose operating implicitly on any partition Ph ⊆ �h (including a partition
based on the optimal prefix cover P∗

h [Ferragina et al. 2005]) for h ≥ 0, where |Ph| ≤
nα, for some 0 < α < 1. (This reasonable assumption is also used in [Grossi et al.
2003].) We argue that due to the nature of our directory, we are still able to achieve
the higher-order entropy given in Grossi et al. [2003]. Said more mathematically,
we can split the cost in Grossi et al. [2003] as nHh + M(h), where M(h) refers to
the overhead necessary to encode a statistical model for contexts of length up to h.
However, the term M(h) may become large for sufficiently large values of h, since
we may have nHh = 0 in this case.

FACT 3. There exists an h′ < n, such that for each h > h′, we have nHh = 0.

PROOF. Build a suffix tree on the text terminated with n endmarkers that do not
appear elsewhere. Consider one of the internal nodes storing the longest string, say
of length h′. Then, for any context h > h′, prune the suffix tree, leaving only strings
of length h + 1. We can predict the (h + 1)st symbol with conditional probability
p = 1, since we are on an arc leading to a terminal node. (There are no more
branches.) At this depth, every symbol can be predicted with perfect accuracy. The
information content of such a distribution is 0, requiring no bits (i.e., everything is
encoded in M(h) bits in the model, which relates to the pruned suffix tree). Hence,
nHh = 0 for h > h′.

In similar cases (in our experiments, when h > 4 and for more moderate cases
than Fact 3), the contribution of M(h) may dominate the expression. This obser-
vation motivates the need to acknowledge the model cost as a significant factor in
compression. Now we prove our main theorem in this section, which describes how
to encode the � function in Eq. (5).

THEOREM 2. We can encode � using 2nHh + o(n) bits with γ encoding, thus
implicitly achieving high-order entropy.

PROOF. For ease of exposition, we “number” the lexicographically ordered
symbols y as 1 ≤ y ≤ |�| and similarly number the lexicographically ordered
contexts x as 1 ≤ x ≤ |Ph|. Recall that each � list is an increasing subsequence
of positions. In Grossi et al. [2003], we conceptually break down the � lists that
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constitute the neighbor function � of compressed suffix arrays into sublists for
each context of order up to h (to scale the universe size in the dictionaries). We now
encode all the sublists for the same symbol in one shot using our succinct dictionaries
and the wavelet tree. The difference in encoding is that we save space by not storing
pointers to the beginning of each sublist (which can contribute significantly to the
space M(h) for the statistical model). On the other hand, our gaps can be longer
when the gap we encode traverses a sublist. The idea of the proof is to show that
the savings more than make up for the loss. We define the problem below formally.

Let g j be the j th gap in list y (composed of ny items) such that the j th item s j

in list y is in context x j ∈ Ph and the ( j + 1)st item s j+1 in list y is in context x j+1,
where x j ≤ x j+1. Thus, s j is in sublist 〈x j , y〉 and s j+1 is in sublist 〈x j+1, y〉. We
decompose the gap g j into three parts:

—g′
j , the length of the jump out of sublist 〈x j , y〉;

—g′′
j , the length of the jump over empty sublists inside of list y, namely a subset of

the sublists 〈x j + 1, y〉, 〈x j + 2, y〉, . . . , 〈x j + k, y〉 where x j + k + 1 = x j+1;
and

—g′′′, the length of the jump within sublist 〈x j+1, y〉.

By definition, g j = g′
j + g′′

j + g′′′
j . The value g′′′

j is the only non-zero quantity

when s j and s j+1 are in the same context x that is, x j = x = x j+1. Said differently,
g j = g′′′

j in this case, since we are not encoding a gap that jumps over other

sublists. This is the same cost incurred in Grossi et al. [2003] when the sublists
are treated separately (since they never encode a gap that traverses a sublist). Since
log g j ≤ log(g′

j + g′′
j ) + log g′′′

j , we can bound our total overhead by

∑

y∈�

ny−1
∑

i=1

log g j − log g′′′
j ≤

∑

y∈�

ny−1
∑

i=1

log
(

g′
j + g′′

j

)

= o(n);

this is exactly the additional cost we incur by treating all of our sublists together.
Since we incur overhead for each sublist exactly once, taking log(g′

j + g′′
j ) =

O(log n) bits, we can bound this cost by the number of sublists among the entire
structure of Grossi et al. [2003]. We now give more details on bounding the above
quantity. Let the number of contexts c = |Ph| = nα, where 0 < α < 1, the same
restriction as Grossi et al. [2003]. For list y, we can have at most min{c, ny} items
with non-zero values for g′

j and g′′
j . Since

∑

j (g
′
j + g′

j ) ≤ n, we can encode these

gaps using a dictionary, taking log
(

n
c

)

= o(n) bits per list. We can similarly apply
the bound for each � list, taking at most |�| times as much space, which is again
o(n) bits. Finally, since we are using γ encoding instead of a more efficient code, we
at most double the encoding cost of each dictionary as in Theorem 1, thus doubling
the entropy term and proving the claimed bound.

4.3. SUFFIX ARRAY COMPRESSION. One major advantage of suffix sorting
(block sorting) is that not only does it compress according to high-order entropy,
it also concisely represents the underlying statistical model, typically exploited
using a Move-to-Front (MTF) encoder [Bentley et al. 1986] (as it happens in
bzip2). We now describe how to use our succinct dictionaries (RLE+γ ), the suf-
fix array (block sorting), and the wavelet tree (incremental representation of dic-
tionaries) to achieve a compression ratio comparable to that of methods such as
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TABLE VII. MEASURE OF THE EFFECT OF MTF ON VARIOUS CODING METHODS WHEN

USED WITH RLEa

File MTF E(L) γ δ Golomb Maniscalco Bernoulli MixBernoulli
book1 No 1.650 2.585 2.691 20.703 20.679 2.723 2.726
book1 Yes 1.835 2.742 3.022 3.070 2.874 2.840 2.921
bible.txt No 1.060 1.666 1.740 15.643 16.678 1.742 1.744
bible.txt Yes 1.181 1.753 1.940 2.040 1.926 1.826 1.844
E.coli No 1.552 2.226 2.520 2.562 2.265 2.448 2.238
E.coli Yes 1.584 2.251 2.566 2.445 2.232 2.398 2.261
world192.txt No 0.950 1.536 1.553 19.901 21.993 1.587 1.589
world192.txt Yes 1.035 1.570 1.707 2.001 1.899 1.630 1.643
ap90-64.txt No 1.103 1.745 1.814 24.071 25.995 1.815 1.830
ap90-64.txt Yes 1.235 1.840 2.031 2.148 2.023 1.915 1.935
ap90-100.txt No 1.077 1.703 1.772 24.594 26.191 1.772 1.787
ap90-100.txt Yes 1.207 1.797 1.985 2.104 1.982 1.870 1.890

aThe MTF column indicates when it is used. The values in the table are in bits per symbol (bps) and
the lowest per row are shown in boldface.

bzip2, without using MTF, arithmetic, or multi-table Huffman encoding. (See also
Wirth and Moffat [2001].) Based on our analysis, we conclude that our approach
avoids explicit treatment of the order of context, but allows for indirect context
merging through the run-length encoding.

The outcome of our experiments is summarized in Table VII, where the rows
represents some text files from the Canterbury and Calgary corpora except the
last ones (ap90-64.txt, ap90-100.txt), which are some news files available on
TREC Tipster 3 [2000]. Each row represents duplicated experiments performed as
follows. (Figure 2 may help the reader.)

(1) We obtain the bwt stream from the input text file.

(2) If (MTF = Yes), we transform the bwt stream using MTF.

(3) We build the wavelet tree on the stream resulting from the previous two steps.

(4) For each bitvector BD found in the wavelet tree, we produce the corresponding
sequence L of (positive) integer run-lengths.

(5) We encode the integers in the sequences L thus obtained, using one of the
following encodings: γ code, δ code, Golomb code, Maniscalco code, Bernoulli
code, or MixBernoulli code.

(6) We divide the total number of bits required by the encoding in the previous step
by the size of the input text file to obtain the bits per symbol (bps).

Column E(L) reports the bps quantity using formula (2) in Section 2.1. We take
E(L) as an empirical lower bound to the figures for the other codes. (Note that
the integers in L change when using MTF, as a consequence of step (2).) The last
six columns of Table VII report the resulting bps figures for the γ , δ, Golomb,
Maniscalco, Bernoulli, and MixBernoulli codes. Golomb uses the median value as
its parameter b; Maniscalco refers to code [Nelson 2003]; Bernoulli is the skewed
Bernoulli model with the median value as its parameter b; MixBernoulli uses just
one bit to encode gaps of length 1, and for other gap lengths, it uses one bit plus
the Bernoulli code.

Table VII shows that that Move-To-Front (MTF) and Huffman/arithmetic coding
are not strictly necessary to achieve high-order compression in our case; see the
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TABLE VIII. COMPARISON OF SPACE REQUIRED BY � AND THE COMPRESSED SUFFIX ARRAY (CSA)a

book1 bible.txt E.coli world192.txt ap90-64.txt ap90-100.txt

� overhead 0.166/0.171 0.050/0.052 0.050/0.051 0.067/0.069 0.032/0.033 0.032/0.033
� 2.785/2.790 1.681/1.683 2.231/2.232 1.586/1.588 1.700/1.701 1.659/1.660
CSA overhead 0.328/0.332 0.210/0.212 0.210/0.212 0.228/0.230 0.192/0.194 0.191/0.192
CSA 2.946/2.951 1.841/1.843 2.391/2.392 1.747/1.749 1.860/1.861 1.818/1.819

aOverhead refers to all space other than the RLE+γ encoding for the data itself. The values in the
table are given in bits per symbol (bps). Entries contain two values—the first is tuned for space, the
second is tuned for speed.

column for the γ code for an example. Notice that Maniscalco and Golomb gain a
huge savings from using MTF: We do not have an explanation for the gap between
Golomb and Bernoulli without using MTF. (Golomb encodes a positive integer x
using 1 + ⌊(x − 1)/b⌋ + ⌊log b⌋ bits, where b is the median value in our case.)
In almost all cases, the γ code performs better than any other method for each
file, aside from E(L).4 In summary, we obtain high-order compression with three
simple ingredients: suffix arrays, wavelet trees, and dictionaries based on RLE and
γ encoding.

4.4. SUFFIX ARRAY FUNCTIONALITIES. We now have all the ingredients for
implementing compressed suffix arrays. We still need to store S Aℓ and its inverse,
as well as a dictionary to mark the positions in the original suffix array represented
in S Aℓ. Here we face a similar problem to that of the directories in our dictionary D
where, if we follow the same techniques, we sparsify these arrays. In Table VIII,
we show the number of bits per symbol needed for compressed suffix arrays on
some files from the Canterbury corpus and TREC Tipster 3 [2000]. We incur a min-
imal overhead cost for adding suffix array functionality. Note the small difference
between the split entries in our method; the additional space implements fractional
cascading in our wavelet tree, and requires almost negligible space.

5. Space-Efficient Suffix Trees

In this section, we apply our ideas on suffix arrays and compression to the imple-
mentation of a space-efficient version of suffix trees [Kurtz 1999]. Suffix trees are at
the heart of many algorithms on strings and sequences, so their full functionality is
needed [Gusfield 1997]. Thus, we support a suite of navigational, hierarchical, and
search capability. From a theoretical point of view, a suffix tree can be implemented
in either O(n log |�|) bits or |C S A| + 6n + o(n) bits (Kunihiko Sadakane 2002,
personal communication), which is significantly larger than that of the compressed
suffix arrays discussed before. The bottleneck comes from retaining the longest
common prefix (LCP) information, which requires at least 6n bits [Sadakane 2002].
As an alternative, the same information can be maintained in at least 4n bits to retain
the tree shape of at most 2n − 1 nodes [Munro et al. 2001], though there is some
slowdown since LCP information is not stored explicitly.5 In either case, a separate

4 Note that values for the γ code from Table V are larger than their corresponding (non-MTF) entries
in the γ column, as the former must includes some padding bits to allow fast access.
5A recent manuscript by Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung improves over these
bounds.
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(compressed) suffix array is needed to encode the leaves of the suffix tree. Since
LCP information encodes the internal nodes of the suffix tree, the bound reduces to
less than 6n bits in practice. Despite our dictionaries, however, the space required
for LCP information is not drastically diminished, since we are anyway encoding
the internal structure of the suffix tree.

To achieve less than 6n bits, we employ a simple heuristic based on an arbi-
trarily chosen slowdown factor S = O(log n). We implement part of the lowest
common ancestor simplification introduced in Bender and Farach-Colton [2004].
We use our dictionaries and sparsification of the entries, sped up with tricks to take
advantage of parallelism in modern processors. Once we have this structure, we
use just O(1) additional words to get a representation of a suffix tree. For exam-
ple, we obtain 2.98 bps (book1), 2.21 bps (bible.txt), 2.54 bps (E.coli), and
2.8 bps (world192.txt). These sizes are comparable to those obtained by gzip,
namely, 3.26 bps (book1), 2.35 bps (bible.txt), 2.31 bps (E.coli), and 2.34 bps
(world192.txt).6 A point in favor of the compressed representation of suffix trees
is that they fit in main memory for large text sizes, while regular suffix trees must
resort to external memory techniques. A drawback is that accessing the former re-
quires more CPU time. Nevertheless, we expect that their performance is superior
when compared to regular suffix trees in external memory. Several applications
have such large suffix trees, for example, a suffix tree for the human genome.

We exploit a folklore relationship between suffix tree nodes and intervals
in the suffix array, which has been used recently to devise efficient algo-
rithms [Abouelhoda et al. 2004; Arimura et al. 2001]. For each node u, there
are two integers 1 ≤ ul ≤ ur ≤ n such that SA[ul · · · ur ] contains all the suffixes
stored in the leaves descending from u. Thus, a node u ≡ (ul, ur , ℓu) is a triple of
integers in our representation, where ℓu represents the LCP of the strings of the text
beginning at positions SA[ul] and SA[ur ]. For each node u, we use this information
to support the following operations:

—reaching u’s parent;

—branching to u’s child v by reading symbol s;

—finding the label of the edge (u, v) (with cost proportional to the length of the
label);

—computing the skip value of u;

—determining the number of leaves descended from u;

—checking whether u is an ancestor of v;

—computing the lowest common ancestor of u and v;

—following the suffix link from u to v , in the style of McCreight or Weiner [Gusfield
1997].

We use Kasai et al.’s [2001] linear-time method to compute LCP information. We
modify Sadakane’s method [Sadakane 2002] to store only LCP values larger than
2 log n; it works and compresses well. We also implement the doubling technique
of Bender and Farach-Colton [2004] to compute LCP information in constant time,
though we can trade time to reduce the space required.

6 The comparison with gzip is just to show that our implementation is space efficient, not a reason to
replace gzip.
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We base our algorithms on the fact that we can use LCP information to go from
node u to node v by extending their intervals suitably and use the same information
to navigate in the compressed suffix array. We defer the standard details for most
operations and discuss only how to follow the suffix link from u to v .

Let u ≡ (ul, ur , ℓu) and v ≡ (vl, vr , ℓv ). We use our wavelet tree to determine
two values u′

l, u′
r such that vl ≤ u′

l ≤ u′
r ≤ vr . To find vl and vr , we observe that

lcp(SA[u′
l], SA[u′

r ]) ≥ ℓv . We perform two binary searches, one for u′
l going to the

left subtree and the other for u′
r going to the right subtree. To find vℓ, at each step

of our binary search in position i , we compute lcp(SA[i], SA[u′
l]) and compare it

with ℓv . Depending on the outcome, we can decide which way to go. Since vl is the
leftmost position such that lcp(SA[vl], SA[u′

l]) ≥ ℓv , we can find vl in a logarithmic
number of steps. Finding vr is similar.

We now discuss our experimental setup for the suffix tree and suffix array applica-
tions. Many experiments were run on the machines ATH and XEO that we described
in Section 3.4. The data sets used were drawn mainly from the Canterbury corpus,
the TREC Tipster 3 [2000], and and electronic books from the Gutenberg project
at <http://promo.net/pg/>.

Our source code is written in C in an object-oriented style. Our code is organized
as five distinct modules, which we now describe briefly. Module dict implements
our crucial dictionaries (Section 2). Module phi implements the wavelet tree and its
use in compressed suffix arrays (Section 3), while module csa implements the com-
pressed suffix array and related functionality (Section 4). Module lcp stores LCP
information and module st implements suffix tree functionality, though we avoid
storing any nodes explicitly (Section 5). The latter module requires fast decompres-
sion of symbols, access to the suffix array and its inverse, and fast computation of
LCP information, all of which are provided in the other modules.

6. Conclusions

In this article, we develop the simple notions of run-length encoding (RLE) and
γ encoding to achieve competitive compression ratios and fast compression and
decompression time for both indexing and compression algorithms. (Of course, we
must add the dominant cost of computing bwt by suffix sorting and that of inverting
it.) Some independent work has also shown that compressed suffix arrays are still
competing in search time [Hon et al. 2004]. The techniques we have developed
are practically sound, but also grounded in solid theoretical analysis and strong
notions of encoding both the data and the underlying model. Our method is tunable
to the access pattern of any file, which is a property unknown in similar work on
compressed indexing. While we do not claim that our software is a ready-to-use
library, we intend to perform intense algorithm engineering to further tune the
search time of our indexing structures, though much has already been done. We
construct the index in competitive time (roughly 1–2 minutes for 64 MB of data on
our test system).

Our compression algorithm wzip does not require any additional parameters
beyond the text size, alphabet size, and block size, and is tailored to work for
large alphabets, for example, Unicode, UTF/16. Our method performs integer bit
assignments and does not resort to costly computation of fractional bits, as does
an arithmetic coding technique. A simple copy operation is only 2–6 times faster
than our wzip compression, and only 3–7 times faster than our decompression.
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As a matter of fact, our encoding algorithm is so fast that its major bottleneck is
the encoding and decoding of γ . However, the real bottleneck remains the fast
computation of the bwt, namely by suffix sorting.

Despite these observations, data in http://www.maximumcompression.com
shows that our method does not achieve the best compression ratio on the market.
On the other hand, our ideas are easy to implement, as they use introductory material
on standard compression techniques. Our wavelet encoding is in some sense related
to inversion coding Deorowicz [2002], though the analysis in Grossi et al. [2003]
is the first to truly understand its impact. More critically, however, the wavelet tree
serves as a vast improvement in access time over inversion coding ideas. Other
prefix codes (e.g., those in Deorowicz [2002], Fenwick [1996, 2002] and Howard
[1997]) present other refinements with various tradeoffs. Theoretical exploration of
the suite of algorithms from Deorowicz [2002] could illuminate other approaches
than the ones we have taken.

Both our compression and indexing methods depend directly upon the space
bounds of our dictionaries; any improvement there yields significant savings on our
method. The best possible compression achievable is that empirically established
by E(L) in formula (2); however, as we saw in our experiments with Huffman
encoding, RLE+γ encoding performs quite competitively with respect to Huffman
codes in practice (and we didn’t even count the space required for the prefix tree for
Huffman encoding). Our key to space reduction is to exploit the underlying entropy
in the text using a transform and a solid method of removing redundancy using the
wavelet tree.
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