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Abstract: We consider some conditions over the coefficients of the sixth-order KdV equation (KdV6) under
which this equation has exact solutions. An algebraic condition for the existence of exact solutions to KdV6
is obtained. A new ansatz is considered to obtain analytic solutions for several forms of it. Additionally, the
generalized tanh-coth is used here to obtain periodic and soliton solutions for a special case..
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1 Introduction

It is well know that the general form of the sixth-order KdV equation (KdV6) is given by

2
Upzazes + WUzUzere + DUerUpes + CUpUgy + dugs + eUgppar + fuwuxt + guslze = 0, (D

where a, b, ¢, d, e, f, g are arbitrary parameters, and u = u(x,t) is a differentiable function. Several forms can be
constructed from it by changing the values of the parameters. For instance,

a=20,b=40,¢c=120,d=0,e=1,f=8,g=4: @)
a=-9b=-18c=18,d=—,e=1%,f=0,9=0: 3)
Uprzzre — guwuwzaja: - 18uwwuza:a: + 18u§;uww - %utt + %uwmxt =0.
a=-15b=—15,c=45,d=—5,e= —5,f =159 = 15: @
Ugzzeze — 19Uz Uzzer — 19Uz Uzge + 45“3'“90;8 — SUtt — SUgaat + 15Uz Uze + 15UUL, = 0.
and
a=-15b=-2,c=45d=—5,e=—5,f=15g=15: 5)
Ugzezre — 1DUzUzeze — %wauxau + 45“3“;1% — SUst — SUggat + 15Uz UL + 15UsUL, = 0.

respectively. It has been proved that (2), (3), (4) and (5) are particular integrable cases of (1). More exactly, the five authors
of [1] have found the Lax Pair, an auto-Backlund transformation, traveling wave solutions and third-order generalized
symmetries for (2). More recently, Kupershmidt [2] showed that (2) is integrable in the usual sense. The two authors of
[3] found a Backlund self-transformation for (3), and multisoliton solutions for it were studied by the authors of [4]. On
the other hand, (4) and (5) have been obtained from equations

50, Wit 4 HUpzt — 1500 — 150,0, 'vy — 45020, + 150,000 + 150000 — Vazzes = 0 (6)

and
45
58;11)” + BUget — 1bvvE — 151}18;1% — 45020, + Evmvm + 15VVp00 — Vpgoee = 0 @)

respectively, after the use of the potential transformation

v(2,t) = ug(, 1), ®)
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equations (6) and (7) are fifth-order nonlinear equations which govern wave propagation in two opposite directions.
More exactly, (6) is related to Sawada—Kotera-Caudrey—Dodd—-Gibbon equation [5], [6], and (7) may be considered a
bidirectional version of the Kaup—Kupershmidt equation [7] (see [1][8]). The two authors of [8] have been constructed
Lax pair for (6) and (7).

The present work has several objectives: The first, to present some conditions over the coefficients of (1) to obtain
exact solutions for it in a special form. This special form of the solutions can be considered as a new ansatz to construct
exact solutions for evolution nonlinear partial differential equations. The second objective is to present exact solutions to
four integrable KdV6 that appear in the literature and that are related with another important evolution nonlinear partial
differential equations. The third objective, is to present a special KdV6 equation with arbitrary coefficients which has
exact solutions according with the theory we present and by using the generalized tanh-coth [? ] to obtain periodic and
soliton solutions for this new equation.

This paper is organized as follows: In Sec. 2, we consider a new ansatz and we obtain some conditions over the
coefficients of (1) that allow us to get exact solutions. In Sec. 3 we obtain exact solutions for equations (2), (3), (4) and
(5) using the results of Sec. 2. In Sec. 4 we review briefly the generalized tanh-coth method. In Sec. 5, we present a
new sixth-order KdV equation, which has exact solutions accordingly the conditions given in Sec. 2 and by using the
generalized tanh-coth method we obtain exact solutions which include periodic and soliton solutions for it. Finally some
conclusions are given.

2 A new ansatz to construct exact solutions of the general KdVeé

To construct exact solutions of (1), we consider the ansatz

A

u(z,t) = Bx — 1 goiCe’

€))
where A, B and C' are some constants to be determined later. To avoid trivial solutions, we will suppose that A # 0 and
C # 0. Inserting (9) into (1), we obtain a polynomial equation in the variable ¢ = e*+C*. Equating the coefficients of the
powers of ( to zero, we obtain the following algebraic system :

cA3 —11aA? — 5bA2% + 2BcA? + CfA? + CgA? — 10aBA + 2B%cA+

202dA — 10CeA + 2BCfA + 3024 = 0,

aA? +bA? +2BcA? + CfA? + CgA? — 9aBA + 3B%cA + 3C?*dA— (10)
9CeA + 3BCfA —57A =0,

AcB? 4+ aAB + ACfB + A+ AC?d + ACe = 0.

Solving the previous system with with the aid of either Mathematica 7 or Maple 13 we obtain

A% — 1204
b:c a —i—3607 an

6A
_ B2 _ _ 27
. cB*—aB—-CfB—-C"d 17 (12)
C
—cA? + 6aA —12BcA — 6CfA — 72B%c — 72C%d — 712BC'f — 72
= GAC . (13)

The equations (11), (12) and (13) give conditions to obtain exact solutions of (1) in the form (9). Furthermore, the
system defined by these equations may be reduced to the polynomial equation

p1+ p3C + p2C? + p1C® 4+ poC* = 0, (14)

where
ps = (a* +ba— 100)2 (b* — 3ab+9c), (15)
ps = —(6a — 7b) (a® + ab— 108)29, (16)
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pa2 =2a°bd + 5a*b?d — 2a*bef — 12a*cd — 6a* fg + 4a*g? + 4a3b3d — 5a3b?ef — 64abed + 2a3bee®+
8a3bf? 4+ Ta3bfg + 19abg? + 12a3cef + 12a3ceg + a’b*d — 4a’b>ef — 72ab%cd + 5a’b*ce? + 9a?b? f2+
10a2b? fg + 11a%b?g? + 32a2beef — 14abeeg + 240a°c?d — 12ac?e? — 30a’cf? + 60a’cfg — 110a’cg®—
ab*ef — 20ab3cd + ab3ce? + 5ab3 f2 + 5ab® fg + 36ab’cef — 20abceg + 440abc’d — 32abc?e? — 110abef?
—130abcfg — 220abcg? — 4120ac’ef — 120ac?eg + b*ce? — 10b3ceg 4+ 100b2c?d — 36b2c%e? — 25b%cf?+
25b2cg? + 260bc?eg — 1200¢3d + 120c3e? + 300c2 f2 + 7002 g2,

(17)
p1 =g(4a®d + 10a*bd — da*ef + 8a3b?d — 10a3be f — 80acd + 4ace? + 10a3 f2 + 20a3 fg + 10a®g*+
2a2b%d — 8a2b?ef — 120a2bed + 10a?bce? + 15a2bf? 4 20abfg + 5a?bg? + 40acef — 40a’ceg—
2ablef — 40ab’cd + Sab’ce? + 10ab? f2 + 10ab? fg + 60abcef — 40abceg + 400ac?d — 40ac?e?—
100acf? — 200acfg — 100acg? + 2b>ce? — 20b%ceg + 200bc*d — 60bc?e? — 50bcf? + 50bcg? + 400c%eg),

(18)

po = dacd? + dadfg + 4a*dg® + 8a3bed? — 2a3bdf? + 2a3bdfg + 4a3bdg? — Salcdef — S8alcdeg — 4alef?g—
dalefg® + 4ab%cd? — a?b?df? + a®b?dg? — S8a’bedef — 4abedeg + 2a%bef? — 2a’bef?g — 4abefg?—
80a2c?d? + 8a?c?de? + 20a2cdf? — 40a?cdf g — 60a’cdg? + 4ace? f2 4+ 12a%ce? fg + 4ace?g? + 10a® f3g+
20a2 f2g% + 10a% f g3 — 4ab’cdef + ab’ef? — ab’efg? — 80abc?d? + 8abc?de? + 40abedf? + 20abedf g—
20abedg? — 2abee? f? + 6abce? fg + 4abce?g? — 5abf* — 5abf3g + 5abf?g? + 5abfg> + 80ac?de f+
80ac’deg — 8ac?e® f — 8ac’e®g — 20acef? — 20acef?g — 20acefg? — 20aceg® + 4b*c*de? — b?ce? f2+
b%ce?g? — 40bc’deg — 4bc%e3g + 10bce f2g — 10bceg® + 400c3d? — 80c3de? + 4ce* — 200c2df? + 200c2dg>+
20c?e? f? + 20c%e?g? 4 25¢f* — 50cf?g? + 25¢g™.

(19)

It is clear that solving (14), we find C' and therefore A y B, so that we obtain exact solutions to (1) in the form (9). In
the case when ¢ # 0, from Eqgs. (11) and (12) we obtain the following formulas for calculating A and B in terms of C':

i.

. 6a + 3b — 31/(2a + b)2 — 40c p_ o+Cf+ V{a+Cf)2—4c(C(Cd+e)+1)
c 5 _ - .

o (20)
i
3<2a+b+ V(2a+b)? *406) a+Cf +/(a+ Cf)2 —4c(C(Cd + ¢) + 1)
A= - . B=- o . @D

iii.

A:6a+36—3\/(02a+b)—2—4067 B:_a+Cf—\/(a—i—C’f);c—éLc(C(Cd-i-e)—&-l). )

iv.
3 <2a+ b++/(2a+b)? — 406) a+Cf —+/(a+Cf)2—4c(C(Cd +e) + 1)
A= , B=— . (23)
c 2c
The case ¢ = 0 is special. We will not consider it here. We only mention the special subcase when a = —b/2. If we

substitute (9) into (1) then after solving the algebraic system, we get A = 0, so the only solution of (1) in the form (9) is
the trivial one ©v = Bz.

Remark 1 It is possible to verify, that if b # 0 and g # 0 then C # 0. The cases when g = 0 or b = 0 are special.

Remark 2 We may solve equation (14) in an easy way if

_ala+Db)
c= BET 24)
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since in this case we obtain py = p3 = 0 and then (14) converts into quadratic equation
p2+p1C + poC? =0,

where
po = —ab*(3a — 5b)((a + b)e — 5(f + g))?,

p1 = —ab’g((a+b)e — 5(f +9))%
po = a((a+ble—>5(f+g)*(10ab*d + a®e? + a*be® — 10a’ef + 25af? —
25bf2 — 10a’eg — 10abeg + 50afg + 25a9?).
Thus, we obtain a wide class of KdV6 equations with exact solutions of the form (9). Observe that equations (2) and (4)
satisfy condition (24).
3 Exact solutions to particular cases
In this section we consider the particular cases of (1) obtained by values given in (2), (3), (4) and (5). In all this cases we

find A, B, C by solving the system given by equations (11), (12), (13). Solutions in the form (9) for the particular cases
considered here are obtained.

3.1 Solutions to (2)
e A=1,B=1(-5+V15),C=5-2V15:

1 1
me:fﬁ(aﬂﬁ@xfTI;E;ﬁﬁ?

e A=1,B=4(-5-V15),C=5+2/15:

1 1
uet) = =55 (34 V) o - o
—120B2-20B-1 .
. A == 1, O == SBiH . 1
U(I,t) = Bz — (120B2+420B+1)¢t
1+e* 8BFT
3.2 Solutions to (3)
e A=-10,B=41,C=-1:
(w,t) = o2 4 D
YT T e E
e A=-10,B=2C=1
u(z,t) = 3z 10
’ 4 1 —|—@$+%
e A=-2,B=1C=1
(z,t) = — + 2
u(z, ripnpe
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e A=-2,B=2C=1
u(z t)—?ﬁ—k#
R B
e A= 2.C=6:
2
u(z,t) = Bx +

1+ ew-{-(GB—l)t :

3.3 Solutions to (4)
e A=-4,B=2%(5-V5),C=2(-5+3V5):

1 4
@) =15 (5 B \/5> S 14 et To(5-3vE)t

e A=—-4,B=3(54+45),C =% (-5-3V5):

e A=-2B=L(5-V5),C=%(-5+3V5):

e A=—-2,B=1;(5+V5),C=15(-5—-3V5):

2(5—V5
o A EH\@),B:O,C:TIO(—M?,\/E)
2
u(z,t) = 1_’_630711—0(573\@)15'
2(—5-5
. Afi(%\/g ),B:O,C:%(—ﬁs—sﬁ):

e A=-2 B=5(-5C—V5(5C+1)+5):

u(x, t) = % <<5C V5(5C + 1) +5) T+ 60) .

1 + e;v-‘rCt

e A=-2, B=4(-5C+V55C+1)+5):

w( ) = ((—5C+\/5(5C+1) +5) x+ 60) .

30 1+ e+t

1JNS homepage: http://www.nonlinearscience.org.uk/

405



406 International Journal of Nonlinear Science, Vol.10(2010), No.4, pp. 401-409

3.4 Solutions to (5)
e A=-8 B=+(15-4V5),C=1(-5+4V5):

(@) = —= + o+ i
uz,t) = —=+or+ ——rg—r.
3v5 14 " HTE D1
e A=-8 B=+(15+4V5),C =1 (-5-4V5):
8

e A=—-1,B=3(5+V5),C=4(-5-3V5):

1
40

1
z— 75 (543V5)t”

u(zx,t) =

(5+\/5)x+1+e

4 The generalized tanh-coth method

The wave transformation
§=1z+ A+ &, (25)

convert a PDE that does not explicitly involve independent variables to an ODE
P(v,v' 0", ...)=0. (26)

Using the idea of tanh-coth method introduced by Wazwaz [9], the generalized tanh-coth method admits the use of a finite
expansion

M ) 2M )
> aid(©)' + > aip(©)M 27)
=0 M+1

where M is a positive inter that will be determined and ¢(§) satisfies the Riccati equation
¢ =k+ 9% (28)

where k is a constant. The following are particular solutions of (28) :

7671a k= Oa
VEtan(VE €), k>0,
o(&) = ¢ —Vkcot(VkE), k>0, (29)

—V—ktanh(v/~k¢), k<0,
—v/—kcoth(v/—k€¢), k<DO.

Substituting (27) into (26) and using (28) and (29) results in an algebraic equation in powers of ¢(¢). Balancing the
linear terms of highest order in the resulting equation with the highest order nonlinear terms leads to the determinations
of the parameter M. This gives us a set of algebraic equations for k, A, u, a1, ..., asps because all coefficients of ¢ (&)
(#=1,2,...,2M) have to vanish.
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5 A new KdV6 with exact solutions

If we take the values

then Eq. (1) converts to

3 4a?
Ugzzrrs + AUz Ugrry + = UggUzza + U Uz + dutt + CUgzxt + ==

ae
5 25 25

407

(30)

In this case, we have py = p3 = p2 = p1 = pg = 0in (14), so that according with Sec. 2, C may be any number (C # 0).

Therefore, solving the system given by (11),(12),(13) we obtain

_ 75, —8Ce—25+/6IC% — 40007 + 225

24’ n 8a

Using (9), an exact solution of (30) is given by

(—8Ce — 25 + V/64C2e2 — 400C2d + 225) © 75
u(z,t) =

8a  2a(1 4 extCty

We make use of the generalized tanh-coth method to obtain more solutions to (30), which include periodic and soliton

solutions. Let
U(l’,t) = U(f),

where ¢ is given by (25), (30) reduces to ordinary differential equation

; ; 3 4a?
u(vz)+au/u(zv)+£u//u///+ a ( )2 "+d/\2u”+)\eu i) _|_7/\ "u" = 0.

5) 25

Inserting (27) into (32), using (28) and balancing u(*") with (u')?u” we obtain
M+6=3M+4,
so that M = 1. According with the method, we seek solutions to (32) using the expansion

u(€) = ag + ar19(§) + azp(§)

Solving the algebraic system that we obtain in this case, using (25), (28) and (29) and introducing the notations

k k
C=—(e— 6274d)andD:g(e+\/6274d)
we get the following set of periodic and soliton solutions to (30):

u(z, t)—ao—%Ft (\/%(m—i—?C’t-i-fO))

5VE

up(,1) = ag — —— tan (\/E(x+2Dt+§o)>
us (@, 1) = ag + 755 tanh (\/Tk(az +20t + 50))
wal,t) = ag + 75;/7“ tanh (V=K (z + 2Dt +&))
us(x,t) = 752;/% cot (\/E (z+2Ct + 50))
g, ) = ao + 752*f cot (VE (42Dt + &)

1JNS homepage: http://www.nonlinearscience.org.uk/
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wr(2,t) = ag + 75‘2/7 coth (VR (z + 201 + &)
us (@, t) = ao + 75;/7 coth (V=F (& +2Dt + &))
wo (2, ) = ap + %{E (cot (VE (@ +8Ct + &) ) — tan (VE(z +8Ct + &)) )
wio(a, ) = ag + % (cot (Vi (2 + 8Dt + &) — tan (VE (2 + 8Dt + &) )
i (2,8) = ag + 75f (coth (VR (x+ 80t + &) ) + tamh (VR (2 + 8Ct + ) )
wia (@, 1) = ag + 75;/7 (coth (\/—7 (z + 8Dt + go)) + tanh (\/Tk (z + 8Dt + 50)))

6 Conclusions

In this paper we have derived solutions to several integrable forms of the nonlinear evolution wave equation of sixth order,
by using a new ansatz. Conditions over the parameters of the generalized KdV6 equation to obtain exact solutions using
this new ansatz have been derived. A new KdV6 equation has been studied and some its exact solutions have beeen
derived by using this new ansatz and using the generalized tanh-coth method. The methods used here can be considered
as a powerful technique to analyze several forms of nonlinear partial differential equations. Other methods to find exact
solutions to NLPDE’s may be found in [10]-[37].
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