

Essential Question: How do you complete operations with multi-digit numbers and decimals?

Math Goals:

I can.....

.....read and write numbers to trillions.
.....read and write numbers to thousandths.
.....estimate products and quotients of decimals.
.....locate integers on a number line.
.....compare and order integers.
.....find the absolute value.
.....add, subtract, multiply, and divide whole numbers and decimals.

The value of a digit depends on its place in a number. Numbers are written in periods consisting of three digits.

					$\stackrel{n}{\bar{\omega}}$			$\frac{0}{\bar{E}}$		$\begin{aligned} & \text { n } \\ & \text { E } \\ & \text { N } \\ & 0 \\ & \tilde{E} \\ & \underset{0}{0} \end{aligned}$			$\stackrel{\stackrel{a}{5}}{\stackrel{\rightharpoonup}{5}}$	$\stackrel{\square}{0}$
1	2	3 ,	4	5	6 ,	7	8	9	0	0	3	4	0	0

The chart shows the number $123,456,789,003,400$ and would be read " 1 hundred twenty-three trillion, four hundred fifty-six billion, seven hundred eighty-nine million, three thousand, four hundred.

A decimal names a fractional number in place-value form.

$$
\begin{array}{ccc}
\frac{1}{10}=0.1 & \frac{1}{100}=0.01 & \frac{1}{1000}=0.001 \\
\text { one-tenth } & \text { one-hundredth } & \text { one-thousandth }
\end{array}
$$

Decimal places are written to the right of the decimal point. The place-value ends with these three letters: ths

$\stackrel{\boxed{0}}{0}$		$\stackrel{\tilde{y}}{\tilde{y}}$		
1		2	3	4

The chart shows the number 1.234 and would be read "one and two hundred thirty-four thousandths."

There are several ways to name numbers. They are:
© standard form

$$
\begin{array}{lll}
+4,825 & 0.635
\end{array}
$$

(e) word form

4 four thousand, eight hundred, twenty-five
© number-word form
± 4 thousand, 8 hundred, 25
© expanded form

$$
\begin{aligned}
& +\quad 2,046=2 * 1000+4 * 10+6 * 1 \\
& +\quad 0.72=7 * 0.1+2 * 0.001
\end{aligned}
$$

Decimals can name numbers that lie between whole numbers. For example, 1.4 would be between 1 and 2 .

Name three more numbers between 1 and 2?
Operations with Decimals
When adding or subtracting you must make sure that the numbers are lined up by place value. This can be done simply by following three steps:

1) Align the decimal places.
2) Add zeros as placeholders when necessary.
3) Add from left to right.

$$
\begin{array}{cr}
1.3+3.651 & 3.651-1.3 \\
1.300 & 3.651 \\
+3.651 & -\quad 1.300 \\
\hline 4.951 & 2.351
\end{array}
$$

In order to multiply decimals, multiply the same way as with whole numbers. Then count the number of decimal places in both factors. Place the decimal point in the product that many places from the right.

56
$* \quad 14$
224
+560
784

*5.6 1 decimal place

$* 1.4 \quad 1$ decimal place
224
+560

+560 total 2 decimal places

To divide with decimals, rewrite the problem in equivalent form with a whole number for the divisor. Then divide.
$5.76 \div 0.32 \quad 0.32$ is the divisor, or the number you are dividing by. This number must be a whole number, so we must move the decimal point 2 places to the right.

$5.76 \div 32$	Since we moved the decimal 2 place in the divisor, we must move the decimal in the dividend, 5.76 will become 576
$600 \div 30$	Find a estimate of the quotient, by rounding the divisor and dividend creating compatible numbers.
$=20$	Our estimate would be 20
$576 \div 32$	Now divide as you do with whole numbers.

18.
$32 \quad 576$.
$32 \downarrow$
256
256
0

How are positive and negative numbers represented on a number line?

Positive numbers are numbers that are greater than 0 , located to the right of 0 , and written with or without a plus sign; for example, 6 is the same as +6 .

Negative numbers are numbers less than 0 , located to the left of 0 , and must always be written with a negative sign; for example -3 .

The number 0 is neither positive nor negative.

Two numbers are opposites if, on a number line, they are the same distance from 0 but on different sides of 0 . For example, 5 and -5 are opposites; - 2.15 and 2.15 are also opposites. 0 is its own opposite.

Integers are the set of all whole numbers and their opposites.

1) Use a number line and find the opposites of $7,-4,1$, and 9 .
2) What is the opposite of 8.5 ?
3) What is the opposite of the opposite of 3 ?

4a) Graph and label the following points on a number line.
A. -2
B. 9.5
C. -8
D. -9.5
E. 5 F. 8
$4 \mathrm{~b})$ Which points represent integers?
4c) Which pairs of points represent opposites?

When you read a number line from left to right, the numbers are in order from least to greatest. When comparing and ordering rational numbers, start by graphing the numbers on a number line.

Graph each set of numbers on a number line. Then list the numbers in order from least to greatest.

1) $5.6 ;-8 ; 3.1 ;-4 ; 7 ;-2$
2) $-14 ; 12 ;-7 ; 11 ; 18 ;-2 ; 1 ; 5 ;-8$

Fill in the blank.
3) Negative numbers are \qquad than positive numbers.
4) 0 is \qquad than all negative numbers.

When comparing rational numbers we write an inequality, a statement that two quantities are not equal. We use the symbols:
$>$ means "is greater than"
< means "is less than"

Start by graphing the numbers on a number line. The number further to the left is the smallest.

X							
-7	-6	-5	-4	-3	-2	-1	0
-7	1						

Write two inequalities for the integers - 7 and -2 .

$$
\begin{aligned}
& -7<-2 \text { means }-7 \text { is less than }-2 \\
& -2>-7 \text { means }-2 \text { is greater than }-7
\end{aligned}
$$

List the numbers in order from least to greatest.

1) $4,-6,0,8,-9,1,-3$
2) $-80,88,96,-14,7559,-32$
3) $-65,34,7.6,-13,55,62.5,-7.6$

Compare. Write < or >.
4) - 1 \qquad - 3
5) 5 \qquad -10
6) -3 \qquad 0

The absolute value of a number is the number's distance from 0 on the number line. For example, the absolute value of -3 is 3 because -3 is 3 units from 0 . The absolute value of -3 is written l-3 I.

Both 2 and -2 have an absolute value of 2 since they are both 2 units from zero.

Find the absolute value.

1) $|3|$
2) $|-7|$
3) $|5|$
4) $|-2|$ 5) $|-3|$
5) $|-7|$
6) Which pairs of numbers have the same absolute value?
7) If a number is \qquad , then the number is equal to its absolute value. If a number is \qquad , then the number is less than its absolute value.

Basic Skills Practice Corner

Complete attached activity sheets. Be sure to show all of your work. No Work will equal No Credit!

Students must keep this newsletter with their notes.
Name: \qquad

Received: \qquad Completed: \qquad
Parent signature: \qquad
Mrs. Alicz’ signature:

