
NAVAL POSTGRADUATE SCHOOL
Monterey, California

00

1,=-

THESIS

REENGINEERING REAL-TIME SOFTWARE SYSTEMS

by

Randall C Scott

September 1993

Thesis Advisor: Yutaka Kanayama

Approved for public release; distribution is unlimited.

93-29769
93 12 6 098

Form Appmoved

REPORT DOCUMENTATION PAGE 1o No.

PI rep trm b Idn 1o tl# caik t al wdornon s easnated to waere 1 how per response. fr4ikcdm the time rem matnodons. siauide exetig da"a siuo a
i and mami diqw . da•a needed. and amp" and mnewn Ut oklede•n al edommon. Send ca-wo reva,-da'q th" bwden aweis o any ade upeaad of On

a.efteun of ito Wata. mnduding miggadmons Ie reduwVi dwe header, &o Wee~ungion H~eadqoaimu Servioee. Dowexate kW b ktlonsatn COperabone and Rep"m. 12t16 JobaeflM
0..l hIow", Suie 1204. Asglon, VA M•M2,. and to the orf Manoemen and Buge. Pq.aewok Redudmon Projet (0704-118), Washogto. DC 20D0C

1. AGENCY USE ONLY Leave Blank) REPORT DAT 3. REPORT TYPE AND DATES COVERED
| 9 Sept. 1993 Final Thesis Ma 92 - 9 Sept. 93

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Reengineering Real-Time Software Systems

s. AUTHOR(S)

Randall C Scott

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION

Naval Post Graduate School REPORT NUMBER

Monterey, California 93943

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS{ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The content of this report reflects the views of the author alone and not the Naval Post Graduate School

or any other DOD government agency.

12a. DISTRIBUTION) AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited Distribution A

13. ABSTRACT (Maximum 200 words)

The problem this thesis solves is how to reengineer existing real-time applications implemented without software
engineering (SE) attributes; with poor modularity and robustness, and that are difficult to read and maintain. The real-time
system chosen for this study was the Model-based Mobile robot Language (MML) used on the Yamabico-ll mobile robot,
which was implemented without SE attributes.

The approach taken was reengineering MML with a focus on improving modifiability while preserving functionality.
First we developed a systematic plan using manual static analysis, then we incrementally reengineered the application with
thorough system-level testing. Code review was used to locate and remove dead code, and synonymous and redundant variables
and functions (improving modifiability, readability and robustness). Call-hierarchy tracing was used to gain explicit module
restructuring insight for tighter cohesion (improving modifiability, modularity, and readability). Global-variable tracing was
used to improve module coupling by localizing and minimizing global variables (improving modularity, readability, and
robustness).

The results were as follows: A method for applying SE to existing real-time applications after-the-fact called
"Reengineering Real-Time Software Systems" was developed, which improves modifiability, modularity, robustness and
readability. MML now has improved modularity and robustness, and is easier to read and maintain.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Reengineering, Real-Time, Software Engineering 73
15. PRIE GOODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Preacribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

REENGINEERING REAL-TIME SOFTWARE SYSTEMS

by
Randall C Scott

Captain, United States Army

BS Computer Engineering, Syracuse University, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1993

Author:
Randall C Scott

Approved By:

Timothy Shimeall, Second Reader

Ted Lewis, Chairman,
Department of Computer Science

ii

ABSTRACT

The problem this thesis solves is how to reengineer existing real-time applications
implemented without software engineering (SE) attributes; with poor modularity and
robustness, and that are difficult to read and maintain. The real-time system chosen for this
study was the Model-based Mobile robot Language (MML) used on the Yamabico- 11
mobile robot, which was implemented without SE attributes.

The approach taken was reengineering MML with a focus on improving modifiability
while preserving functionality. First we developed a systematic plan using manual static
analysis, then we incrementally reengineered the application with thorough system-level
testing. Code review was used to locate and remove dead code, and synonymous and
redundant variables and functions (improving modifiability, readability and robustness).
Call-hierarchy tracing was used to gain explicit module restructuring insight for tighter
cohesion (improving modifiability, modularity, and readability). Global-variable tracing
was used to improve module coupling by localizing and minimizing global variables
(improving modularity, readability, and robustness).

The results were as follows: A method for applying SE to existing real-time
applications after-the-fact called "Reengineering Real-Time Software Systems" was
developed, which improves modifiability, modularity, robustness and readability. MML
now has improved modularity and robustness, and is easier to read and maintain.

Accesion For

NTIS CRA&I 1
DTIC TIA3

DT]C QU; r-.Y : 3

Iii,.

TABLE OF CONTENTS

I. INTRODUCTION ... I
A. BACKGROUND .. 1
B. RESEARCH QUESTIONS .. 3
C. THESIS ORGANIZATION .. 3

II. DESIRED SOFTWARE ENGINEERING ATTRIBUTES .. 4
A. MODIFIABILITY ... 4
B. MODULARITY .. 6

C. ROBUSTNESS .. 9

D. READABILITY .. 10
E. REENGINEERING OF THE YAMABICO-I 1 SYSTEM .. 10

1Il. STATIC ANALYSIS ... 12
A. CALL-HIERARCHY TRACING .. 12
B. GLOBAL-VARIABLE TRACING ... 15
C. DERIVED BENEFITS ... 17
D. MODULE-DECOMPOSITION TRANSFORMATION .. 17
E. GUIDANCE FOR REENGINEERING .. 18

IV. YAMABICO-I I SYSTEM DESCRIPTION ... 20
A. HARDWARE .. 20
B. SOFTWARE (MML) ... 22

1. Previous MML ... 24
2. Reengineered MML ... 26
3. Comparison of Previous vs. Reengineered versions ... 30

C. TRANSISTION TO REENGINEERED SYSTEM ... 31
D. TRANSFORMATION VALIDATION .. 32

1. Validate MML Functional Equivalence ... 33
2. Validate MML Ease Of Modifiability ... 34

V. SUMMARY AND CONCLUSIONS .. 35
A. REENGINEERED CHANGES .. 35
B. BENEFITS OF REENGINEERING ... 36
C. FUTURE RESEARCH ... 37

APPENDIX A - Loco.c Map .. 41
APPENDIX B - MML 3 Statistics .. 42
APPENDIX C - MML 10 Statistics .. 47
APPENDIX D - MML 10 Function Displacement ... 57

REFERENCES .. 64
INITIAL DISTRIBUTION LIST .. 66

iv

LIST OF FIGURES

Figure 1: Modifiability .. 5
Figure 2: Strong Coupling / Weak Cohesion - Instruction Queue Functions and Variables 8
Figure 3: Weak Coupling / Strong Cohesion - Instruction Queue Functions and Variables.....8
Figure 4: Local - function A calls B ... 13
Figure 5: Module/Subsystem Local - functions A & B call function D 14
Figure 6: Global - functions A through G call function H ... 14
Figure 7: Global Variable Trace Annotations ... 16
Figure 8: Yamabico-I I ... 22
Figure 9: Interrupt Hierarchy ... 24
Figure 10: Module Decomposition ... 27
Figure 11: Header Include Hierarchy ... 29
Figure 12: UNIX Barrier ... 39
Figure 13: Barrier Free ... 40

v

I. INTRODUCTION

A. BACKGROUND

The foundation of software engineering (SE) has been its contribution to large-scale

software system development. A main goal of software engineering is the ability to write

software for large-scale systen• predictably by many people in such a way that the system is

efficient, correct, and modifiable. Classic software engineering works note that modifiability

derives from modularity, robustness, and readability. The Classical definition of modifiability is

controlled change, in which some parts are altered while others remain the same in such a way

that a desired new result is obtained. Modularity is achieved when the components of the system

are relatively small, lightly coupled, and have strong cohesion (Yourdon,1980). Robustness

allows the system to operate reliably under both optimized and worst case environmental

conditions, preserving the desired behavior of the system. Readability allows for easier

coordination, understanding, and maintenance during all phases of software development

(Parnas, 1972).

Applied software engineering currently has most of its research efforts focused on new

system development; systems that apply SE concepts at the very beginning of the life cycle.

Although several examples could be cited, David L. Parnas stated it best in his paper "On the

Criteria to be used in Decomposing Systems into Modules": 'The modularizations include the

design decisions that must be made before the work on the independent modules can begin".

However, there is growing interest in reengineering existing large-scale (or real-time) systems;

systems designed prior to or during the advent of applied SE (Parnas 1979, Freeman 1980). Is

there a way to transform existing real-time systems to systems that achieve modularity,

robustness, and readability? Can the transformed systems lend themselves more readily to

portability (applications developed for multiple platform flexibility), language conversion (C to

C++ and C++ to Ada), and concurrency exploitation (task candidate selection and priority task

1

scheduling)? Considering the abundance of existing real-time systems that were not developed

with applied SE concepts, the question that arises is would it be worthwhile to reengineer these

systems or start from scratch? (Yourdon, 1989) The answer requires consideration of several

factors. Not all real-time systems need reengineering, especially systems that have out-lived their

usefulness. However, for some systems it may be determined worthwhile for some or all of the

following reasons (Yourdon, 1989):

"* The system is no longer reliable

"* Maintenance costs are too high

"* Time and Staff changes have rendered the system unreadable / unmaintainable

"* Every new change introduces bugs

"* New hardware technology has rendered the system non-portable

"* The operational environment demands greater flexibility

If reengineering is determined worthwhile, the next step is to find a systematic method for

the reengineering effort. That is the purpose of this thesis, to provide a systematic method for

reengineering real-time systems. The system chosen for this study was the Yamabico- 11 mobile

robot, which is contrc Led using the Model-based Mobile robot Language (MML). The

Yamabico- 11 mobile robot is a real-time system; and the MML software used to control it is

implemented using a mixture of assembly and C language modules, all of which were written in

an ad-hoc fashion (from an engineering viewpoint) by more than a dozen implementers.

Observed modification times and error rates are increasing to an unacceptable level. By

improving modifiability, the overall MML software system will benefit by facilitating quicker

and easier development, considerably easier maintenance, and possibly improved run-time

reliability.

2

B. RESEARCH QUESTIONS

This thesis answers the following two questions:

1. Given an existing real-time system designed without applied SE, can any significant

improvements be achieved by reengineering the system with a focus on modifiability? The

context of significant meaning a measurable improvement in modularity, readability, and

robustness.

2. Is reengineering feasible for the rapidly-evolving Yamabico control system, considering

the systems real-time constraints, the target systems development environment, and the current

implementation? Reengineering would be infeasible if the desired changes altered functionality

or hinder system performance. Reengineering a real-time system concurrently with a team of

several research developers would be infeasible if it caused mass confusion. Reengineering

would be infeasible if SE principles can only be applied at the beginning of a development cycle.

C. THESIS ORGANIZATION

The layout of the thesis will follow the outline of the research. Chapter II describes and

defines the desired software engineering attributes of the reengineered system. Chapter III covers

static analysis performed to identify anomalies and describe resulting required transformations.

Chapter IV describes the Yamabico- 11 hardware and software system, compares the previous

version (non-SE MML-3) with the new version (SE MML-10) of the MML software system, and

validation of functional equivalence and ease of modification of the new version. Finally, chapter

V provides a summary discussing the reengineering benefits achieved and future research.

3

II. DESIRED SOFTWARE ENGINEERING
ATTRIBUTES

Before reengineering any system, it is important to first establish the desirable software

engineering (SE) attributes for the reengineered system that do not exist in the current system.

The next step is then to fabricate a systematic method to reengineer the system such that the

reengineered system has the desired SE attributes. This chapter discusses modifiability,

modularity, robustness, and readability. These attributes were chosen based on their interlocking

support, individual merits, derived benefits, and relevance to software engineering and

reengineering.

A. MODIFIABILITY

Although correctness tends to be the overall measure of success of any software system,

particularly large-scale systems, modifiability makes its contribution through ease of both

development and maintenance. By improving ease of development, the design and

implementation phase of the software life-cycle is shorter and the time spent debugging is shorter.

By improving ease of maintenance, functionality enhancements are easier to support for the

finished product. In addition, improving ease of both development and maintenance benefits both

the developer and the maintainer who are part of a several-member team. Consider the following

example portrayed by Figure 1. A person needs to modify module 1 in subsystem X. Module 1

has an interface to module 2 in subsystem X and an interface to subsystem Y. With the given

scenario, when module 1 can be modified without worry of side effects in subsystem X,

subsystem Y, or the overall system, then the system is said to be truly modifiable.

4

System

Subsystem X Subsystem Y

Module I

Module 2

Figure 1: Modifiability

Modifiability of a system is acquired through a thorough understanding and comprehensive

implementation supporting conformance to modularity, robustness, and readability. (Parnas,

1979) With modifiability as the primary focus, ease of maintenance is addressed at the front cnd,

where it should be, rather than as an after thought as it usually is.(Yourdon, 1980) Modifiability

eases system development, through modularizations that model object-oriented design (OOD)

and object-oriented programming (OOP), via data encapsulation and abstraction. (Berzins &

Luqi 1991, Stubbs & Webre, 1993). In addition, systems written with modifiability as the

primary focus lend themselves more easily to language transformation, such as converting

software written in C to C++ or C++ to Ada. Modifiability gives systems the quality and

flexibility needed to accommodate within shrinking budgets the high demand for utilization using

many different hardware architectures, and systems using system-subset functionality.(Yourdon

1980)

5

B. MODULARITY

Modularity is characterized by segmentation of the system during implementation and

maintenance. Modularity is the way that the developers compartmentalize a system's

functionality, and is measured through coupling and cohesion.(Parnas, 1972) Coupling is the

degree to which modules share information, and cohesion is the degree to which operations are

divided across modules. (Yourdon, 1989) With modifiability as the primary focus, modularity is

accompiished by localization of the system's functionality; decomposing the system into

subsystems, modules, and levels of abstraction (Pamas, 1979). Although the terminology

associated with modularity has been heavily debated and is somewhat subjective (Pamas, 1979,

Berzins & Luqi 1991), particularly in languages (such as C) that support no encapsulation of

functions, modules are easier to understand when considering both logical relationships and

physical storage properties. Whatever physical storage is used, the important issue is the logical

decomposition that relates module functionality and the creation of modules that lend themselves

to function encapsulation. Once the logical relationships are determined, the physical storage may

then be considered. However, it is better to keep the physical modules as small as possible (such

as I module per file) and consistent with the logical decomposition. Size is important because it

affects readability, which in turn affects maintainability and modifiability; the larger the file, the

harder it is to read and understand. A common measure of source size is one page of paper per

module. (Yourdon, 1980) Also, large physical modules tend to be highly susceptible to dead code

(code written but never exercised), synonymous functions and variables (functions and variables

defined with different names but perform similar operations or carry the same values), and

redundant functions and variables (functions and variables repeatedly defined in different

modules). Dead code degrades readability and maintainability by needlessly increasing module

size and forcing the developer or maintainer to read code that is never used. Synonymous

functions and variables similarly degrades readability and maintainability by needlessly

increasing system size, in addition to degrading reliability through confusion of which functions

or variables are suppose to be used. Redundant functions and variables cause problems similar to

synonymous functions and variables, however reliability problems are more related to

6

functionality, locality, and scope. Compilers are helpful in locatipg redundant variables when

scope can not be resolved. But when scope is resolved and redundancy still exists, then reliability

is subject to degradation. An example of a reliability problem associated with function

redundancy is two functions in different modules that carry the same name and scope, but are not

functionally equivalent. An example of a reliability problem associated wi*.' redundant variables

is assignments made to a variable with the same name but in the wrong module.

Localization is the means by which all required resources are made available to the module.

The amount of localization is the measure of coupling and cohesion. The goal is to minimize

coupling (well-defined module interface design and minimal use of global variables) and to

maximize cohesion (localized call hierarchy and minimal use of global variables). It is important

to note that global variables affect both coupling and cohesion. Figure 2, demonstrates the poor

coupling and cohesion characteristics of MML-3's instruction queue functions. The variables

used for the instruction queue are defined in mml.h and the functions that perform the queue

operations are spread across three other files: loco.c, track.c, and main.c. This design strongly

couples the four files together because modifications to one function in one file may require

modifications to all four files. Also, due to the division of locality of functions and variables, the

design demonstrates weak cohesion. Figure 3 demonstrates how to improve the coupling and

cohesion characteristics of MML-3's instruction queue functions. By localizing the instruction

queue functions and variables to a single module (file), both coupling and cohesion are improved

thereby enhancing modifiability. Cohesion is strengthened by localizing the queue variables and

operations to the same module. Coupling is minimized by reducing required modifications to a

single module.

7

mml.h loco.c

headinst setinst()
tail inst
put-inst
get_inst
inst_cnt

track.c main.c
read.inst0 disp-inst0
inc-getinstO

Figure 2: Strong Coupling I Weak Cohesion - Instruction Queue
Functions and Variables

queue.c

headinst setinstO
tail inst read-inst0
put-inst dispjinst0
getinst inc.getinst0
inst.cnt

Figure 3: Weak Coupling / Strong Cohesion - Instruction Queue
Functions and Variables

8

C. ROBUSTNESS

Robustness is defined as the degree to which the modules of a system provide an operational

structure that prevents or inhibits unintended reactions to change.

Robustness is mostly reflected by reliable operation in all possible environments. The two

usual means of measuring robustness are fault tolerance and breadth of processing range. Fault

tolerance is "the degree to which software corrects erroneous processing." (Anderson / Lee 1989)

Breadth of processing range is the fraction of possible values processed properly. In other words,

a system is robust if it can detect errors and still preform satisfactorily (fault tolerance); and,

provides execution paths for all required conditional flows and exception handling for

unacceptable variable value ranges (breadth of processing range).

Robustness is a desirable property of behavior for real-time systems that have unpredictable,

or not completely reliable, input systems; such as the sensors on an aircraft or missile. If a sensor

should give incorrect information or completely fail, a robust system would not allow the aircraft

to crash or the missile to hit the wrong target. However, robustness is also a function of

modifiability. How reliable will a system be when changes are made? By removing synonymous

and redundant functions and variables and minimizing global variables, potential real-time

reliability problems caused by modifications are reduced. By encapsulating the functions that

drive hardware, real-time reliability problems are easier to trace. Also as hardware technology

evolves, enhancing behavior such as speed or scope of processing are much easier to deal with.

Thus, by localizing hardware driving functionality in an appropriate module hierarchy,

modifiability is enhanced and the overall system is more robust. Although robustness is a

property of behavior and modularity is a property of the source code, both benefit substantially

from modifiability. Hence, with modifiability as the primary focus, careful employment of

modularity can help improve robustness.

9

D. READABILITY

Readability is defined as the degree to which the system behavior in operation is mirrored

by the text of the system's source code.

Original authors are not always available to explain or discuss their code, the number of

modules for the system and subsystems tend to be very large, and the interfacing of modules can

be very complex. (Yourdon, 1980) Therefore it is important for modules to possess simplicity,

locality, uniqueness, and consistency. The best modules are small, simple, and easy to read. The

behavior of the code is independent of the operating context. The behavior is well defined and

clearly documented such that any professional could independently read the documentation and

understand the desired function of the system.

E. REENGINEERING OF THE YAMABICO-11 SYSTEM

The Yamabico- 11 has a Model-based Mobile robot Language (MML) system that is a real-

time system, but lacks the SE attributes described in this chapter: modifiability, modularity,

robustness, and readability. MML modules do not exhibit strong cohesion or minimum coupling.

A modification to one module often leads to extensive required changes to other modules. MML

modules have degraded readability and maintainability because they are large in size, have

inconsistent naming conventions and dead code, and contain functions that are not logically

related. In addition, MML modules contain needless global variables, synonymous functions and

variables, and redundant functions and variables, which not only degrade readability and

maintainability, but also contribute to reliability problems.

The chapters that follow describe in detail the process used to reengineer MML for

Yamabico- II such that MML possesses the desired SE attributes of improved modifiability,

modularity, robustness, and readability. Chapter III discusses static analysis methods used to

measure the relative strengths of the SE attributes in the current version of MML. The static

10

analysis methods used for Yamabico- 1I were manual re'i.'ew of every file and function, global-

variable tracing, and call-hierarchy tracing. Manual review of file sizes, lines of code per module,

and the number of functions per module helps to measure the degree of readability. Manual

review of the code to identify and remove dead code and needless variables helps to improve

readability. Call-hierarchy tracing helps to identify poor modular design and to gain explicit

insight to improved modular design. Global-variable tracing helps to measure the degree of

module cohesion and coupling. In addition, call-hierarchy and global-variable tracing help to

improve robustness by identifying reliability problems associated with synonymous variables

and functions, and redundant variables and functions. Chapter IV then describes the details of

reengineering of MML for Yamabico- 11. Reengineering was performed using the results of the

static analysis to restructure MML such that the modifications made provide thc desired SE

attributes. In addition, chapter IV discusses the process used to transition to the reengineered

version, and concludes by discussing the validation process used to ensure the reengineered

version has acceptable control behavior, is functionally equivalent to the previous version, and is

easy to modify.

11

III. STATIC ANALYSIS

In the process of analyzing a current real-time system, two static tracing techniques can be

used in conjunction with each other as tools to gain insight to structure and design deficiencies.

These two static analysis tracing techniques are call-hierarchy tracing and global-variable tracing.

This chapter discusses the use of call-hierarchy tracing, global-variable tracing, and the

derived benefits of using these tracing techniques. In addition, this chapter shows how call-

hierarchy tracing and global-variable tracing aid in formulating a module decomposition

transformation and guidance for reengineering.

A. CALL-HIERARCHY TRACING

Call-hierarchy tracing is a technique that helps to resolve placement of functions and

modules in addition to isolating local vs. global function call scope. More importantly, call-

hierarchy tracing provides a physical picture, which is an extremely valuable tool for system

design or reengineering. Once the trace is constructed, the next step is to analyze function

category (local, module/subsystem local, or global). General-purpose functions are likely

candidates for the global function category and should be targeted for placement in a library, such

as is used for general math and input/output functions in C or packages in Ada. Global functions

are found by the number of other functions that call them and the dispersion of the calling

functions (i.e., the calling functions are located in different modules and their operations are not

necessarily related to each other). `;P the other hand, if a function is only called by a single other

function, then it should be local to a module that contains both. Finally, some functions may be

called by a few other functions in such a way tiWN the truce will show these functions to be local

to a module or sub-system (i.e., there exists a relationship among the calling functions that allow

them to coexist in a reasonable module or sub-system). Figures 4 through 6 demonstrate how a

call-hierarchy trace is used to categorize functions as local, module/subsystem local, or global.

12

Figure 4 shows the local category, which is the easiest to identify. The local category occurs when

a called function has only one calling function (function B is only called by function A). When

there is only one calling function, both the calling and called functions can be placed in the same

module. Figure 5 shows the module/subsystem local category. The module/subsystem local

category occurs when a called function has several calling functions that have operations related

to each other (function D is called by functions A and B). When the calling functions have

operations related to each other, then both the calling functions and the called function can be

placed in the same module or subsystem (Module C). Figure 6 shows the global category. The

global category occurs when a called function has several calling function, such that none of the

calling functions have operations related to each other (function H is called by functions A

through G). Global category functions are best suited for libraries such as math, inputl/outputl/ and

memory management. Appendix A shows a call hierarchy trace used to analyze the locomotion

module for Yamabico- 11.

A

B

Figure 4: Local - function A calls B

13

Module C

Figure 5: Module/Subsystem Local - functions A & B
call function D

A-B-C - D- E- FG

Figure 6: Global - functions A through G call function H

The output of any cross reference tool, such as cxref (UNIX, p. 1-1 24, 1990) for C, can be

helpful in constructing a call-hierarchy trace. Considering that function/procedure-call cross-

reference listings are usually a documentation requirement to begin with, a more-than-ample

starting point exists for anyone to construct a call-hierarchy trace.

14

The most important direct benefit of call-hierarchy tracing is modularity design vision

provided by an explicit picture of the system and how it is tied together. Another benefit is the

ability to examine, to a limited extent, the current systems degree of coupling and cohesion at

least at the module or file level. As a reengineering feasibility study, call-hierarchy trace is very

useful in visualizing the current design, obtaining ideas fr, reengineering, and determining the

relative amount of work required. Finally, if kept up-to-date a call hierarchy trace can be an

invaluable tool for system maintenance or for enhancement by individuals who did not author the

original code.

B. GLOBAL-VARIABLE TRACING

Global-variable tracing is probably the most difficult task of reengineering any software

system of significant size. This process requires the ability to locate all variables that are not local

to any given function or procedure. Although tools exist and are helpful, they are seldom a

complete solution. A good example is cxref (UNIX, p. 1-124, 1990) for C, which is a UNIX tool

that cross references variables and functions for programs written in C. The shortcoming of cxref

is its inability to locate negated variables. Another handy but incomplete tool example is the

UNIX grep command (UNIX, p. 1-217, 1990). Grep is great for locating variables (actually

matching strings and string patterns). The most effective way to do a global-variable trace is to

review each and every function one at a time manually, using a diagram similar to the call-

hierarchy trace. Variables that are not passed as parameters or are not declared locally for the

function, are annotated on the diagram function. This is a very tedious and error-prone process,

which may need more than one review to ensure all global variables are located. However, this

process is not required at the frontend of a reengineering effort, nor does it need to be

accomplished in a sequential fashion that would inhibiting work in other areas. Figure 7 provides

an example of an annotated call-hierarchy trace for functions A and B. Appendix A shows a call-

hierarchy trace with annotated global variables used to analyze the locomotion module for

Yamabico- 11 and MML.

15

functionAO

functionBO

Size

Speed
X

Angle
-Y

Figure 7: Global Variable Trace Annotations

Once the global variables are located the next step is similar to the call-hierarchy tracing, in

that they must then be analyzed, categorized, and resolved. The goal here is to either complete

elimination or minimize the number of all global variables. Using a database or data dictionary

can be helpful by storing the names of all of the functions and their global variables, then sorting

by global variable names to locate commonality or redundancy of use. Although automated tools

would be a desirable substitute, there is no getting around the need to manually review each and

every module and function to make effective design decisions regarding variables. Global

variables need to be reviewed to decide whether they should be global, local to a subsystem,

module, or function, or passed as a function parameter. Variables need to be reviewed to locate

and remove synonyms, redundancy, and unwanted overloading (variables that have the same

name but are encapsulated differently). Also, variables that impact real-time timing constraints

need to be thoroughly reviewed to ensure the current implementation provides optimum

performance and are clearly documented. Besides global variable analysis, variables used as

function parameters also need to be reviewed to determine whether they should be passed by

value or by reference. Finally, the process of locating and analyzing global variables also requires

16

a thorough understanding of the functions and modules that use the variables in order to gain

better insight to the desired design decisions.

The largest direct benefit of elimination or minimization of global variables is enhanced

reliability and improved readability. Reliability is enhanced by eliminating the failures caused by

erroneous use of duplicate, synonymous, and overloaded variables. Reliability is also enhanced

by reducing failures associated with poorly defined module, function, and process interface

communication. Readability is improved by removing or minimizing the strain of locating

variables when reviewing or preforming maintenance, in addition to establishing the absolute

minimum variables required for the job.

C. DERIVED BENEFITS

The derived benefits of optimizing function placement through call-hierarchy tracing and

global-variable minimization through global variable tracing are improved modifiability,

testability, reliability, and readability. Modifiability is enhanced from better modularity with light

coupling and strong cohesion. Testability is improved as a result of improved modularity

clarifying unit and module level testing, in addition to range scope reduction as a result global

variable elimination. Confidence in reliability is improved through improvements in testability

and better data flow communication. Finally, readability enhancements are derived from locating

useless functions and variables, removal of needless global variables, identification of

undesirable overloading and synonymous variables, and better overall modularity.

D. MODULE-DECOMPOSITION TRANSFORMATION

Another major job involved with reengineering any system of significant size is to preform

a module-decomposition transformation. Although this sounds like a complicated process it is

one of the easiest. As described briefly before, this is the process used to improve modularity with

17

the help of the call-hierarchy trace, global-variable trace, and knowledge of the system. In a way,

this portion of the reengineering effort is similar to reverse engineering in that the original design

is studied to enable an improved or reengineered design, while functionality remains the same.

What makes the module-decomposition transformation process somewhat easier is knowing that

systems that were either poorly designed or designed without applied software engineering, are

usually designed with some form of structure. Most systems embody some form of modularity at

least at the file level, and with experience human habits that generate modularity anomalies (such

as weak cohesion and strong coupling caused by a bias toward building modularity based on

physical storage rather than logical relationships or encapsulation of functions) become more

easy to detect.

The most important preparation to performing a module decomposition transformation is to

have a thorough understanding of the overall system. In addition, this process tends to be most

effective when working both top-down and bottom-up. Working top-down the system should first

be broken up into logical families of sub-systems, then use a bottom-up approach to populate the

sub-systems with reasonably-sized modules with modularity that is influenced by the call-

hierarchy trace and global-variable trace.

E. GUIDANCE FOR REENGINEERING

The reengineering process and techniques described so far, provide the concepts and

methods that allow dynamic flexibility with a systematic approach. The important issues

remaining are the critical relationships and coordination timing constraints. For large systems and

real-time systems the call hierarchy trace and the global variable trace need to be done before the

module decomposition transformation. The order of performing the call hierarchy trace vs. global

variable trLze is not that important; in addition the order will be dependent on the tools being used

and the number of people involved. I chose to do the call-hierarchy trace first so that I could use

the diagram for the global-variable trace. The most critical coordination timing constraint is the

module-decomposition transformation effort, which is best performed by freezing the current

18

version of the software to inhibit functionality changes while structure is changed. Since module-

decomposition transformation only affects structure, the time involved is relatively short Also,

if developers are allowed to modify functionality of previous versions, migration of

modifications can be difficult to resolve due to structural displacement, not to mention any global

variable eliminations.

For real-time systems, and in particular for Yamabico- 11, phasing of global to local as a

result of module-call-hierarchy tracing or global-variable tracing, needs to be done very carefully

to preserve functionality. One difficult part is to validate changes with system-level testing as

compared to urit-level testing. This i, not to say that unit-level testing is not important, it just

emphasizes the fact that reengineering an existing real-time system places a higher demand on

ensuring that reengineering changes do not contribute to system failure. This in itself is a very

time-consuming process because each change must be validated at the system level. My

recommendation is to identify and document global variables at the beginning of the

reengineering effort, but delay global-variable-minimization to the end. The reason is that the

biggest dividend from reengineering is structural change that improves modifiability while

preserving functionality. Improving modifiability acts as a multiplier not only for better

modularity, readability, and maintenance; but also for further modification enhancements or for

portability. As far as conducting global-variable-minimization, the reengineered system is still

functional and working fine. Therefore although global-variable-minimization will improve

reliability and robustness, this part of the process is not as time critical as compared to structure

change, and can bt2 done incrementally as time permits.

This chapter has discussed the value and benefits of static analysis using call-hierarchy

tracing and global-variable tracing. In addition, this chapter has shown how the results of these

static analysis techniques can provide a valuable road map for the reengineering effort The next

chapter will describe the real-time system used for this thesis and the reengineering effort

employed.

19

IV. YAMABICO-11 SYSTEM DESCRIPTION

As discussed in the previous chapter, quality static analysis can provide an excellent road

map for reengineering a real-time software system. However, before static analysis can be

conducted on the Model-based Mobile robot Language (MML), a thorough understanding of the

Yamabico- 11 hardware system and the MML software system must be acquired.

This chapter describes the Yamabico- 11 hardware system, the MML software system, and

the reengineering of MML. Discussion includes the previous version, the reengineered version,

comparisons of the previous vs. the reengineered versions, the reengineered changes, transition

to the reengineered version, and validation of functional equivalence and ease of modification of

the reengineered version.

A. HARDWARE

The Yamabico- 11 is a mobile robot that translates in 2 dimensional space. The software that

controls Yamabico is a Model-based Mobile robot Language and its hardware consists of :he

following sub-systems: locomotion, sonar, vision, power supply, CPU, and Input/Output.

The locomotion system consists of two DC motors, shaft encoders, a motor control circuit

card, and a VME bus based interface card. The motors can drive each wheel in either the forward

or reverse direction, can be set to a variety of speeds, and includes braking. The shaft encoders

are used as feed back to determine distance traveled, speed, and to make odometry correction.

The interface card allows the user to read information and send commands. The motor control

circuit card does the actual manipulation of the motors and brakes based on information

communicated through the interface card.

20

The sonar system consists of three groups of transmit and receive sonar cones, a sonar

control circuit card, and an interface card. The sonar cones are placed in such a way as to provide

the ability to capture forward/rear, lateral, or diagonal sonar data. There are four sonar cone sets

for each direction and are mounted at waist high elevation. The sonar control circuit cards provide

the necessary circuitry to transmit and receive sonar signals for each group. The interface card,

similar to the locomotion interface card, allows the user to read information and send commands.

The vision system currently consists of a camera connected to a radio transceiver. The

camera is mounted for forward looking vision at waist high elevation. The software that is used

to process image information, is currently being developed ard executed using an IRIS

workstation coupled through a radio transceiver to the camera. A future goal is to parallel process

the vision system with tI," sonar and locomotion systems, with all processors co-resident on the

robot for full autonomy.

The CPU consists of a Motorola 68020 based motherboard, which is scheduled for an

upgrade to a SPARC architecture. Power is supplied using two 12 volt motorcycle batteries.

Finally, two means of communication are provided. The robot has a 9600 baud port connected to

a Sun3 workstation for compiling and downloading the robot system software (MML); also a

9600 baud port connected to a laptop MacIntosh Power Book for direct communication with the

robot. (Mizar, 1986) Figure 8 provides a pictorial representation of Yamabico- 11.

21

Figure 8: Yamabico-ll

B. SOFTWARE (MML)

MML is a high level Model-based Mobile robot Language software system that controls the

Yamabico- 11 robot. The original design concept for MML was to create a general-purpose

control language for autonomous mobile robots independent of the physical attributes of the

robot, such as number of wheels, degrees of freedom, and drive motors. The modules for the

original design were predominately composed of geometric, locomotion, sonar, and input/output

functions. (Kanayama 1989/91/93, Abresch 1992) The real-time features of MML lie in the

hardware interrupts used to gain background pseudo-concurrent processing. Pseudo-concurrent

in that the code for any process is never interleaved with another, because processes are not

22

allowed to share the same priority. Processes can be interleaved, but not their code. Also, since

an operating system such as UNIX is not hosted on the robot, common features like spawning or

forking processes dynamically are not available. This method of producing process concurrency

is therefore limited to the available interrupts supplied by the CPU architecture.

There are two main processes that operate in background; one to perform the odometry

corrections and one to operate the sonar. These processes are driven by hardware timers which

provide highly accurate clocking. The timer for the odometry correction routines generates an

interrupt every 10 msec. The odometry correction routines are the most time critical set of real-

time routines for Yamabico because they must be able to start and finish within the 10 msec time

interval between interrupts. The timer for the sonar timing is dependent on user supplied sonar

cone configurations: any combination of group 1, 2, and/or 3. (Williams, 1992) The abort

interrupt always carries the highest priority and can be generated through a physical switch on the

robot. The user program interrupt is not a real interrupt, it is the absence of any other interrupts;

however, Motorola documentation treats (0) as an interrupt level strap setting for the CPU

motherboard. Finally, interrupt calls are layered in that masking and interrupting are only one-

way. Figure 9 provides a graphic example of the interrupt levels used for Yam abico- 11. The

numbers in parenthesis are the physical hardware interrupt assignments, those not shown are used

by the hardware system and are not available to the user. The innermost interrupt has the highest

priority and can interrupt any outer interrupt if currently in operation. The rest of this section

provides an overview of both the previous (MML-3) and reengineered (MML-I0) versions of

MML.

23

User Program (0)

Status Trace (I)

Sonar (2)

Odometry (4)

Ab Zrt (7)

FIgure 9: Interrupt Hierarchy

I. Previous MML

The previous version of MML used as the base line of study for this thesis and for the

reengineered version, is called MML-3. MML-3 consists of 21 files: 3 header files, 13 C source

files, and 5 assembly language files. Statistical data and graphs for MML-3 are provided in

Appendix B.

Users write motion and path commands in the form of a C programs in the user.c file.

(MacPherson 1993) The bulk of the functions that provide motion and path commands are

predominately located in loco.c, track.c, and geom.c. These files contain the bulk of the

Yamabico user command set and command queuing functions. The system kernel uses the rest

of the files for initialization, math coprocessor, input/output, and control for the motors and

sonar. Since MML is ported to a system which does not host an operating system such as UNIX,

library functions for input/output, memory management, and math must be hand coded.

24

Static analysis of these files revealed that MML-3 has poor functional modularity and

is difficult to read. The files were organized and named from an engineering conceptual point of

view based on path planning technologies, instead of from a functional point of view that

maximizes sound SE principles. Many of the files contain functions and variables that were

haphazardly l•aced. Functions that present modular encapsulation properties, such as for queue

operations, were dispersed through several files. Some variable names had synonym names

elsewhere. Redundant constants, variables, and functions exist. The mml.h file was used as one

large file to force global visibility for macros, functions, structures, and variables. And, with

minimum use of function parameters and extensive use of global variables, MML-3 was weakly

cohesive and tightly coupled. A high-level modular design based on functionality relevant to the

hardware system and sub-systems was never performed.

In a real-time system, use of global variables can be a necessity to avoid context

switching overhead associated with function calls, and the delays associated with passing data by

value or reference through a function call-stack frame. However, global variables should be

limited to those that are directly manipulated by the time sensitive routines or those that must

share data among time critical processes, which for the Yamabico robot are those that perform

the odometry correction and sonar processing. As the single largest contributor to unreliability,

making a variable global should be a last resort to maintain strict timing constraints. In addition,

periodic fine tuning for global variable reduction should be performed every time the system is

enhanced by improved technology, such as a faster system clock speed, improved CPU

architecture, or better optimized compilers.

Due to the size and scope of the MML system, the reengineering effort focused on

modifiability, by establishing a high level modular design that allows structural change while

preserving functionality. Global-variable resolution was limited to identification land isolation

for future fine tuning.

25

2. Reengineered MML

The reengineered version of MML is now called MML-10. MML-10 consists of

approximately 115 files: 34 header files, 33 C source files, 8 assembly language files, and 40 log

files. The log files do not contribute to the MML system operational code, but rather towards

documentation and historical information. Statistical data and graphs for MML- 10 are provided

in Appendix C.

Table 1 provides statistical data collected from Appendices B and C to compare total

system size, average file size, and the file size standard deviation of MML- 10 vs. MML-3. As can

be seen from the file size data, the MML-10 version of the code has been spread out in a more

even fashion. All functions and macros were placed in modules in a functional manner, and

associated with a particular sub-system. The largest header files are the system header files for

structures, constants, and variables. The two large module header files are OutputlO.h, that

contains extensive macros; and spatial.h, which is currently just a research module and not used

in the robot. Also, by reviewing the contents of the C source files, the largest files are those that

have either extensive mathematical functions or functions that are very lengthy.

Table 1: File Size Comparisons

MML-3 MML-10

Total System Size 252216 265631

Average File Size 12010 3541

File Size Standard Deviation 9897 4352

Figure 10 on the next page shows the high level modular design outline used to

decompose and restructure MML-3. The files were created during reengineering.

26

1. System

A. Header files: mml.h - suructures.h - constants.h - variables.h

11. Sub-Systems

A. Wheel System
WheelSys.h WheelSys.c WheelSys.asm.s WheelSys.log
WheelMeters.b WheelMeters.c WheelMerers.log

WheelLog.c WheelLog.log

B. Sonar System
SonarSys.h SonarSys.c SonarSys.asm.s Sonarsys.log
SonarAvoidance.h SonarAvoidance.c SonarAvoidance.log
SonarCard.h SonaiCard.c SonarCard.log
SonarlO.h SonarlO.c SonarlO Jog
SonarLog.h SonarLog.c SonarLog.log
SonarMath.h SonarMath.c SonarMath.log

C. Computer System
ComputerSys.h ComputerSys.log
Math6888 I h Math68S8 I.asm.s Math6888 I log

IOSys.asm.s IOSys.log
ProcArch.asm.s ProcArch.Iog

InputlO.h InputlO.c InputlO.log
OutputlO.h OutputlOxc OutputlO.asm.s OutputlO.log
MemSys.h MemSys.c Memsys.log
AuxIO.h AuxIO.c Aux.IO.log

D. Motion System
MotionSys.h MotionSys.log
PathPlan.h PathPlan.c PathPlan.log
PathMath.h PathMath.c PathMath.Iog

TransitionMaurix.c TransitionMatrix.log
Cubic.h Cubic.c Cubic.log
ImmCmd.h InimCmd.c ImmCmd.log

Queuexc Queue.log
SeqCmd.c

Geom.h Geom.c Geom~log

E. Utility System
UtilitySys.h Utilitysys.Iog
ConvertUtil.h ConvertUtil.c ConvertUtil .asm.s ConvertUtil.log
Error.h Error.c Error.log
Status.h Status.c Status.log
StringUtil.h StringUtil.c StringUtil.log

TimeSys.c TimeSys.asm.s TimeSys.log
AuxMath.h AuxMath.c AuxMathilog
Main.h Mainxc Main.asm.s Main~log

F. Misc. (Unrefined Research and/or Simulator)
spatial.h spatial.c spatiaL~log

tangent.c tangent log
world.c world.Iog

Figure 10: Module Decomposition

27

MML-10 consists of 271 functions and macros, all of which were displaced based on

the reengineered structure. A complete listing of the reengineered structure with functions and

macros is provided at Appendix D.

To preserve functionality during the restructuring, a header-file include hierarchy was

created as shown by Figure 11. This include hierarchy is part of the incremental modification

method used to reengineer the MML-3 real-time system. Reengineering of mml.h was

accomplished as follows:

First, based on the extern definitions in mml.h, new header files were created to be

consistent with the reengineered module hierarchy structure. Then all extem definitions were

migrated out of mml.h and into the new module header files. Separate header files were then

created to isolate global constants, variables, and structures. Then, subsystem header files were

created. What remained was to modify mml.h to include the global constants, variables, and

structures header files; followed by includes of the subsystem header files. The subsystem header

rlies then include the header files of the modules that make-up the subsystems. The new structure

and nesting of the include files allowed segmentation of the previous mml.h such that the new

mml.h no longer required modification, encapsulation of include file information was now

modular, more visible, readable and consistent, and functionally the same as the previous mml.h

after compilation. It is important to point out that this include hierarchy substantially eased the

reengineering effort and improved modifiability; however, the final phase requires the xxx.c files

be modified to include only those module header files required.

28

Header File Include Hierarchy

mmnl.h includes:
structures.h
constants.h
variables.h
WheelSys.h
SonarSys.h
ComputcrSys.h
MotionSys.h
UtilitySys.h

WheclSys.h includes:
WheelMeters.h
WhccLLog.h (not yet)

SonarSys.h includes:
SonarAvoidance.h
SonarlO.h
SonarCard.h
SonarMath.h
SonarLog.h

MotionSys.h includes:
PathPlan.h
PathMath.h
Cubic-h
ImmCmd.h
Geomn.h

ComputerSys.h includes:
ComputerSys.h
Math6888 1 h
InputIO.h
OutputlO.h
MemSys.h

UtilitySys.h includes:
ConvertUtil.h
Error-h
Status.h
StringUtil.h
AuxMath.b
Main.h

All xxx~c files include mml.h

Figure 11: Header Include Hierarchy

29

3. Comparison of Previous vs. Reengineered versions

Comparing the previous version with the reengineered version reveals the answer to the

first research question of this thesis: can significant measurable improvements be made through

reengineering with a focus on modifiability. It is important to point out here that this thesis was

started using MML-3 as the base line of study for an evolving developmental system. Therefore,

the comparisons are made using MML-3 and MML-10. However, MML-10 reflects new

functionality (cubic spiral path tracking functions) and minor modifications added to other

versions between MML-3 and MML-10. The structural changes reflected in MML-10

encapsulate the functionality of the MML-8 and MML-9 versions.

The measurable improvements can be found by comparing the statistical data provided in

Appendices B and C. The data shows that MML-10 has 54 more files than MML-3 with an

increase of 13415 bytes in total system file size. The increase in file count was expected in order

to achieve better modularity and improved readability. However, several reductions were

accomplished consisting of: a reduction of 281 total lines of code, a reduction in average file size

of 8469 bytes, a reduction in the average number of functions per file by 9, and a reduction in

average lines of code per file by 148. The reductions achieved provide better modifiability by

improving modularity and readability. Also, by locating and removing redundant code, dead

code, and synonymous variables, MML- 10 is inherently more robust than MML-3. The increase

in total file size was due to the offset of the development team adding functionality from MML-

3 to MML-10. This increase in functionality somewhat countered the effects of redundant and

dead code elimination, and slightly distorts the accuracy of the statistical data provided. However,

considering the size of MML the distortion presented by the added functionality is insignificant

relative to the reductions in average file sizes, average number of lines of code, and average

number of functions per module. Therefore, if functionality would have remained the same, the

only increase would have been the total file count.

30

The method used to count lines of code sometimes raises credibility issues as to what is

a line of code. Does the count include blank lines and comments in addition to a line of code. If

one line of code is spread across several lines, does it count as one or all the lines it occupies? The

method used to count the lines of code reflected in Appendices B and C, was through the use of

the UNIX tools n1 and grep. (UNIX, p. 1-340 and 1-217, 1990) The command grep -c ';' *.h *c,

was used to count lines of code in both the header and C source files, assuming a semicolon

provides a fairly accurate count of a line of code for C source code. Therefore if one long line of

code is spread across several lines, it gets a count of one. To count the lines of code in the

assembly language files, the difference was calculated between the lines reported from the n1 *.s

command and the grep -c "\</#]' *.s command. The n1 command produces a line count of an

ASCII file that does not count blank lines; the complicated grep command provides a count of

assembly language comment lines. The total non-blank lines in the file minus the comment lines

equals the total lines of code for assembly language source code.

C. TRANSISTION TO REENGINEERED SYSTEM

Although not an easy task, transition to the reengineered version of MML seemed easy

because of the effort to work with developers as modifications were made, and by preserving

system functionality during reengineering. One hardship incurred was that developers who used

the previous version (MML-3) must reorientation themselves by learning the reengineered

version: structure, modularity, function mapping, etc. To ease this transition, a database was used

to map the functions from their old locations to their new locations. The database can be used to

aid a developer in tracing function movements and understanding the new systems modularity. A

module decomposition and system level hierarchical design was created, analyzed, and

coordinated with the group before structural changes were made, and updated as structural

refinements were conducted. As incremental structural changes were made, all members were

notified of the changes. Finally, a comprehensive system manual was established and is being

written for reference by all developers, which will include the module decomposition,

hierarchical design, and function map. The system manual will document the Yamabico- 11

31

hardware and software, and provide user, operator, implementer,. Ad tester manuals in addition

to research theory for path planning technologies and SE paradigms.

D. TRANSFORMATION VALIDATION

Validating a reengineered transformation requires significant testing at all levels: unit-level,

integration-level, and system-livel testing. However, unit and integration-level testing are less

importance with a reengineered system as compared to new system. For a reengineered real-time

system, unit-level and integration-level testing are best during the end of the reengineering effort,

and as an aid to solving reliability anomalies (such as changing variable scope or structure that

now causes system failure) that did not surface until reengineering started. Also, if the

reengineered system represents significant changes in structure, most existing unit and

integration-level test harnesses will be useless or in need of reconstruction (i.e., the reengineered

structural change no longer allows useful testing of existing test harnesses because of function

and/or variable displacement, however functionality of the previous test harnesses may be used

to reconstruct new ones). Finally, unit-level and integration-level test harness construction

requires a significant amount of time that cuts sharply into the precious time spent acquiring a

functional reengineered system. Eventually, unit and integration-level test harnesses need to be

constructed for all modules, but can be built as needed and the end of the reengineering effort for

full SE compliance (modifiable, modular, robust, and readable).

System-level testing is the most important validation testing for a reengineered real-time

system. The reason system-level testing is the most important is because functionality

preservation always carries the highest priority during the reengineering effort. With preservation

of functionality at the highest of priorities, testing at the system level needs to be exercised often

as the system undergoes incremental change during the reengineering effort. In addition to

validating functional equivalence, validation of ease of modification is also important for the

reengineered system. Validating ease of modification helps to measure the quality of modularity

32

and structure design. The next sections discuss how MML was validated for functional

equivalence and ease of modifiability.

1. Validate MML Functional Equivalence

Validation of functional equivalence for MML was somewhat complicated. It was

infeasible to conduct unit-level testing because the time needed to construct test harnesses that

could exhaustively exercise 271 functions exceeded the research time available. In addition, the

reengineering effort did not alter any functionality of the existing functions; reengineering

changes were limited to structure changes with redundant and dead code removal. Therefore, it

was assumed that all functions were previously validated. However, unit-level testing still needs

to be developed for each of the modules created. It is noteworthy to point out that previous unit-

level test harnesses do not exist and their absence can partially be blamed on the construction

difficulty presented by the previous poor modular design, which lacked functional modularity

and exhibited strong coupling with weak cohesion. Also, the reengineered version now lends

itself more easily for unit-level test harness construction. Integration-level test harnesses were

also non-existent. The only testing facilities available to validate functional equivalence were

user programs written to exercise motion control and demonstrate path movement.

Therefore, testing MML-10 was validated for functional equivalence at the system

level using the user programs that exercised motion control and path movement. This a very

tedious process involving making incremental structural changes, then compiling, down loading,

and run-time testing the changes made. Having 271 functions available for execution, this kind

of testing will not tax them all, nor will it adequately cover the scope for input/output data set

verification. However, this method of testing did help to ensur strIctural changes did not impair

important expected behavior., of the robot and was useful to isolate structural changes that did.

Based on the testing facilities available and the fact that the reengineered version did not alter

previous function functionality, the reengineered version (MML-10) is functionally equivalent to

the previous version (MML-3).

33

2. Validate MML Ease Of Modifiability

Validation of ease of moduication lies mostly with the structural changes that reflect

good modular design and improved readability in the reengineered version (MML- 10). By having

a high-level design based on the hardware system and its sub-systems, with reasonably-sized

modules that have consistent and meaningful names, code is significantly easier to locate when

changes are desired or when bugs need to be traced. By possessing the features of strong cohesion

and loose coupling, modules can be modified more easily by many developers of a team with less

fear of side effects and with a higher confidence in run-time reliability, making the system

inherently more robust. The header-file include hierarchy allows module headers to be more

easily constructed and modified, then added or subtractci from the overall system with minimum

changes in the makefile (a C compiler file used to define compilation instructions). By careful

placement of code and stabilization of header file definitions, the compile-download-execute

time cycle has been substantially improved because the whole system no longer requires

compilation every time a change is made.

This chapter described the Yamabico- 11 hardware system, the MML software system, and

the reengineering effort. In addition, this chapter presented how MML was reengineered,

provided comparisons between the previous and reengineered versions, discussed transition steps

taken with respect to the reengineered version, and the process used to validate functional

equivalence and ease of modification of the reengineered version.

34

V. SUMMARY AND CONCLUSIONS

A. REENGINEERED CHANGES

The highlight of reengineering for MML is the nice structure formed and the modular

design. All modules now exhibit loose coupling and tight cohesion. All modules are functionally

complete. A consistent naming convention was established. All global constants, variables, and

structures were identified and localized at the system level. An include hierarchy was created

through nested calls to improve modifiability and readability, which both contribute to ease of

maintenance and reliability. The size of the new modules and organization lends the MML

system substantially easier to read, modify, and maintain. Also the functional completeness of

modules allow for easier and quicker co-development by a many member team with minimum

interference or side effects. The new structure has significantly reduced the code and compile

cycle time.

In addition, journal files were created for each new module with a filename the same as the

module and a filename extension called log. The journal files provide a handy way to document

changes made and provide a historical reference for each module. A bug journal (called Bugs.log)

was also created as a means to coordinate with the group as a whole concerning problems and

potential problems for the entire system.

Finally, the reengineered MML is now in a form that lends itself more easily for

transformation into C++ or Ada. For C++, the current module header files would need to be

converted to prototypes and encapsulated classes. The C++ transformation would allow an object

oriented approach that is consistent with the modular design. For Ada, the header files could be

used to generate the specifications and the C source files could then be used to generate the

procedure/function bodies. The modules could then be packaged as needed. An Ada

transformation would allow exploitation of total concurrency through tasking (which can also be

35

strapped to hardware interrupts through representation clauses), and easier exception handling.

Either transformations would provide enhancements through the special features the of the

languages used.

B. BENEFITS OF REENGINEERING

The most important benefits attained by reengineering is transforming a system into one that

conforms to sound SE principles. This is a long-term payoff that maps a worthwhile system into

one that is competitive, portable, flexible, and easy to maintain and enhance. A system whose

maintainability and ease of enhancement are not dependent on the institutional knowledge of the

development team or the individual programmer. A system whose evolution dependencies are

primarily oriented toward hardware technology and compiler efficiency. The resultant system

helps reduce the cost and time involved with maintenance. All of these positive assets can be

achieved through reengineering with a focus on modifiability.

"This thesis has therefore answered the two research questions presented.

1. Given an existing real-time system designed without applied SE, significant

improvements can be achieved by reengineering with a focus on modifiability. Significant

improvements reflected by the improved structure and modular design, the degree of improved

coupling and cohesion, and the higher confidence in run-time reliability. Also, improved

modifiability and readability reflected by reductions in the average module size, average lines of

code per module, and average number of functions per module. By making modifiability the

focus of reengineering a real-time system, optimization of structure and modularity becomes

more intuitive, identification of poor coupling and cohesion becomes more obvious, and

improved readability becomes almost a complete derivation.

36

2. Reengineering is feasible for an evolving developmental real-time system, considering

the systems real-time constraints, the target systems development environment, and the current

implementation. By reengineering structural changes so that modules encapsulate hardware

driving functionality, real-time constraints are easier to maintain and fine-tune. The development

environment needs to be carefully coordinated so that all developem, are working with the same

version, do not interfere with each other, and do not experience wasted time. As long as the

hardware used is stable, and all developers exercise cooperative coordination, reengineering the

current implementation is very feasible. By liiiting reengineering changes to structural changes

with redundant and dead code removal, reengineering will not cause undesirable changes in

functionality or hinder system performance; instead, it will help locate sections of code that

contribute to unreliability and improve readability. With effective coordination, it is feasible to

reengineer a real-time system concurrently with a team of several research developers. Finally,

SE can be applied either at the very beginning of the development cycle, or after fielding of a

system designed and implemented without SE.

C. FUTURE RESEARCH

This has been a very rewarding resear.:.h project that has provided tangible results (success

is visible on the Yamabico- I1 robot). If more time were available, global variable reduction or

elimination could be conducted for all of the MML system, unit and integration-level test

harnesses could be built, the MML code could be made ANSI-C-compliant, assembly language

modules could be minimized or eliminated through transformations to C, and the MML system

could be converted to run on the SPARC architecture (a near future upgrade currently scheduled

to replace a Motorola 68020 architecture).

As for future research, one area that would have been valuable for Yamabico and real-time

system research is the benefit of development from the perspective of a development

environment. An environment that provides cross-compiler technology and comes with standard

libraries that support ROMable code, transparent initialization, memory management, input/

37

output, and math functions; eliminating the need to hand code these in C or at the assembly

language level. An environment that supports both C and C++ compiling with meaningful

reported errors and warnings performed both on syntax and semantics. An environment that does

not force the developer to become dependent on cryptic makefiles for application building. An

environment that provides remote symbolic debugging to speed the trace of real-time timing

constraint violations and general debugging. The current disadvantage presented to the Yamabico

team is that the desired research is more oriented towards path-planning technologies; however,

considerable research time gets spent due to the weakness of the development environment.

Another area of rese rch that would be valuable to both Yamabico and real-time research is

tasking through Ada, which is currently infeasible due to resource constraints. Two alternatives

exist to execute Ada code on Yamabico, either host UNIX on the robot or use the cross-compiler

technology already mentioned.

Hosting UNIX on the robot is not the best approach for several reasons. First, it would

require mounting a mass storage device such as a hard drive on the robot. Mounting a mass

storage device on the robot increases the overall weight of the robot and the demand for power,

which is already in short supply. In addition, hosting UNIX to access Ada tasking will not allow

Ada to directly access to the hardware. Ada representation clauses used to map hardware

interrupts or system memory are implemented through system addresses. Ada programs gain

access only by permission and after review by UNIX. UNIX is a multi-user operating system

written to execute several user programs. UNIX is also a protected system written to limit access

to critical resources. Therefore, UNIX is a barrier between the application wanting direct access

and control of the hardware, and the actual hardware itself. For hardware control applications that

have lax timing constraints or do not have time-sensitive operations, this may be acceptable.

However, for hardware control applications that have strict real-time constraints, like Yamabico-

11, this is unacceptable. Finally, besides not having direct access to the hardware, hosting UNIX

forces two levels of context switching: UNIX system and applications context switching and Ada

task context switching. Two levels of context switching distorts concurrency analysis of a real-

38

time system that would be preferred to be relative to the Ada application alone. Figure 12 shows

the barrier hosting UNIX presents, in that the users program can only access the hardware

indirectly through the operating system, and concurrency analysis for the real-time system is

distorted due to the two levels of context switching.

Ada Application I CS2

UNIX
CSI

ROM Monitor

Hardware

Ada Application 2 2

CSi: Context Switching level i

Figure 12: UNIX Barrier

Embedded system development is the best approach, but requires the purchase of cross-

compiler technology. Embedded system development allows an application to be truly plugged

into the system hardware, freeing the developer to control all aspects of the hardware using a

high-level language suited for the job such as Ada. Ada representation clauses can be assigned to

actual memory addresses and physical hardware interrupts. Context switching is reduced to a

single level thereby removing distortion in concurrency analysis associated with the UNIX

operating system. In addition, concurrency for non-hardware interrupt driven tasks could be

written, which for the current Yamabico- 1 I and MML- 10 do not exist. An Ada embedded-system

development environment would encourage experimentation and analysis of task-scheduling

39

algorithms and mixed-mode preemptive vs. non-preemptive tasking. And, an Ada embedded-

system developmcnt environment would not limit the number of concurrent tasks to the number

of system hardware interrupts available, which limits the current implementation of MML for

Yamabico-1 1. Figure 13 demonstrates the beauty of barrier-free Ada application that has direct

access to the hardware and single level context switching. A barrier-free Ada application can only

be accomplished through the use of an Ada embedded system development cross-compiler.

CS'

Ada Application

ROM Monitor

Hardware

CS,: Context Switching level i

Figure 13: Barrier Free

40

APPENDIX A - Locoxc Map

-J I-

IC

a-SO

u0

I T
E

E

EL.

EJ

2 I

_ c
E0_ _ _ _ _

c,
:3

2

0U)

41

APPENDIX B - MML 3 Statistics

MML-3 Files File Size Functions Lines of Code
spatial.b 2251 0 34

cst.h 8323 0 1

mml.h 20384 10 230

iocrace-processor.c 1547 0 39

world.c 7196 7 65

control.c 7156 7 96

geom.c 7139 21 113

utilities.c 13759 11 89

intersection.c 14019 5 164

ieave..point.c 18347 5 251

rosyio.c 14945 46 243
track.c 15694 12 277

Ioco.c 23003 38 351

main.c 24672 22 552

sonar.c 41937 36 529

user.c 1012 1 30
motor.s 1600 1 72

math.s 2705 11 162

rosyio.asm.s 6735 4 261

init.s 9004 12 299

interrupt.s 10788 4 343

MML-3 File Sizes
Mean 12010.28571

Standard Error 2159.911415
Median 9004

Standard Deviation 9897.957553
Variance 97969563.71

Kurtosis 2.873049978

Skewness 1.435257463

Range 40925

Minimum 1012

Maximum 41937

Sum 252216

Count 21

42

MML-3 Functions
Mean 12.04761905
Standard Enor 2.905230251
Median 7
Standard Deviation 13.31343754
Variance 177.247619
Kwtosis 1.297452399

Skewness 1.454556648
Range 46
Minimum 0
Maximum 46
Sum 253
Count 21

MML-3 Lines of Code
Mean 200.047619

Standard Error 34.16448143
Median 164

Standard Deviation 156.5613222
Variance 24511.44762
Kurtosis 0.191734028
Skewness 0.836164898
Range 551
Minimum 1
Maximum 552
Sum 4201
Count 21

43

MML-3 File Size Distrbution

ifteics

rosyio~asni.s
oath~s

mocir.s

sonarxc
mainmc
loco.c

track~c
rosyio.c

leave-.poinl .c
iniersectim~c

geome~
cmirolic

wcxld.c
loc-traceJprvcessor.c

inml.h
cstI)

spatial.h I

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

44

MML-3 Function Distrbution

intemfup.s E
inits

rmsyio.asmls
uiatb.s

soirw.c
Erain.c

tmck
rosyio~c

leav..poinu~
intersectiati.c

ltilities.c

conrmol .c

loc_u-acc..jrc~essor.c
nmini

Cst-b
spatiall

0 5 10 15 20 25 30 35 40 45 50

45

MML-3 lines of Code Distribution

ixcmlr.s

user.c

mainac

Iccio.c

utilities.c
gecin.c

coltod-c
vWNid~C

Iocjmace-purcecssr.c
ningJh

cstib
SxatiallhII

0 100 200 300 400 500 600

46

APPENDIX C - MML 10 Statistics

MML-10 Files iFile Size Functions Lines of codle
world.h 20 0 0

Error.h 27 0 ______ 1

T-imeSys.b 27 0 ______ 1

ImmCmd.h 38 0 1

CoaiputerSys.h 86 0 0

AuxIObh 89 0 ______ 2

MotionSys.b 102 0 0

StringUtiIb 107 2 0

PadiPian.h j 125 0 _ ____ 3

UtilitySys.b 128 0 0

Status.h 153, 0 ______ 3

ConvertUtil.b 159 0 2

WheelMeters.b 1 174 0 _______3

PathMath.h 190 0 5

Matb68881.h 218 0 _______3

SonarAvoidance.b 219 0 6

Main.h 241 2 0

Cubic.b 259 0 8

SonarLog.b 1 297 0 4
SonarIO.h 300 01 4

SonarSys.h I 320 0l 3
AuxMath~h 327 9 0

SonarMath.b 350 0 10

Whee]Sys.b 365 ______0 7

Geomii 417 _____3 6

MemSys.h 44 3 7
InputIO.b 1 486 ______3 3

SonarCard.h 1 486 ____ 0 9

mmnl.h 873 ____0 7

OutputlO.h J 2041 19 5
spatiallh I 2240 0 34
Variables.b 1 5493 0 113

Constants.h 5900 0 0

,Structures.h I 6360 0l 77

47

MML-10 Files File Size: Functions Lines of coe
StingUtil.c 255[2 6

OutpudO. 465; 1 5

AuxMath.c 495 1 7

Error.c 683 1 8
AuxIO.c 981 1 4

CoavertUtil.c 1001 1 21
user.c 1220 1 18

Status.c 23931 3 37

MemSys.c 2678 8 74

PathPlan.c 3121 5 38
SonarAvoidance.c 3240 6 37

WbeefLo2.c 42501 5 58

Geom.c 45021 11 56

TimeSys.c 4516! 7 77

SonarLog.c 449 3! 4 41

InputlO.c 4930! 4 77

SonarlO.c 5043 4 81

tangent.c 5306 3 42

spatial.c 5337 5 33

ImmCmd.c 5781 12 55

SonarSys.c 5932 4 76

Queue.c 6581 3 134

TransitionMatrix.c 78811 4 109

CubicCst.c 83231 0 1
world.c 83361 8 83

SonarCard.c 89A21 9 91

WheelMeters.c 10173 8 149
WheelSys.c 12100 11 155

Cubic.c 13489 8 144

SeqCmd.c 13782 18 156

SonarMath.c 15536' 10 212

PathMath.c 162081 15 207

Main.c 16964i 15 411

TimeSys.asm.s 460 1 14
WheelSys.asm.s 1600 1 57

OutpudO.asm.s 1827 1 56

Math68881.asm.s 2705 11 155

ProcArch.asm.s 3172 5 73

ConvertUtil.asm.s 3989 2 96

Main.asm.s 8567 5 189

IOSys.asm.s 8961 6 250

48

MML-10 File Sizes
Mean 3541.746667
Standard Error 502.6322959

Median 1600
Mode 27
Standard Deviation 4352.92337

Variance 18947941.87

Kurtosis 1.573204792
Skewness 1.47317113
Range 16944
Minimum 20
Maximum 16964

Sum 265631
Count 75

MML-IO Functions
Mean 3.613333333
Standard Error 0.534534683
Median 2
Mode 0
Standard Deviation 4.629206147
Variance 21.42954955

Kurtosis 1.873659105
Skewness 1.520305396

Range 19
Minimum 0
Maximum 19
Sum 271
Count 75

49

MML-IO Lines of Code
Mean 52.26666667
Standard Error 8.498422394
Median 14
Mode 0
Standard Deviation 73.59849685
Variance 5416.738739

Kurtosis 7.091089635

Skewness 2.297196259

Range 411
Minimum 0
Maximum 411

Sum 3920

,Count 75

50

MMIAO. Mie Six Dishribiicn

mdii

Smm~ghh

Mu~nh
MmUAIdyrh

clat~umb

WWaeSysiiI
bomrat I~
TimhS3 I

s~th

0al~ I I X XJ 400 51 X) XX

Sm~51

MMIAIO File SM ~sbibuio (Cauthma"k)

Ntinagns
cha~t a~wns

Pm-du

slnwf~hc

VoqfrdS>c

vm~rMtcL'.c

Rwsidc

Qiic];.c

hmtIbdc

&nuiri

ciicm

SnrAvidu=.c

(bmIMu.c

cih wui.c
Amd~c

0 W 400D RXD M3X I=T IM M41 16 IM ~

52

M ML-10 Function Distribution

Stiaucis~h
Coastarns.b
Variable sii

spatialii
OutputlOii

mmlii
SonatCardii

InputIO.li
MemSysii

Geom.h
Whcec Sys.h

SonarMath.h
AuxM atb.b
SonarSys.h
SonarlO.h

SonarLog.h
Cubic .h
Main.h

SonarAvoidancei
Math16888 Iii

PathMath.h
WbeelMeters.b

ConvertUtillb
Status.b

UtilitySysii
PatbPlan~h

StringUtillh
MotionSysii

AuxlOii
ComputerSys.h

lmmCnid.h
TimeSys.h

Error-b
worid.h

0 2 4 6 8 10 12 14 16 18 20

53

M?" L-10 Function Distribution (Continuation)

IOSys.asm.s
Main asm.s

ConvertUtil.am~s
Proc Arch asm .5

Math68881 .asm .s
QutputlOasm .s

WheelSys~asms.
TimeSys.asm.s

Mainxc
PathMath.c

SonarMath.c
SeqCmd.c

Cubic.c
Wheel Sys.c

WheelMeters.c
SonaiCard.c

world.c
CubicCstx.

TransifionMatrixxc
Queue.c

SonarSys.c
ImniCmd.c

spatial.c
tangent c

SonarlOx
TnputlOxc

SonarLog.c
TimeSys.c

Geom.c
W beelLog.c

SonarAvoidancecx
PatbPlanxc
McmSys.c

Status.c
userxc

CoavertUtil .c
Aux]O.c

Erfror.c
AuxMatb.c
OutputJOx

StringUtil.c

0 2 4 6 8 10 12 14 16 18

54

M M L-10 Lines of Code Distribution

Structures.h
Constants~h
Variables.h

spatiallh
QuipuilO .b

mm I.b
SonarCardlb

InpuulO.h
MemSys.h

Geom.b
WbeelSys.b

SanarMath.h
AuxMaib.b
SonarS ys .b
SonarlO Ii

SonarLog.b
Cubic .b
Main.b

SonarAvoidance .h
Matb6S88l .b

PatbMath.b
WheelMeters.h

ConvertUtillb
Status.h

UtilitySys.h
PatbPlan.h

StringUtiIlh
MotionSys.h

AuxIO.b
ComputcrSys.h

ImmCmd.h
TimeSys.b

Error.h
world.h

0 20 40 60 80 100 120

55

M ML-10 Lines of Code Distribution

(Continuation)

lOS ys.asm.
Main.asm .s

ConvertUtal.asm.s
ProcArch.asm .s

Math6888l asm.s
OutpuulO.asm.s

WheclSys.asm .s
TimcSys asm .s

Main .c
PathMath.c

SonarM ath.c
ScqCmd.c

Cubic.c
WheelSys.c

WhcctMctcrs.c
SonarCard.c

world.c
CubicCst .c

TransifionMatrixx
Queue.c

SonarSys.c
ImmrCmd.c

spat ial.c
tangent.c

SornarIOx.
InpuzlO.c

SonarLog.c
TimeSys.c

Geom.c
WheelLog.c

SonarAvoidance .c
PathPlanx.
MMmSys.c

Status.c
userxc

ConvertUt ii
AuxIQ.c

Effor.cJ
AuxMath.c
OutputloxcI

0 50 100 150 200 250 300 350 400 450

56

APPENDIX D - MML 10 Function Displacement

Wheel System

WheelLog.c loc-troff()
WheelLog.c loc-trjdumpo
WheelLog.c loc-tr~resume()
Wheel~og.c Ioc..tron()
WheelLog.c storejoc_tracejiata()

WheelMeters.c correct~odometry...error()
WheelMeters.c geLrobok-speed()
WheelMeters.c get rotationalvyel()
WheelMeters.c get~velocity()
WheelMeters.c pwm lookupo
WheelMeters.c read(left wheel-encoder()
WheelMeters.c readjright .wheel~encoder()
WheelMeters.c readjotate()

WheelSys.asm.s motor
WheelSys.c control()
WheelSys.c end~ofmotion()
WheelSys.c get-initial-position()
WheelSys.c initialize-current~confO
WheelSys.c limit()
WheelSys.c reporLconfiguration()
WheelSys.c res' 3f..path()
WheelSys.c upoadte..delta.d()
WheelSys.c updatejmage()
WheelSys.c update...kappa()
WheelSys.c update...vel()

Sonar System

SonarAvoidance.c avoid-.obstacle()
SonarAvoidance.c disable...obstacle-avoidance()
SonarAvoidancexc disable...wallfollowing()
SonarAvoidance.c enable...obstacle_avoidance()
SonarAvoidance.c enable...walLfollowing()
SonarAvoidance.c wall-follow()

SonaxCard.c disable.-ntemiupLoperation()
SonarCard.c disable-Jinearjfitting()
SonarCard.c disable..sonar()
SonaiCard.c enable-interupLoperation()
SonarCard.c enable-linearjitting()
SonarCard.c enable...sonar()
SonarCard.c reset-accumulators()
SonarCard.c serve...sonar()
SonaxCard.c waiLsonar()

57

SonarlO~c host~xfer()
SonarlO.c xfer-.global-to-.host()
SonarlO.c xfer..raw~tjo.host()
SonarlO.c xfer...segmentjto -host()
SonarLog.c disable...ataJogging()
SonarLog.c enablejlatajlogging()
SonarLog.c log-.data()
SonarLog.c setjogjterval()

SonarMath.c add ..tojine()
SonarMath. c calculate...global()
SonarMath.c end-segment()
SonarMath.c finish~segments()
SonarMath.c geLcuffent-segment()
SonarMat~h.c get..segment()
SonarMath.c global()
SonarMath.c linear fitting()
SonarMath.c sonar()
SonarMath-c start.segment()

SonarSys.c build jist()
SonarSys.c geLsonars-onfig()
SonarSys.c set-parameters()
SonarSys.c update...sonar()

Computer System

ProcArch.asm.s fpc...exception
ProcArch.asm.s i ih
ProcArch.asm.s L~mask
ProcArch.asm.s L~maskoff
ProcArch.asm.s i_maskon

MemSys.c deleteO
MemSys.c Free()
MemSys.c free()
MemSys.c invFO
MemSys.c mallac()
MemSys.c pop()
MemSys.c pusho
MemSys.c release()
MemSys.h Active()
MemSys.h Lbc()
MemSys.h Size()

IOSYs.asm-s ih~jty
IOSys.asm.s i-clock
IOSys.asm.s I_.,wsrial
IOSys.asm.s i..stopwatch
lOSys.asm.s i-timer
IOSys.asm.s reset~timer

58

InputlO.c getc()
InputlO.c getint()
InputlO.c getreal()
InputlO.c getstr()
lnputIO.h bufM()
InputlO.h r...getchar()
InputlO.h whitespace()

OutputlO.asm-s putb
OutputlO.c putstr()
OutputIO.h nil 0 (
Output.O.h n120
OutputIO.h n13()
OutputIO.h nl40
OutputIO.h nlIO
OutputlO.h nInO
OutputlO.h nl._flex()
OutputlO.h nUog()
OutputlO.h printl10
OutputlO.h print icounto
OutputlO.h print2()
OutputlO.h print3()
OutputlO.h print4()
OutputlO.h printfi()
OutputlO.h printfr()
OutputIO.h printloc()
OutputlO.h prifitno
OutputlO.h pfint-lex()
OutputlO.h printjog()

AuxlO.c fatal()

Math68881.s acos
Math68881Ls atan
Math68881Ls atan2
Math68881.s Cos
Math6888 1Ls cot
Matb68881.s exp
Math6888I.s log
Math6888 L.s sin
Math6888 1.s sqrt
Math68881.s tabs
Mat~h68881.s tan

59

Utility System

AuxMath.c ceilO)
AuxMath.h cube()
AuxMath.h d2ro
AuxMath.h max2()
AuxMath.h mnun(
AuxMath.h min2()
AuxMath.h r2do
AuxMath.h SQRO
AuxMath.h sqr()
AuxMath.h SQRTO

ConvertUtfl.asm.s itoa
ConvertUtil.asm.s rtoac
ConvertUtil.c rtoa()

StringUtil.c strcmp()
StringUtil.c strcpy()
StringUtil.h isdigit()
StinngUtil.h point()

Error.c disp....error(

Status.c change_,status()
Status.c display...status()
Status.c enablejiisplay...status()

TimeSys.asm.s ge~time
TimeSys.c input._.time()
TimeSys.c outpuLtime()
TirneSys.c reset clock()
TimeSys.c timeO
TimeSys.c timerO
TirneSys.c waiLtimer()
TimeSys.c wait-untilO)

60

Main.asm.s ih..Aisplaystatus
Main.asm.s ihk-oco
Main.asm.s ih-.sonar
Main.asm.s iwheel
Main.asm.s r-.exit
Mainxc dispjyefposture()
Mainxc exejreal()
Mainxc exe..sim()
Mainxc imaskoff()
Mainxc imaskon()
Mainxc icontrol()
Mainc i-globl()
Mainc iUoco()
Mainxc Lport()
Manic ireal()
Mainxc i-sim()
Mainxc i-var()
Mainxc i...var...sim()
Mainxc main()
Mainxc stepper()
Main.h JUMPUSERO
Main.h r...exito[SIMI

Motion System

PathPlan.c report..path()
PathPlan.c seLlength...stop()
PathPlan.c waiLpoint()
PathPlan.c wait-segment()
PathPlanxc wait-segmentI 0

TransitionMatrix.c circle_and_circle0
TransitionMatrix.c line-and-circle0
TransitionMatrix.c line-and_lincO
TransitionMatrix.c line...and~parabola()

Queue.c inc...getinst()
Queue.c readjinst()
Queue.c se~_insto

ImmCmd.c accO0)
ImmCmd.c getjineO()
ImmCmd.c get robO()
ImmCmd.c halit()
ImmCmd.c pathr.length()
ImmCmd.c resume0
ImmCmd.c r-accO(
ImmCmd.c rspeedO()
ImmCmd.c seLrobO()
ImmCmd.c size..constO()
ImmCmd.c speedO()
ImmCmd.c stop~o(

61

SeqCmd.c acc()
SeqCmd.c bline0
SeqCmd.c configo
SeqCmd.c fline()
SeqCmd.c lineo
SeqCmd.c marký_motion()
SeqCmd.c parabola()
SeqCmd.c rotate()
SeqCmd.c r...acc()
SeqCmd.c r...speed()
SeqCmd.c seLerror()
SeqCmd.c set-rob()
SeqCmd.c size-const()
SeqCmd.c skip()
SeqCmd.c speedo)
SeqCmd.c switch-dirO
SeqCmd.c synco
Seq'md.c wait-Moton()

Geom.h DIST()
Geom.h EU_DISO
Geom.h PAR_.LN()
Geom.c area0
Geom.c def~configuration
Geom.c def...porabola()
Geom.c def..sym()
Geom.c def..sym 10
Geom.c negate()
Geom.c nnorm()
Geom.c norm(a)
Geom.c normalize()
Geom.c normr~zerojo...pi()
Geom.c pnorm()

PazhMath.c cface20)
PathMath.c comp()
PathMath.c distf()
PathMath.c get-path..jntersection()
PathMath.c get...sjero()
PathMath.c ge~transition-..point()
PathMath.c inverse()
PathMath.c newjieltA...d(
PathMath.c nexto
PathMath.c parallel()
PathMath.c project...path()
PathMath.c transition-poin~test()
PathMath.c zera()
PathMath.c zero()
PathMath.c zerod()

62

Cubic.c advance_cubicjmage()
Cubic.c COWt(
Cubic.C costf()
Cubic.c loolcup()
Cubic.c solve()
Cubic.c solvel10
Cubic-c splitO
Cubic.c update-!subic...image()

User Program

Userxc user()

Miscellaneous non-functional Research Modules

spatial.c Iineariie()
spatial.c ordero
spatial.c orientation()
spatial.c segment...crossing-test()
spatial.c switch-tmodeO

tangent~c common...tangent()
tangent.c is...tangent()
tangent.c tangent()

world.c add-polygon..jo-..world()
world.c add-vertexjto..polygon()
world.c build~world()
world.c create isolated-vertex()
world.c createjline -segment()
world.c create-.polygon()
world.c create vertex...pair()
world.c create-world()

63

REFERENCES

Abresch, R., Path Tracking using Simple Planar Curves, Master's Thesis, Naval Post-
Graduate School, Monterey California, March 1992.

Anderson, T. and Lee, P. A., Fault Tolerance: Principles and Practice, Second Edition,
Springer-Verlag, New York, 1989.

Berzins V. and Luqi, Software Engineering with Abstractions, Addison-Wesley Publishing
Company, New York, 1991.

Freeman P. and Wasserman A., Tutorial on Software Design Techniques, 3rd Edition, p.
434, 1980.

Kanayama, Y., and Hartman B.I., Smooth Local Path Planning for Autonomous Vehicles,
Part I: Symmetricity, Proceedings IEEE Journal of Robotics and Automation, p. 1265-1270,
1989.

Kanayama, Y., Onishi, M., Locomotion Functions in the Mobile Robot Language, MML,
Proceedings of the 1991 IEEE International Conference on Robotics and Automation, p. 1110-
1115, 1991.

Kanayama, Y., MacPherson D., Alexander J., MML Locomotion Functions Using Path
Specifications, Draft MML language design paper, Naval Post-Graduate School, Monterey,
California, 1 February 1993

MacPherson, D, Yamabico User's Manual, Draft Users manual, Naval Post-Graduate
School, Monterey, California, 15 January 1993.

Mizar Inc., VME Quad Serial Port Board, User's Manual, Manual Revision D.0, Board
Revision D, First Edition, 1986.

Parnas D., On the Criteria to be used in Decomposing Systems into Modules,

Communications of the ACM, December 1972.

Parnas D., Designing Software for Ease of Extension and Contraction, IEEE Transactions
on Software Engineering, March 1979.

Stubbs D. and Webre N., Data Structures with Abstract Data Types and Ada, PWS-Kent
Publishing Company, Massachusetts, 1993.

UNIX Reference Manual, Section 1: Commands (cxref), p. 1-124, Solbourne Computer
Inc., Colorado, 1990.

64

UNIX Reference Manual, Section 1: Commands (grep) , p. 1-217, Solbourne Computer
Inc., Colorado, 1990.

UNIX Reference Manual, Section 1: Commands (nl), p. 1-340, Solbourne Computer Inc.,
Colorado, 1990.

Williams, M., Documentation for Yamabico Sonar Ranging Board, Naval Post-Graduate
School Draft Sonar harware user manual, 27 February 1992.

Yourdon E., The Practical Guide to Structured System Design, Prentice-Hall Inc., New
Jersey, 1980.

Yourdon E., Modern Structured Analysis, Prentice-Hall Inc., New Jersy, 1989.

65

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2

Code 052
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code CS 2

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Yataka Kanayama, Code CS/Ka 2

Computer Science Departmant
Naval Postgraduate School
Monterey, CA 93943

Dr Timothy Shimeall, Code CS/Sm 2

Computer Science Departmant
Naval Postgraduate School
Monterey, CA 93943

CPT Randall C Scott 5

4118 Melrose Drive
Martinez, Georgia 30907

66

