
Magnitude-sensitive preference formation

Nisheeth Srivastava∗

Department of Psychology
University of San Diego

La Jolla, CA 92093
nisheeths@gmail.com

Edward Vul
Department of Psychology

University of San Diego
La Jolla, CA 92093

edwardvul@gmail.com

Paul R Schrater
Dept of Psychology

University of Minnesota
Minneapolis, MN, 55455
schrater@umn.edu

Abstract

Our understanding of the neural computations that underlie the ability of animals
to choose among options has advanced through a synthesis of computational mod-
eling, brain imaging and behavioral choice experiments. Yet, there remains a
gulf between theories of preference learning and accounts of the real, economic
choices that humans face in daily life, choices that are usually between some
amount of money and an item. In this paper, we develop a theory of magnitude-
sensitive preference learning that permits an agent to rationally infer its prefer-
ences for items compared with money options of different magnitudes. We show
how this theory yields classical and anomalous supply-demand curves and pre-
dicts choices for a large panel of risky lotteries. Accurate replications of such
phenomena without recourse to utility functions suggest that the theory proposed
is both psychologically realistic and econometrically viable.

1 Introduction

While value/utility is a useful abstraction for macroeconomic applications, it has had little psycho-
logical validity [1]. Valuations elicited in laboratory conditions are known to be extremely variable
under different elicitation conditions, liable to anchor on arbitrary observations, and extremely sen-
sitive to the set of options presented [2]. This last property constitutes the most straightforward
refutation of the existence of object-specific utilities. Consider for example, an experiment con-
ducted by [3], where subjects were endowed with a fixed amount of money, which they could use
across multiple trials to buy out of receiving an electric shock of one of three different magnitudes
(see left panel in Figure 1). The large systematic differences found in the prices for different shock
magnitudes that subjects in this study were willing to pay demonstrate the absence of any fixed psy-
chophysical measurements of value. Thus, while utility maximization is a mathematically useful
heuristic in economic applications, it is unlikely that utility functions can represent value in any
significant psychological sense.

Neurological studies also demonstrate the existence of neuron populations sensitive not to absolute
reward values, but to one of the presented options being better relative to the others, a phenomenon
called comparative coding. Comparative coding was first reported in [4], who observed activity in
the orbito-frontal neurons of monkeys when offered varying juice rewards presented in pairs within
separate trial blocks in patterns that depended only on whether a particular juice is preferred within
its trial. Elliott et al. [5] found similar results using fMRI in the medial orbitofrontal cortex of human
subjects a brain region known to be involved in value coding. Even more strikingly, Plassmann et
al [6] found that falsely assigning a high price to a particular item (wine) caused both greater self-
reported experienced pleasantness (EP) (see right panel of Figure 1) and greater mOFC activity
indicative of pleasure. What is causing this pleasure? Where is the ‘value’ assigned to the pricier
wine sample coming from?
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Figure 1: Valuations of options elicited in the lab can be notoriously labile. Left: An experiment
where subjects had to pay to buy out of receiving electric shock saw subjects losing or gaining
value for the price of pain of particular magnitudes both as a function of the amount of money the
experimenters initially gave them and the relative magnitude of the pair of shock options they were
given experience with. Right: Subjects asked to rate five (actually three) wines rated artificially
highly-priced samples of wine as more preferable. Not only this, imaging data from orbitofrontal
cortex showed that they actually experienced these samples as more pleasurable.

Viewed in light of these various difficulties, making choices for options that involve magnitudes,
appears to be a formidable challenge. However humans, and even animals [7] are well-known to
perform such operations easily. Therefore, one of two possibilities holds: one, that it is possible,
notwithstanding the evidence laid out above, for humans to directly assess value magnitudes (except
in corner cases like the ones we describe); two, that some alternative set of computations permits
them to behave as if they can estimate value magnitudes. This paper formalizes the set of computa-
tions that operationalizes this second view.

We build upon a framework of preference learning proposed in [8] that avoids the necessity for di-
rect utile estimation and develop a model that can form preferences for quantities of objects directly
from history of past choices. Since the most common modality of choices involving quantities in
the modern world is determining the prices of objects, pricing forms the primary focus of our exper-
iments. Specifically, we derive from our theory (i) classical and anomalous supply-demand curves,
(ii) empirically observed discrepancies between willingness-to-pay and willingness-to-accept, and
(iii) choice predictions for a large panel of risky lotteries. Hence, in this paper we present a theory
of magnitude-sensitive preference formation that, as an important special case, provides an account
of how humans learn to value money.

2 Learning to value magnitudes

2.1 Rational preference formation

Traditional treatments of preference learning (e.g. [9]) assume that there is some hidden state func-
tion U : X → R+ such that x ≻ x′ iff U(x) > U(x′) ∀x′ ∈ X , where X is the set of all
possible options. Preference learning, in such settings, is reduced to a task of statistically esti-
mating a monotone distortion of U, thereby making two implicit assumptions (i) that there exists
some psychophysical apparatus that can compute hedonic utilities and (ii) that there exists some
psychophysical apparatus capable of representing absolute magnitudes capable of comparison in the
mind. The data we describe above argues against either possibility being true. In order to develop
a theory of preference formation that avoids commitments to direct utile/magnitude estimation, a
novel approach is needed.

Srivastava & Schrater [8] provide us with the building blocks for such an approach. They pro-
pose that the process of learning preferences can be modeled as an ideal Bayesian observer directly
learning ‘which option among the ones offered is best’, retaining memory of which options were
presented to it at every choice instance. However, instead of directly remembering option sets, their
model allows for the possibility that option set observations map to latent contexts in memory. In
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practice, this mapping is assumed to be identitied in all their demonstrations. Formally, the com-
putation corresponding to utility in this framework is p(r|x, o), which is obtained by marginalizing
over the set of latent contexts C,

D(x) = p(r|x, o) =

∑C

c
p(r|x, c)p(x|c)p(c)
∑C

c
p(x|c)p(c|o)

, (1)

where it is understood that the context probability p(c|o) = p(c|{o1, o2, · · · , ot−1}) is a distribution
on the set of all possible contexts incrementally inferred from the agent’s observation history. Here,
p(r|x, c) encodes the probability that the item x was preferred to all other items present in choice in-
stances linked with the context c, p(x|c) encodes the probability that the item xwas present in choice
sets indexed by the context c and p(c) encodes the frequency with which the observer encounters
these contexts.

The observer also continually updates p(c|o) via recursive Bayesian estimation,

p(c(t)|o(1:t)) =
p(o(t)|c)p(c|o(1:t−1))

∑C

c
p(o(t)|c)p(c|o(1:t−1))

, (2)

which, in conjunction with the desirability based state preference update, and a simple decision rule
(e.g. MAP, softmax) yields a complete decision theory.

While this theory is complete in the formal sense that it can make testable predictions of options
chosen in the future given options chosen in the past, it is incomplete in its ability to represent
options: it will treat a gamble that pays $20 with probability 0.1 against safely receiving $1 and
one that pays $20000 with probability 0.1 against safely receiving $1 as equivalent, which is clearly
unsatisfactory. This is because it considers only simple cases where options have nominal labels.
We now augment it to take the information that magnitude labels1 provide into account.

2.2 Magnitude-sensitive preference formation

Typically, people will encounter monetary labels m ∈ M in a large number of contexts, often
entirely outside the purview of the immediate choice to be made. In the theory of [8] incorporating
desirability information related to m will involve marginalizing across all these contexts. Since
the set of such contexts across a person’s entire observation history is large and undefined, explicit
marginalization across all contexts would imply explicit marginalization across every observation
involving the monetary label m, which is unrealistic. Thus information about contexts must be
compressed or summarized2.

The simple solution is to let go of the insistence on assuming a bijective mapping between observa-
tions and contexts and assuming instead that animals generate contexts as clusters of observations,
thereby creating the possibility of learning higher-order abstract relationships between them. Such
models of categorization via clustering are widely accepted in cognitive psychology [10].

Now, instead of recalling all possible observations containingm, an animal with a set of observation
clusters (contexts) would simply sample a subset of these that would be representative of all con-
texts wherein observations containing m are statistically typical. In such a setting, p(m|c) would
correspond to the observation likelihood of the label m being seen in the cluster c, p(c) would cor-
respond to the relative frequency of context occurrences, and p(r|x,m, c) would correspond to the
inferred value for item x when compared against monetary label m while the active context c. The
remaining probability term p(x|m) encodes the probability of seeing transactions involving item x
and the particular monetary label m. We define r to take the value 1 when x ≻ x′∀x′ ∈ X − {x}.
Following a similar probabilistic calculus as in Equation 1, the inferred value of x becomes p(r|x)
and can be calculated as,

p(r|x) =

∑M

m

∑
C
p(r|x,m, c)p(x|m)p(m|c)p(c)

∑M

m

∑
C
p(x|m)p(m|c)p(c)

, (3)

1Note that taking monetary labels into account is not the same as committing to a direct psychophysical
evaluation of money, which is what a utile-based theory would predict. In our account, value judgments are
linked not with magnitudes, but with labels, that just happen to correspond to numbers in common practice.

2Mechanistic considerations of neurobiology also suggest sparse sampling of prior contexts. The memory
and computational burden of recalculating preferences for an ever-increasing C would quickly prove insuperable
for even highly parallelized computation systems like animal brains.
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Figure 2: Illustrating a choice problem an animal might face in the wild (left) and how the interme-
diate probability terms in our proposed model would operationalize different forms of information
needed to solve such a problem (right). Marginalizing across situation contexts and magnitude labels
tells us what the animal will do.

with the difference from the earlier expression arising from an additional summation over the set M
of monetary labels that the agent has experience with.

Figure 2 illustrates how these computations could be practically instantiated in a general situation
involving magnitude-sensitive value inference that animals could face. Our hunter-gatherer ancestor
has to choose which berry bush to forage in, and we must infer the choice he will make based on
recorded history of his past behavior. The right panel in this figure illustrates natural interpretations
for the intermediate conditional probabilities in Equation 3. The term p(m|c) encodes prior under-
standing of the fertility differential in the soils that characterize each of the three active contexts.
The p(r|x,m, c) term records the history of the forager’s choice within the context in via empiri-
cally observed relative frequencies. What drives the forager to prefer a sparsely-laden tree on the
hill instead of the densely laden tree in the forest in our example, though, is his calculation of the
underlying context probability p(c). In our story, because he lives near the hill, he encounters the
bushes on the hill more frequently, and so they dominate his preference judgment. A wide palette
of possible behaviors can be similarly interpreted and rationalized within the framework we have
outlined.

What exactly is this model telling us though that we aren’t putting into it ourselves? The only strong
constraint it imposes on the form of preferences currently is that they will exhibit context-specific
consistency, viz. an animal that prefers one option over another in a particular context will continue
to do so in future trials. While this constraint itself is only valid if we have some way of pinning
down particular contexts, it is congruent with results from marketing research that describe the
general form of human preferences as being ‘ arbitrarily coherent’ - consumer preferences are labile
and sensitive to changes in option sets, framing effects, loss aversion and a host of other treatments
but are longitudinally reliable within these treatments [2]. For our model to make more interesting
economic predictions, we must further constrain the form of the preferences it can emit to match
those seen in typical monetary transactions; we do this by making further assumptions about the
intermediate terms in Equation 3 in the next three sections that describe economic applications.

3 Living in a world of money

Equation 3 gives us predictions about how people will form preferences for various options that
co-occur with money labels. Here we specialize this model to make predictions about the value of
options that are money labels, viz. fiat currency. The institutional imperatives of legal tender im-
pose a natural ordering on preferences involving monetary quantities. Ceteris paribus, subjects will
prefer a larger quantity of money to a smaller quantity of money. Thus, while the psychological de-
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sirability pointer could assign preferences to monetary labels capriciously (as an infant who prefers
the drawings on a $1 bill to those on a $100 bill might), to model desirability behavior corresponding
to knowledgeable use of currency, we constrain it to follow arithmetic ordering such that,

xm∗ ≻ xm ⇔ m∗ > m ∀m ∈ M, (4)

where the notation xm denotes an item (currency token) x associated with the money labelm. Then,
Equation 3 reduces to,

p(r|xm∗) =

∑M
′

m

∑
C
p(x|m)p(m|c)p(c)

∑M

m

∑
C
p(x|m)p(m|c)p(c)

, (5)

where max(M′) ≤ m∗, since the contribution to p(r|x,m, c) for all larger m terms, is set to zero
by the arithmetic ordering condition; the p(x|m) term binds x to all the m′s it has been seen with
before.

Assuming no uncertainty about which currency token goes with which label, p(x|m) becomes a
simple delta function pointing to m that the subject has experience with, and Equation 5 can be
rewritten as,

p(r|x) =

∫
m

∗

0

∑
C
p(x|m, c)p(m|c)p(c)

∫∞

0

∑
C
p(x|m, c)p(m|c)p(c)

. (6)

If we further assume that the model gets to see all possible money labels, i.e. M = R+, this can be
further simplified as,

p(r|x) =

∫
m

∗

0

∑
C
p(m|c)p(c)

∫∞

0

∑
C
p(m|c)p(c)

, (7)

reflecting strong dependence on the shape of p(m), the empirical distribution of monetary outcomes
in the world.

What can we say about the shape of the general frequency distribution of numbers in the world?
Numbers have historically arisen as ways to quantify, which helps plan resource foraging, consump-
tion and conservation. Scarcity of essential resources naturally makes being able to differentiate
small magnitudes important for selection fitness. This motivates the development of number sys-
tems where objects counted frequently (essential resources) are counted with small numbers (for
better discriminability). Thus, it is reasonable to assume that, in general, larger numbers will be en-
countered relatively less frequently than smaller ones in natural environments, and hence, that both
the functions p(m) and p(m|c) will be decreasing on m3. For analytical tractability, we formalize
this assumption by setting p(m|c) to be an exponential distribution on the domain of monetary la-
bels, and p(c) to be a gamma distribution on the domain of the typical ‘wealth’ rate of individual
contexts.

The wealth rate is an empirically accessible index for the set of situation contexts, and represents
the typical (average) monetary label we expect to see in observations associated with this context.
Thus, for instance, the wealth rate for ‘steakhouses’ will be higher than that of ‘fast food’. Hence,
for any particular value of the wealth rate, the distribution p(m|c) will reflect the relative frequencies
of seeing various monetary labels in the world in observations typical to context c.

With these distributional assumptions, the marginalized product p(m) is assured to be a Pareto
distribution. Data from [11] as well as supporting indirect observations in [12], suggest that we are
on relatively safe ground by making such assumptions for the general distribution of monetary units
in the world [13]. This set of assumptions further reduces Equation 7 to,

p(r|x) = ψ(xm∗), (8)

where ψ(·) is the Pareto c.d.f.

Reduced experience with monetary options will be reflected in a reduced membership of M. Sam-
pling at random from M corresponds to approximating ψ with a limited number of samples. So long

3Convergent evidence may also be found in the Zipfian principle of communication efficiency [?]. While it
might appear incongruous to speak of differential efficiency in communicating numbers, recall that the histor-
ical origins of numbers involved tally marks and other explicit token-based representations of numbers which
imposed increasing resource costs in representing larger numbers.
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as the sampling procedure is not systematically biased away from particular x values, the resulting
curve will not be qualitatively different from the true one. Systematic differences will arise, though,
if the sampling is biased by, say, the range of values observers are known to encounter. For instance,
it is reasonable to assume that the wealth of a person is directly correlated with the upper limit of
money values they will see. Substituting this upper limit in Equation 7, we obtain a systematic differ-
ence in the curvature of the utility function that subjects with different wealth endowments will have
for the same monetary labels. The trend we obtain from a simulation (see gray inset in Figure 3) with
three different wealth levels ($1000, $10000 and $ 1 million) matches the empirically documented
increase in relative risk aversion (curvature of the utility function) with wealth [14]. Observe that
the log concavity of the Pareto c.d.f. has the practical effect of essentially converting our inferred
value for money into a classical utility function. Thus, using two assumptions (number ordering and
scarcity of essential resources), we have situated economic measurements of preference as a special,
fixed case of a more general dynamic process of desirability evaluation.

4 Modeling willingness-to-pay
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Figure 3: Illustrating derivations of pricing theory predictions for goods of various kinds from our
model.

Having studied how our model works for choices between items that all have money labels, the
logical next step is to study choices involving one item with a money label and one without, i.e.,
pricing. Note that asking how much someone values an option, as we did in the section above, is
different from asking if they would be willing to buy it at a particular price. The former corresponds
to the term p(r|x), as defined above. The latter will correspond to p(m|r, x), with m being the price
the subject is willing to pay to complete the transaction. Since the contribution of all terms where
r = 0, i.e. the transaction is not completed, is identically zero this term can be computed as,

p(m|x) =

∑
C
p(x|m)p(m|c)p(c)

∑M

m

∑
C
p(x|m)p(m|c)p(c)

, (9)

further replacing the integral over M with an integral over the real line as in Equation 5 for analytical
tractability when necessary.

What aspects of pricing behavior in the real world can our model explain? Interesting variations
in pricing arise from assumptions about the money distribution p(m|c) and/or the price distribu-
tion p(x|m). Figure 3 illustrates our model’s explanation for three prominent variations of classical
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demand curves documented in the microeconomics literature. Consumers typically reduce prefer-
ence for goods when prices rise, and increases it when prices drop. This fact about the structure of
preferences involved in money transactions is replicated in our model (see first column in Figure
3) via the reduction/increase of the contribution of the p(m|c) term to the numerator of Equation 9.
Marketing research reports anomalous pricing curves that violate this behavior in some cases. One
important case comprises of Veblen goods, wherein the demand for high-priced exclusive goods
drops when prices are lowered. Our model explains this behavior (see second column in Figure 3)
via unfamiliarity with the price reflected in a lower contribution from the price distribution p(x|m)
for such low values. Such non-monotonic preference behavior is difficult for utility-based models,
but sits comfortably within ours, where familiarity with options at typical price points drives de-
sirability. Another category of anomalous demand curves comes from Giffen goods, which rise in
demand upon price increases because another substitute item becomes too expensive. Our approach
accounts for this behavior (see third column in Figure 3) under the assumption that price changes
affect the Giffen good less because its price distribution has a larger variance, which is in line with
empirical reports showing greater price inelasticity of Giffen goods [15].

The last column in Figure 3 addresses an aspect of the temporal dynamics of our model that po-
tentially explains both (i) why behavioral economists can continually find new anchoring results
(e.g. [6, 2]) and (ii) why classical economists often consider such results to be marginal and unin-
teresting [16]. Behavioral scientists running experiments in labs ask subjects to exhibit preferences
for which they may not have well-formed price and label distributions, which causes them to anchor
and show other forms of preference instability. Economists fail to find similar results in their field
studies, because they collect data from subjects operating in contexts for which their price and la-
bel distributions are well-formed. Both conclusions fall out of our model of sequential preference
learning, where initial samples can bias the posterior, but the long-run distribution remains stable.

5 Modeling risky monetary choices

Finally, we ask: how well can our model fit the choice behavior of real humans making economic
decisions? The simplest economic setup to perform such a test is in predicting choices between
risky lotteries, since the human prediction is always treated as a stochastic choice preference that
maps directly onto the output of our model. We use a basic expected utility calculation, where the
desirability for lottery options is computed as in Equation 8. For a choice between a risky lottery
x1 = {mh,ml} and a safe choice x2 = ms, with a win probability q and where mh > ms > ml,
the value calculation for the risky option will take the form,

p(r|x) =

∫
mh

ms

p(m|c)p(c)
∫∞

0
p(m|c)p(c)

, in wins (10)

p(r|x) =

∫
ml

ms

p(m|c)p(c)
∫∞

0
p(m|c)p(c)

, in losses (11)

⇒ EV (risky) = q (ψx(mh)− ψx(ms)) + (1− q) (ψx(ml)− ψx(ms)) . (12)

where ψ(·) is the c.d.f. of the Pareto distribution on monetary labels m and p(x) is the given lottery
probability.

Establishing this connection between our theory’s basic psychological variables and the monetary
options commonly studied in economics experiments permits us to test its predictions for real
data for choices under risk. Using Equation 12, where ψ is the c.d.f of a Pareto distribution,
(θ = {2.9, 0.1, 1} fitted empirically), assuming that subjects distort perceived probabilities [17] via
an inverse-S shaped weighting function4, and using an ǫ-random utility maximization decision rule5,

4We use Prelec’s version of this function, with the slope parameter γ distributed N (0.65, 0.2) across our
agent population. The quantitative values for γ are taken from (Zhang & Maloney, 2012).

5
ǫ-random decision utility maximization is a simple way of introducing stochasticity into the decision rule,

and is a common econometric practice when modeling population-level data. It predicts that subjects pick the
option with higher computed expected utility with a probability 1− ǫ, and predict randomly with a probability
ǫ. The value of ǫ is fitted to the data; we used ǫ = 0.25, the value that maximized our fit to the endpoints of
the data. Since we are computing risk attitudes over a population, we should ideally also model stochasticity
in utility computatation. Hence, we add observation noise N (0, κ) to our desirability model. Our results were
largely robust across a large range of κ values, but showed the best quantitative fit for κ ≈ 0.00015.
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Figure 4: Comparing proportion of subjects selecting risky options predicted by our theory with data
obtained in a panel of 35 different risky choice experiments. The x-axis plots the probability of the
risky gamble; the y-axis plots the expected value of gambles scaled to the smallest EV gamble. Left:
Choice probabilities for risky option plotted for 7 p values and 5 expected value levels. Each of the
35 choice experiments was conducted using between 70-100 subjects. Right: Choice probabilities
predicted by relative desirability computing agents in the same 35 choice experiments. Results are
compiled by averaging over 1000 artificial agents.

we obtain choice predictions that match human performance (see Figure 4) on a large and compre-
hensive panel of risky choice experiments obtained from [18] to within statistical confidence6.

These results strikingly demonstrate that, with minimal assumptions about the form of the money
distribution p(m), and throwing away the absolute dollar amounts involved, our theory can still
make accurate predictions for choice lotteries, and hence, is econometrically viable.

6 Conclusion

The idea that preferences about options can be directly determined psychophysically is strongly
embedded in traditional computational treatments of human preferences, e.g. reinforcement learn-
ing [19]. Considerable evidence, some of which we have discussed, suggests that the brain does not
in fact, compute value [3]. A viable model of preference representation that does not posit direct
value estimation is needed. In search of such a viable alternative, we have demonstrated a variety of
behaviors typical of value-based theories using a stochastic latent variable model that simply tracks
the frequency with which options are seen to be preferred in latent contexts and then compiles this
evidence in a rational Bayesian manner to emit preferences. This proposal, and its success in explain-
ing fundamental economic concepts, situates the computation of value (as it is generally measured)
within the range of abilities of neural architectures that can only represent relative frequencies, not
absolute magnitudes.

While our demonstrations are computationally simple, they are substantially novel: there is no com-
parable demonstration of endogenous origin of traditional and anomalous demand curves, wealth
effects, and arbitrary coherence in the literature. In fact, computational models explaining any of
these effects even in isolation are difficult to find [1]. While the results we demonstrate are prelimi-
nary, and while some of the radical implications of our predictions about the effects of choice history
on preferences (“you will hesitate in buying a Macbook for $100 because that is an unfamiliar price
for it”7) remain to be verified, the plain ability to describe these economic concepts within an in-
ductively rational framework without having to invoke a psychophysical value construct by itself
constitutes a non-trival success and forms the essential contribution of this work.

6While [18] do not give standard deviations for their data, we assume that binary choice probabilities can be
modeled by a binomial distribution, which gives us a theoretical estimate for the standard deviation expected in
the data. Our optimal fits lie within 1 SD of the raw data for 34 of 35 payoff-probability combinations, yielding
a fit in probability.

7You will! You’ll think there’s something wrong with it.
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