An application of probabilistic matching

Abowd and Vilhuber (2004), JBES

An example

Abowd and Vilhuber (2004), JBES: "The Sensitivity of Economic Statistics to Coding Errors in Personal Identifiers"

- Approx. 500 million records (quarterly wage records for 1991-1999, California)
- 28 million SSNs

SSN Name editing
 Example

Coded	Coded	
Name	SSN	EIN
Leslie Kay	1	A
Leslie Kay	21	A
Lesly Kai	B1	B

1 's tenure with A :
1's employment history

A\&V: standardizing

- Knowledge of structure of the file:
-> No standardizing
- Matching will be within records close in time -> assumed to be similar, no need for standardization
- BUT: possible false positives -> chose to do an weighted unduplication step (UNDUP) to eliminate wrongly associated SSNs

A\&V: UNDUP

SSN	UID	First	Middle	Last	Earn	YQ
$123-45-6789$	58	John	C	Doe	25678	93Q1
$123-45-6789$	58	John	C	Doe	26845	93Q2
$123-45-6789$	59	Jon	C	Doe	24837	94Q4
$123-45-6 A 89$	60	Robert	E	Lee	7439	93Q1

A UID is a unique combination of SSN-First-Middle-Last

A\&V: UNDUP (2)

| SSN | UID | First | Middle | Last | Earn |
| :--- | :--- | :--- | :--- | :--- | :--- | YQ

Conservative strategy: Err on the side of caution

© 2007 John M. Abowd, Lars Vilhuber, all rights reserved

Matching

- Define match blocks
- Define matching parameters: marginal probabilites
- Define upper T_{u} and lower T_{1} cutoff values

Record Blocking

- Computationally inefficient to compare all possible record pairs
- Solution: Bring together only record pairs that are LIKELY to match, based on chosen blocking criterion
- Analogy: SAS merge by-variables

Blocking example

- Without blocking: $\mathbf{A x B}$ is 1000x1000=1,000,000 pairs
- With blocking, f.i. on 3-digit ZIP code or first character of last name. Suppose 100 blocks of 10 characters each. Then only $100 \times(10 \times 10)=10,000$ pairs need to be compared.

A\&V: Variables and Matching

- File only contains Name, SSN, Earnings, Employer
- Construct frequency of use of name, work history, earnings deciles
- Stage 1: use name and frequency
- Stage 2: use name, earnings decile, work history with employer

A\&V: Blocking and stages

- Two stages were chosen:
- UNDUP stage (preparation)
- MATCH stage (actual matching)
- Each stage has own
- Blocking
- Match variables
- Parameters

A\&V: UNDUP blocking

- No comparisons are ever going to be made outside of the SSN
- Information about frequency of names may be useful
- Large amount of records: 57 million UIDs associated with 28 million SSNs, but many SSNs have a unique UID
\Rightarrow Blocking on SSN
\Rightarrow Separation of files by last two digits of SSN (efficiency)

A\&V: MATCH blocking

- Idea is to fit 1-quarter records into work histories with a 1-quarter interruption at same employer
\Rightarrow Block on Employer - Quarter \Rightarrow Possibly block on Earnings deciles

A\&V: MATCH block setup

\# Pass 1:
BLOCK1 CHAR SEIN SEIN
BLOCK1 CHAR QUARTER QUARTER
BLOCK1 CHAR WAGEQANT WAGEQANT
\# follow 3 other BLOCK passes with identical setup
\#
\# Pass 2: relax the restriction on WAGEQANT
BLOCK5 CHAR SEIN SEIN
BLOCK5 CHAR QUARTER QUARTER
\# follow 3 other BLOCK passes with identical setup

Determination of match variables

- Must contain relevant information
- Must be informative (distinguishing power!)
- May not be on original file, but can be constructed (frequency, history information)

A\&V: UNDUP match variables

\# Pass1
MATCH1 NAME_UNCERT namef 0.9 0.001700
MATCH1 NAME_UNCERT namel 0.90 .02700
MATCH1 NAME_UNCERT namem 0.90 .02700
MATCH1 NAME_UNCERT concat 0.90 .02700
\# Pass 2
MATCH2 ARRAY NAME_UNCERT fm_name 0.9 -. 02750
MATCH2 NAME_UNCERT namel 0.90 .001700
MATCH2 NAME_UNCERT concat 0.90 .02700
\# and so on...

A\&V: MATCH match variables

```
# Pass1
MATCH1 CNT_DIFF SSN SSN 0.9 0.0000015
MATCH1 NAME_UNCERT namef namef 0.9 0.02700
MATCH1 NAME_UNCERT namel namem 0.90.02700
MATCH1 NAME_UNCERT namel namel 0.9 0.001 700
# Pass 2
MATCH2 CNT_DIFF SSN SSN 0.9 0.0000015
MATCH2 NAME_UNCERT concat concat 0.9 0.02700
# Pass 3
MATCH3 UNCERT SSN SSN 0.9 0.000001 }70
MATCH3 NAME_UNCERT namef namef 0.9 0.02700
MATCH3 NAME_UNCERT namem namem 0.9 0.02700
MATCH3 NAME_UNCERT namel namel 0.9 0.001700 and so on...
```


Adjusting $\mathrm{P}($ agree $\mid \mathrm{M})$ for relative

 frequency- Further adjustment can be made by adjusting for relative frequency (idea goes back to Newcombe (1959) and F\&S (1969))
- Agreement of last name by Smith counts for less than agreement by Vilhuber
- Default option for some software packages
- Requires strong assumption about independence between agreement on specific value states on one field and agreement on other fields.

A\&V: Frequency adjustment

- UNDUP:
- none specified
- MATCH:
- allow for name info,
- disallow for wage quantiles, SSN

Marginal probabilities: better estimates of $\mathrm{P}($ agree|U)

- $\mathrm{P}($ agree | U) can be improved by computing random agreement weights between files $\alpha(A)$ and $\beta(B)$ (i.e. $\mathbf{A x B}$)
- \# pairs agreeing randomly by variable X divided by total number of pairs

Error rate estimation methods

- Sampling and clerical review
- Within L: random sample with follow-up
- Within C: since manually processed, "truth" is always known
- Within N: Draw random sample with follow-up. Problem: sparse occurrence of true matches
- Belin-Rubin (1995) method for false match rates
- Model the shape of the matching weight distributions (empirical density of R) if sufficiently separated
- Capture-recapture with different blocking for false non-match rates

Analyst Review

- Matcher outputs file of matched pairs in decreasing weight order
- Examine list to determine cutoff weights and non-matches.

A\&V: Finding cutoff values

- UNDUP:
- CUTOFF1 7.57 .5
- CUTOFF2 88
- Etc.
- MATCH:
- CUTOFF1 1818
- CUTOFF2 1212
- CUTOFF 1010
- Etc.

A\&V: Simulated matcher output

RESULT	RECNUM	WGT	SSN	NAMEF	NAMEM	NAMEL
[UA]	504	-999.99	382661272	WILL		TARY
[UB]	2827	-999.99	384883394	RICHARD		PHOUK
[UB]	392	-999.99	335707385	MONA		LISA
RESULT	RECNUM	WGT	SSN	NAMEF	NAMEM	NAMEL
[CA]	351	3.66	333343734	DONNA	L	DUK
[CB]	1551	3.66	333383832	MARGEN	L	PRODUCT
RESULT	RECNUM	WGT	SSN	NAMEF	NAMEM	NAMEL
[MA]	43	32.76	444444441	LUKE		UPP
[MB]	169	32.76	444444447	LUKE		UPP

Post-processing

- Once matching software has identified matches, further processing may be needed:
- Clean up
- Carrying forward matching information
- Reports on match rates

Generic workflow (2)

- Start with initial set of parameter values
- Run matching programs
- Review moderate sample of match results
- Modify parameter values (typically only m_{k}) via ad hoc means

