An application of probabilistic matching

Abowd and Vilhuber (2004), JBES

© 2007 John M. Abowd, Lars Vilhuber, all rights reserved

An example

Abowd and Vilhuber (2004), JBES: "The Sensitivity of Economic Statistics to Coding Errors in Personal Identifiers"

- Approx. 500 million records (quarterly wage records for 1991-1999, California)
- 28 million SSNs

SSN Name editing

A&V: standardizing

- Knowledge of structure of the file:
 No standardizing
- Matching will be within records close in time -> assumed to be similar, no need for standardization
- BUT: possible false positives -> chose to do an weighted unduplication step (UNDUP) to eliminate wrongly associated SSNs

A&V: UNDUP

SSN	UID	First	Middle	Last	Earn	YQ
123-45-6789	58	John	С	Doe	25678	93Q1
123-45-6789	58	John	С	Doe	26845	93Q2
123-45-6789	59	Jon	С	Doe	24837	94Q4
123-45-6A89	60	Robert	E	Lee	7439	93Q1

A UID is a unique combination of SSN-First-Middle-Last

© 2007 John M. Abowd, Lars Vilhuber, all rights reserved

A&V: UNDUP (2)

SSN	UID	First	Middle	Last	Earn	YQ
123-45-6789	58	John	С	Doe	25678	93Q1
123-45-6789	58	John	С	Doe	26845	93Q2
123-45-6789	59	Jon	С	Doe	24837	94Q4
123-45-6789	60	Robert	E	Lee	7439	93Q4
123-45-6789	60	Robert	E	Lee	7439	94Q1

Conservative strategy: Err on the side of caution

© 2007 John M. Abowd, Lars Vilhuber, all rights reserved

Matching

- Define match blocks
- Define matching parameters: marginal probabilites
- Define upper T_u and lower T_l cutoff values

Record Blocking

- Computationally inefficient to compare all possible record pairs
- Solution: Bring together only record pairs that are LIKELY to match, based on chosen blocking criterion
- Analogy: SAS merge by-variables

Blocking example

- Without blocking: AxB is 1000x1000=1,000,000 pairs
- With blocking, f.i. on 3-digit ZIP code or first character of last name. Suppose 100 blocks of 10 characters each. Then only 100x(10x10)=10,000 pairs need to be compared.

A&V: Variables and Matching

- File only contains Name, SSN, Earnings, Employer
- Construct frequency of use of name, work history, earnings deciles
- Stage 1: use name and frequency
- Stage 2: use name, earnings decile, work history with employer

A&V: Blocking and stages

- Two stages were chosen:
 - UNDUP stage (preparation)
 - MATCH stage (actual matching)
- Each stage has own
 - Blocking
 - Match variables
 - Parameters

A&V: UNDUP blocking

- No comparisons are ever going to be made outside of the SSN
- Information about frequency of names may be useful
- Large amount of records: 57 million UIDs associated with 28 million SSNs, but many SSNs have a unique UID
- \Rightarrow Blocking on SSN
- ⇒Separation of files by last two digits of SSN (efficiency)

A&V: MATCH blocking

- Idea is to fit 1-quarter records into work histories with a 1-quarter interruption at same employer
- \Rightarrow Block on Employer Quarter
- \Rightarrow Possibly block on Earnings deciles

A&V: MATCH block setup

Pass 1: **BLOCK1 CHAR SEIN SEIN BLOCK1 CHAR QUARTER QUARTER BLOCK1 CHAR WAGEQANT WAGEQANT** # follow 3 other BLOCK passes with identical setup # # Pass 2: relax the restriction on WAGEQANT **BLOCK5 CHAR SEIN SEIN BLOCK5 CHAR QUARTER QUARTER** # follow 3 other BLOCK passes with identical setup

Determination of match variables

- Must contain relevant information
- Must be informative (distinguishing power!)
- May not be on original file, but can be constructed (frequency, history information)

A&V: UNDUP match variables

Pass1

MATCH1 NAME_UNCERT namef 0.9 0.001 700 MATCH1 NAME_UNCERT namel 0.9 0.02 700 MATCH1 NAME_UNCERT namem 0.9 0.02 700 MATCH1 NAME_UNCERT concat 0.9 0.02 700 # Pass 2 MATCH2 ARRAY NAME_UNCERT fm_name 0.9 -.02 750 MATCH2 NAME_UNCERT namel 0.9 0.001 700 MATCH2 NAME_UNCERT concat 0.9 0.02 700 # and so on...

A&V: MATCH match variables

Pass1

MATCH1 CNT DIFF SSN SSN 0.9 0.000001 5 MATCH1 NAME UNCERT namef namef 0.9 0.02 700 MATCH1 NAME UNCERT namel namem 0.9 0.02 700 MATCH1 NAME UNCERT namel namel 0.9 0.001 700 # Pass 2 MATCH2 CNT DIFF SSN SSN 0.9 0.000001 5 MATCH2 NAME UNCERT concat concat 0.9 0.02 700 # Pass 3 MATCH3 UNCERT SSN SSN 0.9 0.000001 700 MATCH3 NAME UNCERT namef namef 0.9 0.02 700 MATCH3 NAME UNCERT namem namem 0.9 0.02 700 MATCH3 NAME UNCERT namel namel 0.9 0.001 700

and so on...

Adjusting P(agree|M) for relative frequency

- Further adjustment can be made by adjusting for relative frequency (idea goes back to Newcombe (1959) and F&S (1969))
 - Agreement of last name by Smith counts for less than agreement by Vilhuber
- Default option for some software packages
- Requires strong assumption about independence between agreement on specific value states on one field and agreement on other fields.

A&V: Frequency adjustment

- UNDUP:
 - none specified
- MATCH:
 - allow for name info,
 - disallow for wage quantiles, SSN

Marginal probabilities: better estimates of P(agree|U)

- P(agree | U) can be improved by computing random agreement weights between files α(A) and β(B) (i.e. AxB)
 - # pairs agreeing randomly by variable X divided by total number of pairs

Error rate estimation methods

- Sampling and clerical review
 - Within L: random sample with follow-up
 - Within C: since manually processed, "truth" is always known
 - Within N: Draw random sample with follow-up. Problem: sparse occurrence of true matches
- Belin-Rubin (1995) method for false match rates
 - Model the shape of the matching weight distributions (empirical density of R) if sufficiently separated
- Capture-recapture with different blocking for false
 non-match rates

Analyst Review

- Matcher outputs file of matched pairs in decreasing weight order
- Examine list to determine cutoff weights and non-matches.

A&V: Finding cutoff values

- UNDUP:
 - CUTOFF1 7.5 7.5
 - CUTOFF2 8 8
 - Etc.
- MATCH:
 - CUTOFF1 18 18
 - CUTOFF2 12 12
 - CUTOFF 10 10
 - Etc.

A&V: Simulated matcher output

RESULT	RECNUM	WGT	SSN	NAMEF	NAMEM	NAMEL
[UA] [UB] [UB]	504 2827 392	-999.99	382661272 384883394 335707385	RICHARD		TARY PHOUK LISA
RESULT	RECNUM	WGT	SSN	NAMEF	NAMEM	NAMEL
[CA] [CB]	351 1551	3.66 3.66	333343734 333383832		L L	DUK PRODUCT
RESULT	RECNUM	WGT	SSN	NAMEF	NAMEM	NAMEL
[MA] [MB]	43 169		44444444 444444447			UPP UPP

© 2007 John M. Abowd, Lars Vilhuber, all rights reserved

Post-processing

- Once matching software has identified matches, further processing may be needed:
 - Clean up
 - Carrying forward matching information
 - Reports on match rates

Generic workflow (2)

- Start with initial set of parameter values
- Run matching programs
- Review moderate sample of match results
- Modify parameter values (typically only *m_k*) via ad hoc means