
Page 1

An Industrial Example of Database Reverse Engineering

Michael Blaha

OMT Associates Inc., Chesterfield, Missouri 63017 USA (blaha@computer.org)
www.omtassociates.com

Abstract

This paper presents an industrial example of database re-

verse engineering. The example has been abridged so that

it fits within a paper. Also some of the field names have

been disguised as a courtesy to the source company. Nev-

ertheless, the example is real and illustrates the kinds of

mistakes and poor design that are often found in practice.

1. Introduction

At the past few WCRE conferences there have been

several questions from program reverse engineering ex-

perts who are trying to understand what is involved with

database reverse engineering. This paper presents industri-

al database code, analyzes it, and shows the kinds of prob-

lems and errors that occur. At first glance some readers

might be appalled by the sloppiness of the design. But this

is not the worst practice I have found. On a grading scale of

“A” (best) to “F” (worst), I would give it a grade of “D”. [3]

Another motivation for the paper is to add an example

to the literature. Few database reverse engineering exam-

ples have been published. Examples are important because

they document current practice, demonstrate reverse engi-

neering techniques, and provide grist for tool developers.

The example is abbreviated. The complete database

code is about five times longer than that shown here. How-

ever, the excerpt is representative of the full code, preserv-

ing the content and the style. The purpose of the application

is to import mainframe data and make it available for use

on other platforms. The mainframe data is stored in CO-

BOL files and the ported data is stored in a relational data-

base.

The next section of the paper presents the source data-

base code and notes peculiarities and flaws. Section 3 then

briefly summarizes a database reverse engineering process.

The remainder of the paper applies the process and presents

some overall conclusions.

2. Source Code and Commentary

Tables 1 through 4 present the source code for the ex-

ample. The statements are executed to create empty rela-

tional database tables.

2.1 Location Table

Table 1 presents code for the location table. The fields

of the table are listed after the first left parenthesis. The ta-

ble has 15 fields in all: location_num through

location_cas_gross_profit_dol. Each field has a specified

data type—integer (number data type with parameter of to-

tal digits), fixed point (number data type with parameters of

total and fractional digits), or string (varchar2 data type

with a length). Constraints on the table are shown at the end

of the table definition code. The primary key constraint is

explained later in this section.

Table 1 Code to create location table

CREATE TABLE location

(location_num NUMBER(3)

,location_name VARCHAR2(15)

,location_address_1 VARCHAR2(30)

,location_address_2 VARCHAR2(30)

,location_address_3 VARCHAR2(30)

,location_address_4 VARCHAR2(30)

,location_address_5 VARCHAR2(30)

,location_group_code NUMBER(2)

,location_business_type VARCHAR2(1)

,location_tot_bus_sales_dol

NUMBER(11,2)

,location_gross_profit_dol

NUMBER(11,2)

,location_atv_sales_dol NUMBER(11,2)

,location_atv_gross_profit_dol

NUMBER(11,2)

,location_cas_sales_dol NUMBER(11,2)

,location_cas_gross_profit_dol

NUMBER(11,2)

,CONSTRAINT ic_location_00 PRIMARY KEY

(location_num)) ;

Presented at 6th Working Conference on Reverse Engineering

Atlanta, Georgia — October 1999

Page 2

An Industrial Example of Database Reverse Engineering

Note that the field names have a prefix of the table

name. This is a common style; some applications use an ab-

breviation instead of a lengthy table name. Many tools,

such as the DB-MAIN tool [5], support prefixes. During

forward engineering, the developer can add a prefix to the

field names of a model. During reverse engineering, the de-

veloper can remove prefixes to reduce clutter. For brevity,

the discussion in the remainder of the paper omits most

field prefixes

By default, any of the fields in a relational database ta-

ble may have a null value. (Null is a special value denoting

that a field is unknown or not applicable for a given

record.) The default is appropriate for most fields, since

they hold optional data.

However, proper database design practice is to define

not null constraints for all fields that participate in primary

and candidate keys. (A candidate key is one or more fields

that uniquely identify the records in a table. The set of

fields in a candidate key must be minimal; no field can be

discarded from the candidate key without destroying

uniqueness. A primary key is an arbitrarily chosen candi-

date key used to reference records preferentially.) In this

regard, the code is remiss. The location table has a primary

key clause near the end of the code. However, field

location_num lacks a not null constraint.

Also note the multiple fields for address data. Strictly

speaking, this satisfies database design theory, but is slop-

py nonetheless. Consider the fragments of data in Figure 1.

To find a city, you must search multiple fields. Worse yet,

it could be difficult to distinguish the city of Chicago from

Chicago street. Furthermore, you may need to parse a field

to separate city, state, and postal code. It would be much

better to put address information in distinct fields that are

clearly named.

The location table has several fields with parameters

embedded in their name: tot_bus_sales_dol,

gross_profit_dol, atv_sales_dol, atv_gross_profit_dol,

cas_sales_dol, and cas_gross_profit_dol. (The full loca-

tion table has about 15 parameterized fields.) One parame-

ter denotes the kind of business (atv and cas) and the other

denotes the kinds of dollars (gross profit and sales). Even

though it conforms to theory, this is a questionable design

practice. It is verbose to list the various combinations of pa-

rameters. A better approach is to restructure the data and

use multiple records (rather than multiple fields) to express

the different combinations. (See Section 6.)

2.2 Customer Table

Table 2 presents the customer table. This table also has

prefixes for field names with the exception of the first field

in the table. Such irregularities are not a good idea. Two

constraints are shown at the end of the table—one is a pri-

mary key and the other is a candidate key (denoted by the

unique keyword).

The address information is poorly structured. There

are two groups of address fields: residence address and bill-

ing address. Address data depends on both the primary key

Figure 1 Poor design practice:
Anonymous fields

fragment of location table

location_address_1 location_address_2 location_address_3

456 Chicago Street Decatur, IL xxxxx

198 Broadway Dr. Suite 201 Chicago, IL xxxxx

123 Main Street Cairo, IL xxxxx

Chicago, IL xxxxx

Table 2 Code to create customer table

CREATE TABLE customer

(id_customer NUMBER(9)

,customer_account_num NUMBER(7)

,customer_location_num NUMBER(3)

,customer_prim_salesperson_num

NUMBER(4)

,customer_name VARCHAR2(40)

,customer_address1 VARCHAR2(30)

,customer_address2 VARCHAR2(30)

,customer_city VARCHAR2(30)

,customer_state VARCHAR2(2)

,customer_country VARCHAR2(25)

,customer_zip_code1 NUMBER(5)

,customer_zip_code2 NUMBER(4)

,customer_type VARCHAR2(1)

,customer_bill_address1 VARCHAR2(30)

,customer_bill_address2 VARCHAR2(30)

,customer_bill_city VARCHAR2(30)

,customer_bill_state VARCHAR2(2)

,customer_bill_country VARCHAR2(25)

,customer_bill_zip_code1 NUMBER(5)

,customer_bill_zip_code2 NUMBER(4)

,customer_contact_name VARCHAR2(30)

,customer_contact_position

VARCHAR2(30)

,customer_contact_phone VARCHAR2(20)

,customer_dun_num NUMBER(9)

,customer_last_activity_date DATE

,customer_year_started NUMBER(4)

,customer_tax_status VARCHAR2(1)

,customer_status NUMBER(1)

,CONSTRAINT ic_customer_00 PRIMARY KEY

(id_customer)

,CONSTRAINT ic_customer_01 UNIQUE

(customer_account_num,

customer_location_num)) ;

Page 3

An Industrial Example of Database Reverse Engineering

(the identification of the customer) and the kind of address

(residence or billing). It would be much better to refer to

address data in a separate table.

Similarly, the contact data is unsound. The contact po-

sition and contact phone depend on the contact name which

in turn depends on the primary key of the table. Such indirect

dependencies violate the database design rule called third

normal form. Several customer records could have the same

contact person as indicated by contact name. The problem

with the current design is that the various references to a

contact need not have the same position and phone. A sepa-

rate contact table could enforce uniformity of position and

phone. Section 6 makes such a redesign to the tables.

There is some inconsistency with data types. In the lo-

cation table, location_name is VARCHAR2(15). In the

customer table customer_name is VARCHAR2(40) and

customer_contact_name is VARCHAR2(30). All these

fields are names and a cleaner design would use the same

length.

Also note the inconsistency between the location and

customer tables in handling address data. The location ta-

ble stores address data with anonymous fields (address_1

through address_5) while the customer table has specific

fields (address1, address2, city, state, country, zip_code1,

and zip_code2). A better design would handle address data

in a uniform manner. As Section 2.1 mentioned, the use of

specific fields is the better approach.

The country field is intended to distinguish between

the U.S. and Canada. But the developer made a mistake

with zip codes. U.S. zip codes are all numbers; Canadian

zip codes are numbers and letters.

2.3 Contract Table

Table 3 presents the contract table. The name of this

table is a misnomer. The table actually combines contract

data with contract revision data. (A contract has many con-

tract revisions.) I suspected the combination based on the

field names and confirmed the suspicion with the design-

ers. The contract table violates second normal form which

warns designers not to combine distinct kinds of data.

Note the dual source of identity (id_contract,

contract_num). This is an especially gross error. Field

id_contract is an artificial sequence number. (It is a com-

mon and reasonable design practice to define artificial se-

quence numbers for use as primary keys.) Field

contract_num is the number of the contract, a field with

business meaning. The primary key is id_contract +

revision_num and a candidate key is contract_num +

revision_num. Field id_contract is in a one-to-one relation-

ship with contract_num.

I talked to the developers and discovered that the dual

identity was caused by an attempt to simplify data loading.

The developers intended to store data in the various tables

first and then assign values to the artificial id fields. Rather

they should have assigned ids as data was stored and used

ids as the only source of identity. In essence, they should

have designed the database correctly and complicated the

code for loading data.

The developers defined an index on the id_customer

field of contract. Indexes are special data structures that

augment a table and speed the response to certain queries.

Database designers often index foreign key fields so that

joins of common data are fast and efficient. Consequently,

indexes are a reverse engineering clue that might indicate a

foreign key. Once again the database structure has the flaw

Table 3 Code to create contract table

CREATE TABLE contract

(id_contract NUMBER(9)

,contract_revision_num NUMBER(4)

,contract_num NUMBER(8)

,contract_prev_num NUMBER(8)

,contract_status_code NUMBER(1)

,contract_type VARCHAR2(2)

,contract_ident_num NUMBER(4)

,contract_sales_type NUMBER(1)

,contract_location_num NUMBER(3)

,id_customer NUMBER(9)

,contract_current_revision_ind

VARCHAR2(1)

,contract_revision_date DATE

,contract_start_date DATE

,contract_duration NUMBER(3)

,contract_project_num NUMBER(5)

,contract_project_name VARCHAR2(25)

,contract_project_location

VARCHAR2(25)

,contract_salespsn_admin_num NUMBER(4)

,contract_tot_amount NUMBER(11,2)

,contract_xpctd_grss_prof_dol

NUMBER(11,2)

,contract_act_gross_profit_dol

NUMBER(11,2)

,contract_est_gross_margin_pct

NUMBER(4,1)

,contract_act_markup_pct NUMBER(4,1)

,contract_est_costs_dol NUMBER(11,2)

,contract_budgeted_costs_dol

NUMBER(11,2)

,contract_act_costs_dol NUMBER(11,2)

,CONSTRAINT ic_contract_00 PRIMARY KEY

(id_contract,contract_revision_num)

,CONSTRAINT ic_contract_01 UNIQUE

contract_num,contract_revision_num));

CREATE INDEX ic_contract_02 ON

contract (id_customer) ;

Page 4

An Industrial Example of Database Reverse Engineering

of inconsistency because other foreign keys are not indexed

(prev_num in the contract table and location_num in the

customer table). Good design practice is to index all for-

eign keys.

Field prev_num refers to the previous contract_num

and is a foreign key. I inferred the foreign key based on the

suggestive field names and the matching data types. The

developers confirmed my inference. The foreign key refers

to only part of a candidate key which is another major error.

This is a consequence of mixing contract and contract revi-

sion data. For a correct database design, each foreign key

should refer to an entire candidate key (and better yet to a

candidate key which has been designated as the primary

key).

The contract table also has a violation of third normal

form. The project name and project location depend on the

project number which in turn depends on the primary key.

A separate project table would rectify this problem.

The contract table has one last flaw. There is no good

reason to store location_num in the contract table; it can be

readily retrieved by joining the contract table to the cus-

tomer table on id_customer. Theoretically, it is acceptable

to store derived data. Practically, derived data should only

be used when there is a compelling need to speed perfor-

mance. The drawback of unnecessary redundancy is that it

introduces the possibility of inconsistent data. Developers

often make the mistake of including derived data for frivo-

lous reasons.

2.4 Contcost Table

Table 4 presents the contcost table. The redundant ref-

erences to id_contract and contract_num are consistent

with the dual identity in the contract table.

Comparison of the primary key and unique constraints

reveals that the primary key has more than a minimum

number of fields. This is another major error. This flaw was

also caused by the developers good, but misguided, inten-

tions of facilitating data conversion. Developers should

never distort a database to facilitate data conversion. A

poor database design complicates programming and long

term maintenance.

By inspection (comparing data types and constraints)

extra_num in the contcost table seems to be the same as

revision_num in the contract table. I confirmed this hy-

pothesis with the developers.

Note the parallel data for estimating (est), re-estimat-

ing (reest), and actual (act) dollars and hours. There is an

initial estimate of a contract, a re-estimate, and then the ac-

tual numbers. The two estimates are an artifact of the exist-

ing business process and subject to change. For example, in

the future, there could be a single estimate or three esti-

mates. A business loses flexibility by encoding such arbi-

trary business practices into the database structure. This

leads to ossified systems and business impatience with the

slow response of computing professionals to make chang-

es. A better approach is to restructure the data with the dif-

ferent dimensions as fields of a table. (See Section 6.)

Table 4 Code to create contcost table

CREATE TABLE contcost

(id_contract NUMBER(9)

,contcost_extra_num NUMBER(4)

,contcost_contract_num NUMBER(8)

,contcost_contract_type VARCHAR2(2)

,contcost_est_matl_dol NUMBER(11,2)

,contcost_reest_matl_dol NUMBER(11,2)

,contcost_act_matl_dol NUMBER(11,2)

,contcost_est_a_lab_dol NUMBER(11,2)

,contcost_reest_a_labexp_dol

NUMBER(11,2)

,contcost_act_a_lab_dol NUMBER(11,2)

,contcost_est_a_lab_hours NUMBER(7)

,contcost_reest_a_lab_hours

NUMBER(7)

,contcost_act_a_lab_hours NUMBER(7)

,contcost_est_b_labexp_dol

NUMBER(11,2)

,contcost_reest_b_labexp_dol

NUMBER(11,2)

,contcost_act_b_labexp_dol

NUMBER(11,2)

,contcost_est_b_lab_hours NUMBER(7)

,contcost_reest_b_lab_hours NUMBER(7)

,contcost_act_b_lab_hours NUMBER(7)

,contcost_other_b_labexp_dol

NUMBER(11,2)

,contcost_reest_oth_labexp_dol

NUMBER(11,2)

,contcost_act_other_labexp_dol

NUMBER(11,2)

,contcost_est_other_lab_hours

NUMBER(7)

,contcost_reest_other_lab_hours

NUMBER(7)

,contcost_act_other_lab_hours

NUMBER(7)

,contcost_est_proficiency NUMBER(11,2)

,contcost_reest_proficiency

NUMBER(11,2)

,contcost_est_risk NUMBER(11,2)

,contcost_reest_risk NUMBER(11,2)

,CONSTRAINT ic_contcost_00 PRIMARY KEY

(id_contract,contcost_contract_num,

contcost_extra_num)

,CONSTRAINT ic_contcost_01 UNIQUE

(contcost_contract_num,

contcost_extra_num)) ;

Page 5

An Industrial Example of Database Reverse Engineering

3. Summary of Reverse Engineering Process

At this point we have learned quite a bit from the

source code. Now it is appropriate to take the code and re-

cast it as a model. A model provides a useful substrate for

removing the errors and artifacts of implementation as well

as considering enhancements.

The models in the remainder of the paper use the UML

(Unified Modeling Language) notation. The UML is a

clean, concise notation and a standard. It is as good a choice

as any for database modeling.

It is helpful to organize reverse engineering into three

phases that are the inverse of the typical forward engineer-

ing phases.

• Implementation recovery. First quickly learn about the

application. Then enter the database structures into a

model editor. You should tentatively represent each table

as a class or entity type. During this phase you should de-

fer any inferences. For reference purposes it is helpful to

have an initial model that purely reflects the implemen-

tation.

• Design recovery. Undo the mechanics of the database

structure. Typically, you can study the database structure

autonomously and need not interact with application ex-

perts. The major purpose of design recovery is to resolve

foreign key references (references from one table to anoth-

er).

• Analysis recovery. Interpret the model, refine it, and

make it more abstract. During analysis you remove the

artifacts of design and eliminate any errors in the model.

You should review your findings with application ex-

perts. Reconsider the model to improve its readability

and expressiveness.

The primary input to database reverse engineering for

this example was the database structure; this is the normal

situation. I also benefitted from discussions with the appli-

cation developers. There were no other inputs. The devel-

opers could not provide sample data because they had not

yet populated the database. I did not ask for their program-

ming code because it was incomplete and hobbled by their

poor database structure.

The intended output of reverse engineering was an as-

sessment of the current effort and a redesign of the database

to fix its flaws. The redesign was never completed as Sec-

tion 7 explains.

4. Model from Implementation Recovery

I typed the code from Tables 1 through 4 into a model-

ing tool. For brevity I do not show the model here. Section

2 has already presented some context about the application

gleaned from studying the code and talking to developers.

5. Model from Design Recovery

Figure 2 shows the model after design recovery. There

are four classes in the diagram: Contract, Contcost, Loca-

tion, and Customer. A box is the UML notation for a class.

(The box with account_num is another construct to be dis-

cussed.) A class describes objects with common fields, be-

havior, and intent. An object is a concept, abstraction, or

thing that has meaning for an application. For example,

Standard Widget and the Simplex company may be cus-

tomers. Fields may be suppressed or displayed in the sec-

ond portion of the class box.

Classes are related by associations. The UML notation

for an association is a solid line that may consist of a num-

ber of line segments. The diagram in Figure 2 has three as-

sociations: Contract to Contcost, Contract to Customer,

and Location to Customer. The annotations at the ends of

the associations denote multiplicity—the number of ob-

jects of one class that may relate to a single object of an as-

sociated class. A Contcost object pertains to a single Con-

tract (multiplicity “1”). A Contract may have at most one

associated Contcost object (multiplicity “0..1”). A Custom-

er may have many Contracts (multiplicity “*”).

I carried all fields forward from the original code, ex-

cept for foreign key fields which are converted to associa-

tions. For brevity Figure 2 does not display the fields of the

Location and Contract classes. The Location class has all

the fields shown in Table 1. The Contract class has all the

fields shown in Table 3, except for id_customer;

id_customer is a foreign key that has been converted into

an association from Contract to Customer. I deferred reso-

lution of contract_prev_num until analysis recovery.

The Contcost class has all fields shown in Table 4 ex-

cept for the first three fields which clumsily refer to Con-

tract. A Contcost has one contract revision. This is appar-

ent by comparing the constraints on the contract and cont-

cost tables and recalling that contcost_extra_num is the

same as contract_revision_num. (Also recall that Contract

combines contract and contract revision data. These two as-

pects are separated during analysis recovery.)

The Customer class has all fields shown in Table 2 ex-

cept for account_num and location_num. These fields have

been resolved to the qualified association: A location plus

the qualifier account_num yields a single customer. The

qualifier is a special kind of field that increases the preci-

sion of the association. The qualified association expresses

the uniqueness constraint in Table 2. A location has many

customers; the qualifier lets us tell the customers apart.

6. Model from Analysis Recovery

Figure 3 shows the partial results after analysis recov-

ery. It is not obvious how to split the fields between con-

tract and contract revision so I left the fields in the Contract

Page 6

An Industrial Example of Database Reverse Engineering

class. (The original developers confirmed the distinction

between contract and contract revision, but they did not ex-

plain how to split the fields.)

I will briefly explain the model. A customer may have

a billing address and a residence address. (Billing and resi-

dence are roles; a role is a usage of a class.) An address may

be the residence of many customers and used to bill many

customers. A customer may designate a person to serve as

a contact. A person may be a contact for multiple custom-

ers.

A business location may serve many customers who

are distinguished by an account number. Each business lo-

cation has an address and it is possible (though unlikely)

for an address to be used for more than one business loca-

tion.

A location may have many financial values. Each val-

ue can be found with the combination of a location, finan-

cial category, and financial unit. The LocationFinancial-

Value class resolves the parameterized fields in the loca-

tion table in a more elegant manner. Instead of storing

multiple values in a location record, the revised model

stores multiple LocationFinancialValue records. The

records for FinancialCategory include total_business, atv,

and cas. The records for FinancialUnit include sales and

gross_profit. With the revised structure, it is easy to add a

financial category or a financial unit.

A contract may have many contract revisions, which

are differentiated with a revision number. Each contract re-

vision pertains to a specific contract. CostValue resolves

the parameterized fields for ContractRevision in a similar

manner to that for financial value. Each cost value is deter-

mined by the combination of a contract revision, a cost cat-

egory, a cost quality, and a cost unit.

CostQuality has the values actual, estimate, and rees-

timate; additional values can be easily added. CostCatego-

ry has the values risk, proficiency, other lab, other lab ex-

pense, a lab, b lab, and material. (I am not sure what all

these cost categories mean; this would have to be clarified

before completing the analysis model.) CostUnits has the

values dollars and hours.

A contract may have a previous contract indicated.

This is a questionable representation. The existing model

essentially has a chain of previous dependencies which

could be tedious to traverse. A better model would instead

relate a collection of contracts to each other.

*

Figure 2 Model after Design Recovery

Contract

Contcost

contcost_contract_type : varchar2(2)
contcost_est_matl_dol : number(11,2)
contcost_reest_matl_dol : number(11,2)
contcost_act_matl_dol : number(11,2)
contcost_est_a_lab_dol : number(11,2)
contcost_reest_a_labexp_dol : number(11,2)
contcost_act_a_lab_dol : number(11,2)
contcost_est_a_lab_hours : number(7)
contcost_reest_a_lab_hours : number(7)
contcost_act_a_lab_hours : number(7)
contcost_est_b_labexp_dol : number(11,2)
contcost_reest_b_labexp_dol : number(11,2)
contcost_act_b_labexp_dol : number(11,2)

contcost_other_b_labexp_dol : number(11,2)
contcost_reest_oth_labexp_dol : number(11,2)
contcost_act_other_labexp_dol : number(11,2)
contcost_est_other_lab_hours : number(7)
contcost_reest_other_lab_hours : number(7)
contcost_act_other_lab_hours : number(7)
contcost_est_proficiency : number(11,2)
contcost_reest_proficiency : number(11,2)
contcost_est_risk : number(11,2)
contcost_reest_risk : number(11,2)

0..1

1

Location

Customer

id_customer : number(9) {primary key}
customer_prim_salesperson_num : number(4)
customer_name : varchar2(40)
customer_address1 : varchar2(30)
customer_address2 : varchar2(30)
customer_city : varchar2(30)
customer_state : varchar2(2)
customer_country : varchar2(25)
customer_zip_code1 : number(5)
customer_zip_code2 : number(4)
customer_type : varchar2(1)
customer_bill_address1 : varchar2(30)
customer_bill_address2 : varchar2(30)
customer_bill_city : varchar2(30)
customer_bill_state : varchar2(2)
customer_bill_country : varchar2(25)
customer_bill_zip_code1 : number(5)
customer_bill_zip_code2 : number(4)
customer_contact_name : varchar2(30)
customer_contact_position : varchar2(30)
customer_contact_phone : varchar2(20)
customer_dun_num : number(9)
customer_last_activity_date : date
customer_year_started : number(4)
customer_tax_status : varchar2(1)
customer_status : number(1)

1

account_num

contcost_est_b_lab_hours : number(7)
contcost_reest_b_lab_hours : number(7)
contcost_act_b_lab_hours : number(7)

1

0..1

Page 7

An Industrial Example of Database Reverse Engineering

7. Ultimate Disposition of the Project

I originally became involved in the project when a

manager for my client company handed me the database

structure and asked me to take a look. I suspect he asked me

to look at the project because the developers were behind

schedule and their code did not yet work. After looking at

their database, I was not surprised.

The aftermath of reverse engineering was frustrat-

ing—the developers did not care to listen and did not un-

derstand many of my criticisms. They did not have the fog-

giest idea about how to design a database. In fact I was un-

able to finish analysis recovery because they stopped

answering my questions. I was somewhat grateful because

I found it painful to interact with them.

CostQuality

quality

CostCategory

name

CostUnits

unitName

CostValue

value 11

1

1

Figure 3 Model after Partial Analysis Recovery

Address

streetAddressLine1
streetAddressLine2
city
state
country
postal_code

Location

location_num : number(3)
location_name : varchar2(15)

location_group_code : number(2)
location_business_type : varchar2(1)

0..1

FinancialCategory

name

LocationFinancialValue

value
1

1

FinancialUnit

name

1

Person

name
position
phone

Customer

customer_prim_salesperson_num : number(4)
customer_name : varchar2(40)
customer_type : varchar2(1)
customer_dun_num : number(9)
customer_last_activity_date : date
customer_year_started : number(4)
customer_tax_status : varchar2(1)
customer_status : number(1)

account_num

0..1
residence

0..1

contact

ContractRevision

1

Contract

contract_num : number(8) {candidate key 1}
contract_status_code : number(1)
contract_type : varchar2(2)
contract_ident_num : number(4)
contract_sales_type : number(1)
contract_location_num : number(3)
contract_current_revision_ind : varchar2(1)
contract_revision_date : date
contract_start_date : date
contract_duration : number(3)
contract_project_num : number(5)
contract_project_name : varchar2(25)
contract_project_location : varchar2(25)
contract_salespsn_admin_num : number(4)
contract_tot_amount : number(11,2)
contract_xpctd_grss_prof_dol : number(11,2)
contract_act_gross_profit_dol : number(11,2)
contract_est_gross_margin_pct : number(4,1)
contract_act_markup_pct : number(4,1)
contract_est_costs_dol : number(11,2)
contract_budgeted_costs_dol : number(11,2)
contract_act_costs_dol : number(11,2)

revision_num

1

0..1

prev_num

*

*

*

*

*

0..1
billing

*

*

*

*

*

*

*

1 0..1

0..1

1

Page 8

An Industrial Example of Database Reverse Engineering

Even though management lacked confidence, the de-

velopers thought they were doing a fine job and just wanted

to keep hacking away. The project eventually ended when

management cut their budget. In retrospect I think the busi-

ness justification for the project was marginal and that is

why the failure of the project did not seem to cause much

recriminations. I had no further interaction with these de-

velopers after the project. (I also did not try to seek them

out.)

My interaction with the developers of this project is

not typical of my reverse engineering experiences. For

most projects the developers have been willing to listen—

either because they are proficient and know it or because

they realize they need help. In all cases where funding held

and the developers were cooperative, I have been able to

help them fix their design and get their project on track. Of-

ten I have trouble communicating fine aspects of database

design, but most developers cooperate as an act of faith be-

cause they follow some of what I explain and have seen the

benefits.

8. Related Work

This paper is purely an experience report. It does not

directly advance the state of the art. The approach is not

novel; rather, it is typical of the work of a skilled database

reverse engineer. Nevertheless, the reverse engineering

community does need clearly documented examples—to

document reality and the chaos that errors cause.

The references listed at the end of the paper provide

context for database reverse engineering.

9. Conclusions

This paper has only considered database structure. I

told you a little about the application gleaned from my dis-

cussions with developers, but there was no other input.

Even so, we were able to learn much about the application.

For a skilled database reverse engineer, the analysis pre-

sented in this paper would take about a day of work.

This paper is representative of the kind of insight you

can obtain with database reverse engineering. For informa-

tion systems, once you understand the database, you have

much insight into the software as a whole.

10. References

[1] Peter H. Aiken. Data Reverse Engineering. McGraw-Hill,

New York, New York, 1996.

[2] C Batini, S Ceri, and SB Navathe. Conceptual Database De-

sign. Benjamin/Cummings, Redwood City, California, 1992.

[3] Michael Blaha. On Reverse Engineering of Vendor Databas-

es. Fifth Working Conference on Reverse Engineering, Oc-

tober 1998, Honolulu, Hawaii, 183–190.

[4] Kathi Hogshead Davis. August-II: A tool for step-by-step

data model reverse engineering. Second Working Confer-

ence on Reverse Engineering, July 1995, Toronto, Ontario,

146–154.

[5] JL Hainaut, V Englebert, J Henrard, JM Hick, and D Roland.

Database evolution: the DB-MAIN approach. 13th Entity-

Relationship Conference, Manchester, UK, 1994, 112–131.

[6] Andrew McAllister. Reverse Engineering a Medical Data-

base. Third Working Conference on Reverse Engineering,

November 1996, Monterey, California, 1996, 121–130.

[7] N Mfourga. Extracting Entity-Relationship Schemas from

Relational Databases: A Form-Driven Approach. Fourth

Working Conference on Reverse Engineering, October 1997,

Amsterdam, The Netherlands, 184–193.

