
HFusion

A Fusion Tool for Haskell programs

Alberto Pardo

Instituto de Computación
Universidad de la República

Montevideo - Uruguay

http://www.fing.edu.uy/~pardo

Modularity in FP

• In functional programming one often uses a compositional
style of programming.

• Programs are constructed as the composition of simple and
easy to write functions.

• Programs so defined are more modular and easier to under-
stand.

• General purpose operators (like fold, map, filter, zip, etc.)
play an important role in this design.

HFusion 1

Example: trail

Function trail returns the last n lines of a text.

trail n = unlines ◦ reverse ◦ take n ◦ reverse ◦ lines

HFusion 2

Example: count

count :: Word → Text → Integer

count w = length ◦ filter (== w) ◦ words

words :: Text → [Words]
words t = case dropWhile isSpace t of

""→ []
t ′ → let (w , t ′′) = break isSpace t ′

in w : words t ′′

filter :: (a → Bool)→ [a]→ [a]
filter p [] = []
filter p (a : as) = if p a then a : filter p as

else filter p as

HFusion 3

Drawbacks of modularity

• Modular functions are not necessarily efficient.

• Each functional composition implies information passing through
an intermediate data structure.

A
f ✲ T

g ✲ B

• Nodes of the intermediate data structure are generated/allocated
by f and subsequently consumed by g.

• This may lead to repeated invocations to the garbage collec-
tor.

HFusion 4

Deforestation

• Deforestation is a program transformation technique.

• Provided certain conditions hold, deforestation permits the
derivation of equivalent functions that do not build interme-
diate data structures.

A
f ✲ T

g ✲ B ❀ A
h ✲ B

• Our approach to deforestation is based on recursion program
schemes.

• Associated with the recursion schemes there are algebraic
laws –called fusion laws– which represent a form of defor-
estation.

HFusion 5

Program Fusion

count w = length ◦ filter (== w) ◦ words

�

w

w

w

w

w

w

w

w

w

w

count w t = case dropWhile isSpace t of

""→ 0
t ′ → let (w ′, t ′′) = break isSpace t ′

in if w ′ == w

then 1 + count w t ′′

else count w t ′′

HFusion 6

How fusion proceeds

lenfil p = length ◦ filter p

length [] = 0
length (x : xs) = h x (length xs)

where

h x n = 1 + n

filter p [] = []
filter p (a : as) = if p a then a : filter p as

else filter p as

HFusion 7

How fusion proceeds (cont.)

In the body of the first function,

• replace every occurrence of the constructors used to build
the intermediate data structure (written in red) by the corre-
sponding operations in the second function used to calculate
the final result (written in green).

• replace recursive calls (written in blue) by calls to the new
function

HFusion 8

How fusion proceeds (cont.)

length [] = 0
length (x : xs) = h x (length xs)

where

h x n = 1 + n

filter p [] = []
filter p (a : as) = if p a then a : filter p as

else filter p as

The result:

lenfil p [] = 0
lenfil p (a : as) = if p a then h a (lenfil p as)

else lenfil p as

where

h x n = 1 + n

HFusion 9

Recursion schemes

• They capture general patterns of computation commonly used
in practice.

• The schemes and their fusion laws can be defined generically

for a family of data types.

HFusion 10

Standard program schemes

• Fold (structural recursion)

• Unfold (structural co-recursion)

• Hylomorphism (general recursion)

HFusion 11

Capturing the structure of functions

fact :: Int → Int

fact n | n < 1 = 1
| otherwise = n ∗ fact (n − 1)

HFusion 12

Capturing the structure of functions (2)

data a + b = Left a | Right b

ψ :: Int → () + Int × Int

ψ n | n < 1 = Left ()
| otherwise = Right (n,n − 1)

fmap f (Left ()) = Left ()
fmap f (Right (m,n)) = Right (m, f n)

ϕ :: () + Int × Int → Int

ϕ (Left ()) = 1
ϕ (Right (m,n)) = m ∗ n

HFusion 13

Capturing the structure of functions (3)

fact = ϕ ◦ fmap fact ◦ ψ

Int
fact ✲ Int

() + Int × Int

ψ

❄

fmap fact
✲ () + Int × Int

ϕ

✻

HFusion 14

Capturing the structure of functions (4)

Let us define,

F a = () + Int × a

Therefore,

Int
fact ✲ Int

F Int

ψ

❄

fmap fact
✲ F Int

ϕ

✻

HFusion 15

Functor

A functor (F , fmap) consists of two components:

• a type constructor F , and

• a mapping function fmap :: (a → b)→ (F a → F b), which
preserves identities and compositions:

fmap id = id

fmap (f ◦ g) = fmap f ◦ fmap g

❀ it is usual to denote both components by F .

HFusion 16

Hylomorphism

hylo :: (F b → b)→ (a → F a)→ a → b

hylo ϕ ψ = ϕ ◦ F (hylo ϕ ψ) ◦ ψ

a
hylo ϕ ψ ✲ b

F a

ψ

❄

F (hylo ϕ ψ)
✲ F b

ϕ

✻

❀ ϕ is called an algebra

❀ ψ is called a coalgebra.

HFusion 17

Data types

Functors describe the top level structure of data types.

For each data type declaration

data T = C1 τ1,1 · · · τ1,k1
| · · · | Cn τn,1 · · · τn,kn

a functor F can be derived:

• constructor domains are packed in tuples;

• constant constructors are represented by the empty tuple ();

• alternatives are regarded as sums (replace | by +);

• occurrences of T are replaced by a type variable x in every
τi,j .

HFusion 18

Examples: Lists

List a = Nil | Cons a (List a)

�

w

w

w

w

w

w

La x = () + a × x

La :: (x → y)→ (La x → La y)
La f (Left ()) = Left ()
La f (Right (a, x)) = Right (a, f x)

HFusion 19

Example: Leaf-labelled binary trees

data Btree a = Leaf a | Join (Btree a) (Btree a)

�

w

w

w

w

w

w

Ba x = a + x × x

Ba :: (x → y)→ (Ba x → Ba y)
Ba f (Left a) = Left a

Ba f (Right (x , x ′)) = Right (f x , f x ′)

HFusion 20

Example: Internally-labelled binary trees

data Tree a = Empty | Node (Tree a) a (Tree a)

�

w

w

w

w

w

w

Ta x = () + x × a × x

Ta :: (x → y)→ (Ta x → Ta y)
Ta f (Left ()) = Left ()
Ta f (Right (x , a, x ′)) = Right (f x , a, f x ′)

HFusion 21

Constructors / Destructors

For every data type T with functor F , there exists an isomorphism

FµF
inF ✲✛
outF

µF

where

• µF denotes the data type

• inF packs the constructors

• outF packs the destructors

HFusion 22

Example: Leaf-labelled binary trees

data Btree a = Leaf a | Join (Btree a) (Btree a)

Ba x = a + x × x

inBa
::Ba (Btree a)→ Btree a

inBa
(Left a) = Leaf a

inBa
(Right (t , t ′)) = Join t t ′

outBa
:: Btree a → Ba (Btree a)

outBa
(Leaf a) = Left a

outBa
(Join t t ′) = Right (t , t ′)

HFusion 23

Hylomorphism

hylo :: (F b → b)→ (a → F a)→ a → b

hylo ϕ ψ = ϕ ◦ F (hylo ϕ ψ) ◦ ψ

a
hylo ϕ ψ ✲ b

F a

ψ

❄

F (hylo ϕ ψ)
✲ F b

ϕ

✻

HFusion 24

Fold

fold :: (F a → a)→ µF → a

fold ϕ = ϕ ◦ F (fold ϕ) ◦ outF

µF
fold ϕ ✲ a

F µF

outF

❄

F (fold ϕ)
✲ F a

ϕ

✻

HFusion 25

Fold: Lists

foldL :: (b, a → b → b)→ List a → b

foldL (b, h) Nil = b

foldL (b, h) (Cons a as) = h a (foldL (b, h) as)

Example:

prod :: List Int → Int

prod Nil = 1
prod (Cons n ns) = n ∗ prod ns

As a fold,

prod = foldL (1, (∗))

HFusion 26

Unfold

unfold :: (a → F a)→ a → µF

unfold ψ = inF ◦ F (unfold ψ) ◦ ψ

a
unfold ψ ✲ µF

F a

ψ

❄

F (unfold ψ)
✲ F µF

inF

✻

HFusion 27

Unfold: Lists

unfoldL :: (b → La b)→ b → List a

unfoldL ψ b = case (ψ b) of

Left ()→ Nil

Right (a, b′)→ Cons a (unfoldL ψ b′)

Example:

upto :: Int → Int

upto n | n < 1 = Nil

| otherwise = Cons n (upto (n − 1))

As an unfold,

upto = unfoldL ψ

where

ψ n | n < 1 = Left ()
| otherwise = Right (n,n − 1)

HFusion 28

Factorisation

hylo ϕ ψ = fold ϕ ◦ unfold ψ

HFusion 29

Factorisation: factorial

fact = prod ◦ upto

prod :: List Int → Int

prod Nil = 1
prod (Cons n ns) = n ∗ prod ns

upto :: Int → Int

upto n | n < 1 = Nil

| otherwise = Cons n (upto (n − 1))

Applying factorisation,

fact :: Int → Int

fact n | n < 1 = 1
| otherwise = n ∗ fact (n − 1)

HFusion 30

Factorisation: quicksort

qsort :: Ord a ⇒ [a]→ [a]
qsort = inorder ◦mkTree

inorder :: Tree a → List a

inorder Empty = Nil

inorder (Node t a t ′) = inorder t ++ [a] ++ inorder t ′

mkTree :: Ord a ⇒ [a]→ Tree a

mkTree [] = Empty

mkTree (a : as) = Node (mkTree [x | x ← as; x 6 a])
a

(mkTree [x | x ← as; x > a])

HFusion 31

Quicksort

qsort :: Ord a ⇒ [a]→ [a]
qsort [] = []
qsort (a : as) = qsort [x | x ← as; x 6 a]

++ [a] ++
qsort [x | x ← as; x > a]

HFusion 32

Fusion laws
Factorisation

hylo ϕ ψ = hylo ϕ outF ◦ hylo inF ψ

Hylo-Fold Fusion

τ :: ∀ a . (F a → a)→ (G a → a)

⇒

fold ϕ ◦ hylo (τ inF) ψ = hylo (τ ϕ) ψ

Unfold-Hylo Fusion

σ :: (a → F a)→ (a → G a)

⇒

hylo ϕ (σ outF) ◦ unfold ψ = hylo ϕ (σ ψ)

HFusion 33

Hylo-Fold Fusion

data Maybe a = Nothing | Just a

mapcoll :: (a → b)→ List (Maybe a)→ List b

mapcoll = map f ◦ collect

map f Nil = Nil

map f (Cons a as) = Cons (f a) (map f as)

collect :: List (Maybe Int)→ List Int

collect Nil = Nil

collect (Cons m ms) = case m of

Nothing → collect ms

Just a → Cons a (collect ms)

HFusion 34

Hylo-Fold Fusion

τ :: (b, a → b → b)→ (b,Maybe a → b → b)
τ (h1, h2) = (h1,

λm b → case m of

Nothing → b

Just a → h2 a b)

Applying hylo-fold fusion,

mapcoll :: (a → b)→ List (Maybe a)→ List b

mapcoll f Nil = Nil

mapcoll f (Cons m ms) = case m of

Nothing → mapcoll f ms

Just a → Cons (f a) (mapcoll f ms)

HFusion 35

HFusion

• HFusion is an extension of the HYLO system:

– University of Tokyo, 1997-98

– MIT, 2000, in the context of pH (parallel Haskell)

• HFusion is implemented in Haskell.

• It can be used in three different modalities:

– Command line

– Web interface

– Inside HaRe (Haskell Refactorer)

Web access:
http://www.fing.edu.uy/inco/proyectos/fusion/tool/

HFusion 36

