HFusion
A Fusion Tool for Haskell programs

ALBERTO PARDO

Instituto de Computacién
Universidad de la Republica
Montevideo - Uruguay

http://www.fing.edu.uy/ pardo

Modularity in FP

e In functional programming one often uses a compositional
style of programming.

e Programs are constructed as the composition of simple and
easy to write functions.

e Programs so defined are more modular and easier to under-
stand.

e General purpose operators (like fold, map, filter, zip, etc.)
play an important role in this design.

HFusioN 1

Example: trail

Function trail returns the last n lines of a text.

trail n = unlines o reverse o take n o reverse o lines

HFusioN

Example: count

count :: Word — Text — Integer
count w = length o filter (== w) o words

words :: Text — [Words]
words t = case drop While isSpace t of
LR H
t' — let (w,t") = break isSpace t'
in w: words t”

filter :: (a — Bool) — [a] — [a]

filter p [=1]

filter p (a: as) = if p a then a: filter p as
else filter p as

HFusioN

Drawbacks of modularity

Modular functions are not necessarily efficient.

Each functional composition implies information passing through
an intermediate data structure.

A - T » B

Nodes of the intermediate data structure are generated/allocated
by f and subsequently consumed by g.

This may lead to repeated invocations to the garbage collec-
tor.

HFusioN

Deforestation

e Deforestation is a program transformation technique.

Provided certain conditions hold, deforestation permits the
derivation of equivalent functions that do not build interme-
diate data structures.

- B ~ A B

Our approach to deforestation is based on recursion program
schemes.

Associated with the recursion schemes there are algebraic
laws —called fusion laws— which represent a form of defor-
estation.

HFusioN 5

Program Fusion

count w = length o filter (== w) o words

count w t = case drop While isSpace t of
nn — 0
t' — let (w', t") = break isSpace t’
inif w' ==w
then 1+ count w t”
else count w "

HFusioN

How fusion proceeds

lenfil p = length o filter p

length [] =0
length (z : zs) = h = (length xs)
where
hxzn=1+n
filter p [] =]

filter p (a: as) = if p a then a: filter p as
else filter p as

HFusioN

How fusion proceeds (cont.)

In the body of the first function,

e replace every occurrence of the constructors used to build
the intermediate data structure (written in red) by the corre-
sponding operations in the second function used to calculate
the final result (written in green).

o replace recursive calls (written in blue) by calls to the new
function

HFusioN 8

How fusion proceeds (cont.)

length [] =0
length (z : zs) = h = (length xs)
where
hzn=1+n
filter p [] =[]

filter p (a: as) =if p a then a : filter p as
else filter p as

The result:

lenfil p[]=0
lenfil p (a: as) =if p a then h a (lenfil p as)
else lenfil p as
where
hxn=1+n

HFusioN

Recursion schemes

e They capture general patterns of computation commonly used
in practice.

e The schemes and their fusion laws can be defined generically
for a family of data types.

HFusioN 10

Standard program schemes

o Fold (structural recursion)
e Unfold (structural co-recursion)

e Hylomorphism (general recursion)

HFusioN

11

Capturing the structure of functions

fact :: Int — Int
factn|n<l=1
| otherwise = n * fact (n — 1)

HFusioN

12

Capturing the structure of functions (2)

data a + b = Left a | Right b

Y Int — () + Int x Int

Yn|n<l=Left ()
| otherwise = Right (n,n — 1)

Jmap [(Left () = Left ()
fmap f (Right (m,n)) = Right (m,f n)

pu()+ Int x Int — Int

¢ (Left () =1
@ (Right (m,n)) =mx*n

HFusioN

13

Capturing the structure of functions (3)

fact = p o fmap fact o)

fact

Int > Int

v ®

HFusioN

14

Capturing the structure of functions (4)

Let us define,

Fa=()+1Int x a

Therefore,
Int fact Int
(4 @
F Int F Int

fmap fact

HFusioN

15

Functor

A functor (F, fmap) consists of two components:

e a type constructor F', and

e a mapping function fmap :: (a — b) — (F a — F b), which
preserves identities and compositions:

fmap id = id

fmap (f o g)

fmap [o fmap g

~» it is usual to denote both components by F'.

HFusioN 16

Hylomorphism

hylo:: (Fb—b)—>(a—Fa)—a—b
hylo o ¢ = o F (hylo p) o ¢

hylo ¢ ¢
a———"—b

- > F
F (hylo ¢)

~» is called an algebra

~» 1 is called a coalgebra.

HFusioN

17

Data types

Functors describe the top level structure of data types.

For each data type declaration
dataT =C1 11 Tigy || Cn Tt Tok,
a functor F' can be derived:
e constructor domains are packed in tuples;
e constant constructors are represented by the empty tuple ();
e alternatives are regarded as sums (replace | by +);

e occurrences of T are replaced by a type variable x in every
Tij-

HFusioN 18

Examples: Lists

List a = Nil | Cons a (List a)

|

Loz=()+a x z

ai(z—y) = (Lax — Lay)

L
La f (Left () = Left ()
La f (Right (a,2)) = Right (a.f v)

HFusioN

19

Example: Leaf-labelled binary trees

data Btree a = Leaf a | Join (Btree a) (Btree a)

|

B,xz=a+2z X =z

B,::(z — y) — (B, — By y)
B, f (Left a) = Left a
B, f (Right (z,2')) = Right (f =, z')

HFusioN

20

Example: Internally-labelled binary trees

data Tree a = Empty | Node (Tree a) a (Tree a)

|

T.z=()4+z X a X z

Tp::(z —y) = (Toz —Tay)

To f (Left () = Left ()
T, f (Right (z,a,2")) = Right (f =, a,f z’)

HFusioN 21

Constructors / Destructors

For every data type T with functor F', there exists an isomorphism

inp
FufF 3 > uF
outp

where
e . F denotes the data type
e ing packs the constructors

e outp packs the destructors

HFusioN

22

Example: Leaf-labelled binary trees

data Btree a = Leaf a | Join (Btree a) (Btree a)

B,x=a+z X z

inp, :: By (Btree a) — Btree a
inBa (Left a,) = Leaf a
ing, (Right (t,t")) = Join t t/

outp, :: Btree a — B, (Btree a)
outp, (Leaf a) = Left a
outp, (Join t t') = Right (t,t’)

HFusioN

23

Hylomorphism

hylo:: (Fb—b)—>(a—Fa)—a—b
hylo o ¢ = @o F (hylo o) o ¢

hylo ¢ ¢
@ —"—T11)

¢ ——— v Fb
F (hylo ¢ 1)

HFusioN

24

Fold

fold: (F a—a)— uF —a
fold ¢ = p o F (fold ¢) o outp

ld
uF Jold ¢

outp ©

Fuypp ——— F
MF (fold)

HFusioN

25

Fold: Lists

foldy ::(bya—b—b)— List a — b
fold, (b,h) Nil = b
fold; (b,h) (Cons a as) = h a (fold;, (b,h) as)

Example:
prod :: List Int — Int
prod Nil =1

prod (Cons n ns) = n * prod ns

As a fold,

prod = fold; (1, (x))

HFusioN

26

Unfold

unfold :: (a - F a) — a — uF
unfold ¥ = inp o F (unfold 1) o

unfold

uF
(0 ing
F F uF

“F (unfold 1)

HFusioN

27

Unfold: Lists

unfold; :: (b — L, b) — b — List a
unfold; v b = case (¢ b) of
Left () — Nil
Right (a,b") — Cons a (unfold; ¢ b')

Example:

upto :: Int — Int
upton | n <1 = Nil
| otherwise = Cons n (upto (n — 1))

As an unfold,

upto = unfold
where
Ynln<l=Left ()
| otherwise = Right (n,n — 1)

HFusioN

Factorisation

hylo ¢ ¥ = fold p o unfold v

HFusioN

29

Factorisation: factorial

fact = prod o upto

prod :: List Int — Int
prod Nil =1
prod (Cons n ns) = n % prod ns

upto :: Int — Int
upton | n<1= Nil
| otherwise = Cons n (upto (n — 1))

Applying factorisation,

fact :: Int — Int
factn|n<1l=1
| otherwise = n * fact (n — 1)

HFusioN

30

Factorisation: quicksort

gsort :: Ord a = [a] — [a]
gsort = inorder o mkTree

tnorder :: Tree a — List a
tnorder Empty = Nil
inorder (Node t a t') = inorder t ++ [a] ++ inorder ¢

mkTree :: Ord a = [a] — Tree a

mkTree [= Empty

mkTree (a: as) = Node (mkTree [z | © — as;x < a])
a
(mkTree [z | x «— as;z > a])

HFusioN 31

Quicksort

gsort :: Ord a = [a] — [a]

gsort [] =[]

gsort (a: as) = gsort [z | z — as;z < a
++ [a] +
gsort [z | x — as;z > a]

HFusioN

32

Fusion laws

Factorisation

hylo ¢ 1 = hylo ¢ outr o hylo inp ¥

Hylo-Fold Fusion
TuVa.(Fa—a)— (Ga—a)

fold @ o hylo (T ing) ¥ = hylo (T) ¢

Unfold-Hylo Fusion

oc:(a— Fa)—(a— Ga)

hylo ¢ (o outr) o unfold ¥ = hylo ¢ (o)

HFusioN

33

Hylo-Fold Fusion

data Maybe a = Nothing | Just a

mapcoll :: (a — b) — List (Maybe a) — List b
mapcoll = map f o collect

map f Nil = Nil
map f (Cons a as) = Cons (f a) (map [as)

collect :: List (Maybe Int) — List Int
collect Nil = Nil
collect (Cons m ms) = case m of
Nothing — collect ms
Just a — Cons a (collect ms)

HFusioN

34

Hylo-Fold Fusion

7 (bya— b—b)— (b, Maybe a — b — b)
T (I’Ll,hg) = (hl,
Am b — case m of
Nothing — b
Just a — ha a b)

Applying hylo-fold fusion,

mapeoll :: (a — b) — List (Maybe a) — List b
mapcoll f Nil = Nil
mapcoll f (Cons m ms) = case m of
Nothing — mapcoll f ms
Just a — Cons (f a) (mapcoll f ms)

HFusioN 35

HFusion

e HFusion is an extension of the HYLO system:

— University of Tokyo, 1997-98
— MIT, 2000, in the context of pH (parallel Haskell)

e HFusion is implemented in Haskell.
e It can be used in three different modalities:

— Command line
— Web interface
— Inside HaRe (Haskell Refactorer)

Web access:
http://www.fing.edu.uy/inco/proyectos/fusion/tool/

HFusioN 36

