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The brain has an amazing capacity to accurately represent information about myriad complex 

stimuli from its surrounding environment. Problems with maintaining accurate representations of 

stimuli have harmful effects and are reflected behaviorally. Speech is one such complex 

stimulus. Normal hearing humans are adept at understanding speech in adverse situations. 

However hearing and learning impaired populations have great difficulty processing speech 

sounds in noise. Examining neural responses to speech sounds may provide a better insight into 

how the auditory system represents speech sounds. Previous studies with EEG and fMRI 

techniques have revealed much about how the brain responds to speech sounds. However, these 

techniques lack the spectral and temporal precision necessary to study the underlying neural 

representation of individual speech sounds. In this dissertation, microelectrode recordings of 

speech responses in rat primary auditory cortex provide high spatial and temporal precision. 

Previous studies have shown that animals have similar behavioral and neural responses to speech 
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sounds as humans. Primary auditory cortex (A1) responses in rats are correlated with their 

behavioral speech discrimination ability in quiet situations. Our study shows that rats can 

discriminate between speech sounds in noisy conditions and that this ability can be explained by 

the A1 spatiotemporal patterns observed in noisy conditions. Maintaining temporal resolution of 

neural responses is necessary to accurately predict behavior in noise. A number of previous 

studies suggest that speech processing disorders arise from underlying neural deficits in temporal 

processing. Given the importance of temporal information for the representation of speech 

stimuli, we tested whether changes in temporal response properties could affect neural responses 

to speech sounds. Vagus nerve stimulation (VNS) was paired with tone train stimuli to change 

the temporal response properties of A1 neurons. Results from this study indicate that increased 

temporal following capacity of neurons also increased neural discrimination ability of rapidly 

presented speech sounds.  
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CHAPTER 1 

INTRODUCTION 

Speech is an integral part of day to day human interaction. In everyday life, we are faced 

with the task of understanding speech sounds in a wide variety of adverse situations. Effective 

speech communication can occur only when the relevant information is picked out of myriad 

other disturbances. Difficulty in speech perception can arise from external sources like speech in 

noise, or from internal sources like rapidly presented speech in conversations or accented speech. 

Whereas small amounts of noise, like the sound of a computer fan in the background does not 

significantly degrade speech perception, large amounts of noise can cause significant 

interference in accurate speech communication even in normal hearing populations. Difficulty in 

perception of speech sounds is exacerbated in hearing and learning impaired populations and 

after stroke or traumatic brain injury. An estimated 38 million people suffer from hearing 

disorders and another 4 million children from language learning disorders in the United States 

alone. An understanding of how auditory cortex neurons represents sounds in adverse conditions 

will help in determining the nature of neural encoding deficits and may further lead to better 

treatment options for improving speech perception ability in these populations. This dissertation 

covers 2 interrelated topics in field of neural processing of speech sounds: 1) Processing of 

speech sounds in noisy situations.  2) Effect of vagus nerve stimulation (VNS) induced temporal 

plasticity on rapid speech sound processing.   
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Although technological advancement has made it possible to understand which areas of the 

brain are affected in the pathological nervous system, the underlying neural processing of speech 

sounds is still not well understood. For example, fMRI and EEG recordings do not provide the 

spatial and temporal precision necessary to understand neural processing of speech signals 

(Callan et al. 2003; Rosen et al. 1998). Microelectrode recordings in animals provide better 

spatial and temporal precision than EEG and fMRI recordings. Using this technique, a number of 

previous studies have shown that auditory cortex responses in animals respond well to a wide 

variety of speech sounds (Steinschneider et al., 1999; Wong and Schreiner, 2003; Steinschneider 

et al., 2004; Engineer et al., 2008; Skoe and Kraus, 2010). Neural responses to speech sounds in 

many species of animals are very similar to neural responses in humans. Behavioral 

discrimination performance in many species of animals is similar to humans for a variety of 

speech contrasts in quiet situations. It is not yet known whether animals, like humans can 

discriminate reliably between speech sounds even when the speech and noise signals are of equal 

intensities. In our study we tested neural and behavioral discrimination ability of rats in different 

noise intensity levels and noise types. 

A previous study showed that precise spatiotemporal activity pattern in the primary auditory 

cortex (A1) of rats can predict their behavioral performance on a variety of speech discrimination 

tasks in quiet (Engineer et. al, 2008). Spike timing information is required for accurate prediction 

of speech discrimination ability in quiet. Using the rat model for speech processing in noise, I 

asked the following question. Can spike timing predict behavioral speech sound discrimination 

ability in noisy situations? Results from this study illuminate the brain mechanisms that make it 

possible to effortlessly distinguish complex textures, sights and sounds even in highly noisy 
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situations (Chapter 2). Chapter 2 discusses the behavioral speech discrimination ability of rats in 

different intensities and spectral compositions of noise. This chapter further examines neural 

correlates of speech discrimination in these noisy conditions. This study provides the first 

evidence that animals can discriminate between most of the tested speech contrasts in high levels 

of background noise at a level similar to humans. Neural responses analyzed using spike timing 

mechanisms in the rat A1 were highly correlated with their behavior speech discrimination 

ability in variety of noise conditions. Although previous studies have shown that animals can 

discriminate between speech sounds to a similar level as humans, the question of whether these 

results hold under adverse conditions had not yet been answered (Kuhl and Miller 1975; Tallal et 

al., 1993; Cunningham et al., 2002). These results suggest common speech sound discrimination 

mechanisms between humans and animals and support the use of animal models in 

understanding the neurophysiologic representation of speech sounds and speech sound 

processing impairments in humans.  

A large number of learning impaired populations like dyslexics, autistics and poor 

readers have problems understanding rapidly presented stimuli like conversational speech (Tallal 

and Piercy 1973; Farmer and Klein 1995; Denckla and Rudel 1976; Tallal et al. 1985; 1981; 

Elliot et al. 1989; Reed 1989; Wolff et al.; 1990). A number of studies have indicated that the 

underlying problem lies in the basic auditory temporal processing (Merzenich et al., 1996; Kraus 

et al. 1996; Stark and Heinz 1996a; Tallal et al., 1998). Having established the importance of 

temporal processing in accurate predictions of behavioral speech sound discrimination, I sought 

to understand whether changes in temporal response properties of neurons can affect speech 

sound discrimination in adverse situations. The aim of this project was twofold: 1) Find a 
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clinically viable tool that is capable of inducing plasticity in the central nervous system and test 

whether this tool can induce temporal plasticity in the auditory cortex. 2) If this tool could induce 

temporal plasticity, then test effect of improved temporal plasticity on rapidly presented speech 

sounds.  

VNS has been used in 50,000 clinically to treat epilepsy and chronic depression (Groves & 

Brown, 2005; Albert et al., 2009). Pairing VNS with tones has been shown generate spatial 

plasticity and has been a valuable tool in treating tinnitus equivalent in animals (Engineer et al., 

2011).  

Repeatedly pairing electrical stimulation of the nucleus basalis (NBS) or the vagus nerve 

(VNS) with a tone induces spatial plasticity by increasing the area of primary auditory cortex 

(A1) that responds to the paired tone frequency (Engineer et al., 2011). The similarity of spatial 

plasticity effects seen with NBS and VNS indicate similar underlying plasticity mechanisms with 

both methods. Previous studies have shown that pairing NBS with rapid stimuli can also induce 

temporal plasticity (Kilgard & Merzenich, 1998b; Kilgard, et. al, 2001). These results led me to 

test the hypothesis that vagus nerve stimulation (VNS) can induce temporal plasticity similar to 

NBS (Chapter 3). Chapter 3 & 4 discusses the temporal plasticity effects induced by VNS and 

the effect of this plasticity on neural processing of rapid speech stimuli. The key findings from 

this project are that: 1) VNS is capable of generating highly input specific temporal plasticity. 2) 

Animals which received VNS have increased responses to rapidly presented speech stimuli. 

Chapter 5 discusses the relevance to previous literature, clinical implications of these results 

and directs to possible future studies.  
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CHAPTER 2 

CORTICAL ACTIVITY PATTERNS PREDICT ROBUST SPEECH DISCRIMINATION 

ABILITY IN NOISE 
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2.2 ABSTRACT 

The neural mechanisms that support speech discrimination in noisy conditions are poorly 

understood. In quiet conditions, spike timing information appears to be used in the 

discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is 

also used to distinguish between speech sounds in noisy conditions that significantly degrade 

neural responses to speech sounds. We tested speech discrimination performance in rats and 

recorded primary auditory cortex (A1) responses to speech sounds in background noise of 

different intensities and spectral compositions. Our behavioral results indicate that rats, like 

humans, are able to accurately discriminate consonant sounds even in the presence of 

background noise that is as intense as the speech signal. Our neural recordings confirm that 

speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel 

neural classifier that mimics behavioral performance. The classifier discriminates between 

speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with 
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the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous 

studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed 

using relative spike timing was well correlated with behavioral speech discrimination ability in 

quiet and in noise. Spike timing information appears to be integrated over somewhat longer 

temporal intervals in noisy conditions. The similarity of behavioral speech discrimination and 

neural responses between humans and rats  in noise suggests that similar brain mechanisms may 

be used to solve this problem behaviorally. 

2.3 INTRODUCTION 

Previous studies suggest that animals and humans may share speech sound processing 

capabilities (Kuhl and Miller 1975; Tallal et al., 1993; Cunningham et al., 2002; Mesgarani et al., 

2008). Monkeys, cats, birds and rodents can accurately discriminate between various speech 

sounds (Kuhl and Miller 1975; Kluender et al, 1987; Ramus et al., 2000; Wong and Schreiner, 

2003; Engineer et. al., 2008). Human listeners are adept at discriminating speech sounds in 

background noise that is as loud as the speech signals (Miller and Nicely, 1955; House et al., 

1965; Wang and Bilger, 1973; Dubno and Levitt, 1981; Phatak and Allen, 2007). It is not known 

whether animals can discriminate between speech sounds in noise levels as high as humans. A 

finding that animal speech discrimination is more sensitive to background noise than human 

speech discrimination would support the earlier hypothesis that humans are uniquely equipped to 

process speech sounds (Liberman and Mattingly, 1985; Wilkins and Wakefield, 1995). A finding 

that animal speech discrimination is as robust to noise as human speech discrimination would 

support the hypothesis that humans and animals share common speech sound processing 

mechanisms.  
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Neurophysiologic studies suggest similar neural mechanisms for representation of speech 

sounds in humans and animals (Steinschneider et al., 1999; Wong and Schreiner, 2003; Engineer 

et al., 2008; Mesgarani et al., 2008). For example, in both humans and animals, voiced stop 

consonants evoke a single peak of cortical activity, while unvoiced stop consonants evoke two 

peaks (Steinschneider et al., 1999; Wong and Schreiner, 2003; Engineer et al., 2008; Mesgarani 

et al., 2008). In noisy situations, degraded human evoked-potential responses to speech in noise 

are correlated with impairments in behavioral speech discrimination ability (Whiting et al., 1998; 

Martin et al., 1999; Binder, et al., 2004). The neurophysiologic correlates of animal speech 

discrimination in noise are not yet known. Examining neural correlates of speech processing in 

noise may strengthen the hypothesis that basic neural processing of speech sounds is similar in 

humans and animals.  

Although little is known about the neural mechanisms that allow speech discrimination to 

remain robust in high levels of noise, previous studies in the visual and auditory cortex have 

suggested that in noisy situations neurons accumulate information over longer durations (Binder 

et al., 2004; Huk and Shadlen, 2005). We tested the hypothesis that speech discrimination 

remains robust in noise by increasing the degree of temporal integration used when neural 

activity patterns are decoded. To test our hypothesis, we quantified behavioral and neural 

discrimination of consonant sounds in noise of differing intensity and spectral composition. Our 

previous study of speech discrimination in quiet suggested that spike timing with precision of 1-

10 ms is used to discriminate speech sounds.  We developed a novel classifier to compare 

behavior with neural discrimination using different levels of temporal precision. The classifier 

was not provided with information about when the sounds would occur because high levels of 
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noise were expected to eliminate the onset response to speech sounds (Martin et al., 1999; 

Cunningham et al., 2002; Russo et al., 2004). 

2.4 MATERIALS AND METHODS 

Stimuli 

Speech Stimuli: We used 11 of the 20 English consonant-vowel-consonant (CVC) words, ending 

in ‘ad’ (as in 'tad') used in the Engineer et al. (2008) study. These sounds were ‘bad’, ‘dad’, 

‘gad’, ‘pad’, ‘tad’, ‘sad’, ‘yad’, ‘rad’, ‘lad’, ‘shad’, and ‘chad’. A detailed description of the 

recording and processing on these sounds can be found in Engineer et al. (2008). In brief, we 

recorded these sounds in a double-walled, sound-proof booth. All speech sounds were produced 

by a female speaker. The fundamental frequency and spectrum envelope of each word was 

shifted up in frequency by a factor of two using the STRAIGHT vocoder (Kawahara, 1997) to 

better match the rat hearing range (Sally and Kelly, 1988). The intensity of the speech sounds 

was adjusted so that the intensity during the most intense 100 ms is 60 dB SPL. Speech sounds 

were approximately 500 ms long. 

Noise Stimuli: White noise was generated using a random number generator in MATLAB and 

covered a frequency range of 0.2-50 kHz. The speech-shaped noise was generated by passing 

white noise through first order Butterworth filters. Butterworth filters available in the FDATool 

function in MATLAB were used. Since the speech stimuli in our experiment were produced by a 

female speaker, we used the long term average speech spectrum (LTASS) of the female voice. 

LTASS for female voices has been shown to be flat from ~200 Hz to ~700Hz and falls off by 

approximately 7 dB SPL per octave on the either side. This shape for speech-shaped noise has 

been shown to be standard across almost all the languages in the world (Byrne et al., 1994). Like 
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speech stimuli, the frequency limits of speech-shaped noise from Byrne et al. (1994) were shifted 

up by a factor of two in order to adjust for the rat frequency hearing range. The speech-shaped 

noise used in this study has a flat spectrum between ~400 Hz and ~1400 Hz and slopes by 7 dB 

SPL per octave on either side. Both white noise and speech-shaped noises were calibrated to 48, 

60 and 72 dB SPL. 

 

Behavior Training Procedure 

We trained 12 female Sprague-Dawley rats to discriminate speech sounds in quiet and noise. 

An operant go-no-go training procedure was used for speech discrimination training. Half of the 

rats (n=6) were trained to press a lever in response to the target sound ‘dad’ and ignore the 

distracter sounds ‘bad’, ‘gad’, ‘tad’ and ‘sad’. The other half of the rats (n=6) were trained to 

press the lever on the  target sound ‘shad’ and ignore the distracter sounds ‘bad’, ‘dad’, ‘yad’, 

‘sad’, ‘pad’, ‘tad’, and ‘chad’. The rats weighed an average of 275 ± 15 g and were housed in 

12:12 hr reversed light cycle at a constant humidity and temperature. Animals were food 

deprived to provide motivation for food reward during the behavior training but were maintained 

to no less than 85% of their normal body weight. Access to water was free at all times except 

during the behavior training session which was an hour long. Rats were trained for two training 

sessions each day for 5 days a week in a sound-shielded operant-training booth. The booth 

contained a video camera for monitoring, a house light, a cage (8 inches length X 8 inches width 

X 8 inches height), and a speaker. The cage contained a lever, lever light, and pellet receptacle. 

The pellet dispenser was mounted outside the training booth to minimize noise. The speaker was 
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mounted approximately 10 cm away from the midpoint between the lever and the pellet 

dispenser receptacle since rats generally stayed in this area during behavior training sessions. 

Rats progressed through the following behavior training stages: 1. Shaping, 2. Detection 

of sounds, 3. Discrimination in Quiet, and 4. Discrimination in Noise. The training protocol used 

up to Stage 3 i.e. Discrimination in quiet, was similar to our previous study, Engineer et al. 

(2008). During the shaping stage, the rats were trained to press the lever for food reward. Any 

time the rats were in the proximity of the lever, they were rewarded with a 45 mg sugar pellet. 

The target sound was played every time the rat received the food pellet, so that the rats learned to 

associate the sound with the food reward. We increased the reward criteria gradually until the rat 

was only rewarded for pressing the lever. After the rats learned to independently obtain 

approximately 100 pellets for 3 consecutive sessions, they were moved to the detection of sounds 

stage where they were trained to press the lever only in response to the target sound.  

During the initial detection of sounds training stage, the target speech sound was 

presented every 10 seconds. Silent catch trials were randomly interleaved 25-30% of the time 

and there were no speech sound distracters in this phase. Rats were rewarded if they pressed the 

lever within a 8 second window after presentation of the target sound. Pressing the lever during 

the silent catch trials resulted in a time out during which the house light was extinguished, the 

training program was paused for 8 seconds, and the rats did not receive any food pellets. As 

performance improved over sessions, the sound presentation interval was gradually reduced to 6 

seconds, and the lever press window was gradually reduced to 3 seconds.  We calculate d’ to 

determine the hit rates compared to the false alarm rates (Engineer et al., 2008). A d’ of 0 

indicates the rat is pressing the lever equally often to both target and distracter, while a positive 
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d’ indicates that the rat has a higher hit rate than false alarm rate. A d’ of 1.5 or higher indicates 

that the rats were reliably detecting the target sound. Once rats reached the performance d’ ≥1.5 

for ten sessions, they were advanced to discriminate between consonant sounds in quiet. 

During each consonant discrimination task, rats learned to discriminate the target sound from 

the distracter sounds. Initially, the rats learned to discriminate sounds in quiet. Trials began every 

6 seconds and rats were only rewarded for lever presses to the target (conditioned) stimulus 

which were randomly interleaved 50% of the time. Silent catch stimuli and distracter sounds 

were randomly interleaved 50% of the time and pressing the lever on these trials resulted in a 

time-out of 6 seconds. After 20 sessions of discrimination training in quiet, the rats were trained 

to discriminate between speech sounds in background noise. During each session, rats were 

trained to discriminate speech sounds in both speech-shaped noise and white noise of 48, 60 and 

72 dB SPL intensities. We also continued to test rat behavioral speech discrimination ability in 

quiet to allow direct comparison between discrimination ability in quiet and noise on the same 

days. Each session started with 13 trials of discrimination in quiet. For future reference, we will 

refer to 13 trials played in a particular noise intensity and noise type as a noise block. Sounds 

presented in each block were chosen randomly to maintain a 1:1 presentation ratio of target 

sound and the distracters. After discrimination of trials in quiet, either white noise or speech-

shaped noise of 48 dB SPL was randomly chosen to be played in the background. Noise intensity 

was gradually increased every noise block to the maximum level, so that the animal could 

habituate to the noise, and then gradually decreased. After this sequence, the noise was changed 

to a random noise intensity and noise type for every block. Noise had a 3 second ramp on to 

avoid startling the rat with abrupt noise bursts. After this sequence, noise blocks were played 
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randomly. During all stages of training, lever press or the absence of lever press was recorded for 

each trial along with the time of lever press response. Training performance was quantified using 

percent correct and d prime measure. Percent correct performance was used to correlate neural 

performance which was obtained from a neural classifier, which is explained later in the section. 

The percentage of trials on which the rats pressed the lever  to the target sound and the 

percentage of trials on which the rats withheld from pressing on the lever for the distracter 

sounds were averaged together to calculate the overall behavioral percent correct score. 

Discrimination performance of rats in noise improved consistently up to the fiftieth session after 

which their performance reached a plateau. Behavioral data collected on the last 20 training 

sessions was averaged together to determine the speech discrimination ability of rats. In order to 

compare the performance of our neural classifier with a wide variety of behavior tasks, we 

included behavioral data of 5 additional tasks from our earlier study in quiet and averaged 

behavioral discrimination ability of 6 tasks common to both studies. The discrimination tasks 

common to both studies were ‘dad’ versus ‘bad’, ‘dad’ versus ‘gad’, ‘dad’ versus ‘tad’, ‘dad’ 

versus ‘sad’, ‘shad’ versus ‘sad’, and ‘shad’ versus ‘chad’. The discrimination tasks used only in 

our previous study were ‘shad’ versus ‘fad’, ‘shad’ versus ‘jad’, ‘shad’ versus ‘had’, ‘rad’ versus 

‘lad’, and ‘mad’ versus ‘nad’. For behavior analysis, we used two-factor repeated measures like 

analysis of variance i.e. ANOVA and Tukey t-tests for post-hoc analysis with significance set to 

p < 0.05. All handling, housing, and testing of the animals was approved by the University of 

Texas Institutional Animal Care and Use Committee. 
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Neural Data -Electrophysiology Recordings 

We recorded multiunit responses to speech in quiet and in six noise conditions from 133 sites in 

right primary auditory cortex (A1) of 8 anesthetized naïve rats. Neural responses from our earlier 

study (n=445 A1 sites from 11 rats; Engineer et al., 2008) recorded in quiet were used to 

evaluate neural discrimination for the five additional behavior tasks that were only tested in 

quiet. Rats were anesthetized with pentobarbital for surgery (50 mg/kg) and a state of areflexia 

was maintained throughout the experiment with supplemental doses of dilute pentobarbital (0.2– 

0.5 ml; 8 mg/ml). Anesthesia depth was monitored by heart rate, breathing rate, corneal reflexes, 

and response to toe pinch. Nourishment was provided using 1:1 mixture of dextrose (5%) and 

standard Ringer’s lactate solution and body temperature was maintained at 37 degrees C. A 

tracheotomy was performed to minimize breathing problems and breathing sounds, and a 

cisternal drain was made to minimize cerebral edema. A part of the skull over the temporal ridge 

was removed to expose the right primary auditory cortex. The dura was removed and the cortex 

was maintained under a thin film of silicone oil to prevent desiccation. Four parylene coated 

tungsten microelectrodes (FHC, 1-2 MΩ) were lowered simultaneously to a depth of 600 µm so 

that they were in layer IV/V of the primary auditory cortex. Blood vessels were used as 

landmarks to mark each of the electrode recording sites. To determine the characteristic 

frequency at each site we played ninety logarithmically spaced tones ranging from 1- 47 kHz at 

16 intensities ranging from 0-75 dB SPL. The tones were 25 ms long and their presentation was 

randomly interleaved. We placed the speaker 10 cm away from the left ear. Neural response 

characteristics such as start latency, end latency and characteristic frequency at each recoding 

site were used to determine whether the electrodes were placed in the primary auditory cortex. 
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After all the tones, speech sounds were played. The speech stimulus set was comprised of the 

same 11 monosyllabic consonant-vowel-consonant (CVC) words used in behavior training, a 

silence stimulus, and two noise types i.e., white noise and speech-shaped noise. Each speech 

sound was separated by 2300 ms and presented 20 times in quiet and in 3 noise intensity levels 

viz., 48, 60 and 72 dB SPL of both white noise and speech-shaped noise. The different noise 

conditions i.e. noise levels and noise types were interleaved to avoid state of anesthesia from 

affecting neural responses in any particular noise condition. For example, speech sounds were 

first played 10 times in different intensities of speech-shaped noise, then 10 times in different 

intensities of white noise, then 10 times again in different intensities of speech-shaped noise and 

finally 10 times in different intensities of white noise resulting in all the speech sounds being 

presented 20 times in both speech-shaped noise and white noise. Within each noise type, the 

noise intensities were interleaved as follows. All the sounds (11 speech sounds and silent 

stimulus) were repeated 5 times at one noise intensity. From here on, we will refer to this set of 

sounds i.e. 12 sounds repeated 5 times played in a particular noise intensity and noise type as one 

block. Within each block, the speech sounds were randomly interleaved. The sequence in which 

the blocks were played is as follows. First, one block of sounds was played in quiet. Either white 

noise or speech-shaped noise was added in a linearly increasing order of intensity and then in a 

linearly decreasing order.  This sequence resulted in each of the sounds being played 10 times in 

one noise type. As mentioned earlier, this sequence was repeated with the other noise type, and 

then again with the first noise type and lastly with the second noise type. Noise intensities within 

each noise type were played in a gradual increasing and decreasing order to avoid sudden 

changes in neural responses that could result from random presentation of noise. Stimulus 



16 

 

generation and data acquisition was performed with Tucker-Davis hardware (RP2.1 and RX5) 

and software (Brainware). Surgery protocols and recording procedures were approved by the 

University of Texas at Dallas Institutional Animal Care and Use Committee. 

 

Neural Data-Electrophysiology Data Analysis 

Neural response characteristics: Total number of spikes was calculated over the first 100 ms of 

the neural response onset. Onset start latency (ms) is defined as the time from stimulus onset to 

the earliest reliable neural response and was determined as the time when average neural 

responses from all recording sites were at least 3 standard deviations above spontaneous activity. 

End of peak latency (ms) is the time when the average neural responses return to baseline and 

was determined as the time when neural responses after the peak driven response were not 

significantly different than spontaneous activity. Distinctness between neural response patterns 

was calculated using City-block and Euclidean distance to test the correlation between neural 

distinctness and behavioral discrimination performance. For neural response analysis, we used 

two-factor repeated measures ANOVA and Tukey t-tests for post-hoc analysis with significance 

set to P < 0.01. 

Classifier: To quantify neural discrimination performance, we modified a well studied 

nearest neighbor classifier (Engineer et. al, 2008; Schnupp et. al, 2006; Foffani et. al, 2004). 

Unlike our earlier classifier that was explicitly given the stimulus start time (Engineer et. al, 

2008), the version of classifier used in the current study was not given information about the 

stimulus start time.  

The neural classifier identifies sounds based on activity produced by a single 
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presentation. The classifier attempts to identify which of two possible sounds was presented by 

looking for the spatiotemporal activity patterns generated by each sound. The two activity 

patterns are derived from the average response from a set of recordings sites distributed across 

A1. The average spatiotemporal activity patterns are generated from 19 trials and the current trial 

is not included.   In this study, the average spatiotemporal pattern evoked by each sound was 

usually 100 or 400 ms in duration and was binned with 10 or 60 ms precision. For example, 

Figure 2.6a shows the average response of 60 A1 sites to the word ‘dad’. In this case, the 

duration of the pattern is 100 ms and the bin size is 10 ms. As previously reported, neurons tuned 

to low frequency tones respond to the onset of ‘dad’ approximately 20 ms after neurons tuned to 

high frequency tones (Figure 2.6a; Engineer et al., 2008; see Figure 2 and Video 1 from 

Engineer et al., 2008). The average spatiotemporal pattern evoked by the word ‘bad’ is distinct 

from the pattern evoked by ‘dad’. In response to ‘bad’, neurons tuned to low frequency tones 

tend to respond before neurons tuned to high frequency tones (Figure 2.6b).  

The classifier determines which of the two patterns was more likely to have occurred 

during the single trial response period that is 750 ms long (Figure 2.6c). The classifier computes 

the City-block distance (Figure 2.6c, top) between the average patterns and the single trial 

activity assuming all possible start times. City-block distance is simply the average difference 

between the firing rate at each bin of the single trial activity and the average pattern. All results 

were also tested using Euclidian distance and were similar to results with City-block distance. 

The classifier guesses that the sound that was presented on each trial was the sound whose 

average spatiotemporal pattern was closest (Figure 2.6c, asterisk) to the single trial activity. 

Neural discrimination performance for a group of sites was determined by calculating the 
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percentage of trials on which the classifier correctly guessed the presented sound. Behavioral 

performance was compared with classifier performance using average spatiotemporal patterns 

produced from 1-133 A1 sites using durations of 10-700 ms and a bin size of 1-700 ms. In the 

most common form of the classifier, activity patterns were derived from groups of 60 recordings 

sites that were randomly selected from the set of 133 A1 sites from which speech in noise 

responses were collected. Classifier100/10ms refers to the classifier when 100 ms of activity from 

60 sites binned every 10 ms was used for the neural discrimination. Classifier400/60ms refers to the 

classifier when 400 ms of activity from 60 sites binned every 60 ms was used. The hybrid 

classifier uses 100 ms of activity binned every 10 ms in quiet conditions and 400 ms of activity 

binned every 60 ms in noise.  

We also analyzed neural responses to sounds from our previous study in quiet using the 

classifiers used in this study and compared whether our new neural classifier could predict 

behavior discrimination ability of tasks from our previous study (Engineer et al., 2008).  

2.5 RESULTS 

Behavior Results 

Our results provide the first evidence that animals, like humans, can discriminate between 

numerous speech sounds even when the speech signals and background noise are of equal 

intensity (Figure 2.1). We trained twelve rats to discriminate between different consonant 

sounds in noise. Half of the rats (n=6) were first trained to discriminate the target word ‘dad’ 

from the distracter words ‘bad’, ‘gad’, ‘tad’, ‘sad’ in quiet. The other half were first trained to 

discriminate the target word ‘shad’ from the distracter words ‘bad’, ‘dad’, ‘pad’, ‘tad’, ‘yad’, 

‘sad’, ‘chad’ in quiet. All the speech sounds were presented such that the loudest 100 ms was at 
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60 dB SPL. After the rats learned to accurately perform the tasks, both groups were required to 

discriminate the same stimuli in white noise and speech-shaped noise of 48, 60, and 72 dB SPL. 

 

Consistent with our earlier report, the rats were able to discriminate the target from the 

distracter sounds on more than 85% of trials when tested in quiet (Figure 2.1a; Engineer et al., 

2008). As expected, performance could be impaired by adding background noise and the extent 

of impairment depended primarily on the intensity of the noise. Moderate levels of background 

noise (i.e. 48 dB SPL) did not significantly impair speech discrimination performance compared  

 
Figure 2.1. Behavioral discrimination of consonant sounds in different intensities of white noise 

and speech shaped noise. 

(a) Average speech discrimination ability on all tasks. Rats could discriminate between 

consonant sounds well above chance level even when speech and noise were of equal intensity 

i.e. 60 dB SPL (p = 0.005; Tukey posthoc). (b) Discrimination performance of 11 consonant 

discrimination tasks in quiet and different intensities of white noise. (c) Discrimination 

performance of 11 consonant discrimination tasks in quiet and different intensities of speech-

shaped noise. Chance level performance is shown in light gray lines. Speech-shaped noise of 72 

dB SPL was more impairing than white noise of 72 dB SPL (F (1, 66) =10.20, MSE = 244.02; p = 

0.001).  
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to quiet for most speech sound contrasts (F (1, 66) = 0.54, MSE = 13, p = 0.5). Only the 

discrimination of ‘shad’ from ‘chad’ was significantly impaired by 48 dB SPL noise (Figure 

2.1b, c; p = 0.005; Tukey posthoc). In 60 dB SPL noise, rats were able to perform each of the 

discrimination tasks at well above chance levels, but performance was significantly impaired 

compared to quiet (p = 0.005; Tukey posthoc). In 72 dB SPL noise, discrimination performance 

on all tasks, except ’dad’ versus ’tad’, was significantly impaired compared to quiet (p = 0.005;  

Tukey posthoc). These results demonstrate that rats can discriminate speech sounds at a 

minimum signal to noise ratio that is similar to humans (Miller and Nicely, 1955; House et al., 

1965; Horii et al., 1971; Wang and Bilger, 1973; Dubno and Levitt, 1981; Phatak et al., 2008).  

Behavioral discrimination ability on most tasks was impaired to a similar extent by white 

noise and speech-shaped noise when the noise intensities were 48 or 60 dB SPL (by 2±1.9% in 

48 dB SPL and 9.5±2% in 60 dB SPL noise, respectively). However, in 72 dB SPL noise, speech 

discrimination ability was significantly more impaired by speech-shaped noise (average percent 

correct 51±2%) compared to white noise (average percent correct 60±3%) (Figure 1a; F (1, 66) 

=10.20, MSE = 244.02, p = 0.001). Rats could discriminate 6 out of 11 tasks significantly above 

chance in 72 dB SPL white noise and only 3 of 11 tasks in 72 dB SPL speech-shaped noise 

(Figures 2.1b, c; p = 0.005, Tukey posthoc). The observation that speech-shaped noise generally 

causes greater impairment in speech discrimination ability than white noise is consistent with 

psychophysical studies in humans (Busch and Eldredge, 1967; Dubno and Levitt, 1981).  

There were significant differences in the degree to which different speech contrasts were 

impaired by the different noise conditions. In quiet, ‘dad’ versus ‘bad’ and ‘dad’ versus ‘gad’ 

were the easiest tasks and ‘dad’ versus ‘tad’ and ‘shad’ versus ‘chad’ were the hardest 
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discrimination tasks, consistent with our previous report (Engineer et. al, 2008). In the presence 

of background noise, ‘dad’ versus ‘bad’ and ‘dad’ versus ‘gad’ continued to be amongst the 

easiest discrimination tasks; ‘shad’ versus ‘chad’ continued to be the hardest discrimination task 

(Figures 2.1b, c). The ability of rats to discriminate ‘dad’ versus ‘tad’ in white noise, however, 

was quite robust and had the least impairment in performance as compared to all the other 

discrimination tasks (Figures 2.1b, c; p = 0.005, Tukey posthoc). For example, behavioral 

discrimination ability of ‘dad’ versus ‘gad’ fell by 23±3% from quiet to 72 dB SPL white noise, 

while that of ‘dad’ versus ‘tad’ fell by 6±2%. This result is consistent with results from 

psychophysical studies in humans, which show that voicing tasks are the most robust to white 

noise (Miller and Nicely, 1955; Wang and Bilger, 1973).Discrimination performance of ‘dad’ 

versus ‘tad’ was not as robust in speech-shaped noise and fell by 27±3% when 72 dB SPL 

speech-shaped noise was added. This result is consistent with previous results in humans which 

show that voicing discrimination is not as robust in speech-shaped noise as in white noise 

(Dubno and Levitt, 1981)  

Discrimination tasks with ‘dad’ as the target stimulus were significantly more robust to 72 

dB SPL white noise compared to discrimination tasks with target stimulus ‘shad’ (p = 0.01; 

Tukey posthoc), but were not more robust in 72 dB SPL speech-shaped noise (p = 0.5; Tukey 

posthoc). The greater masking of ‘shad’ by white noise is consistent with previous results in 

humans which show that fricatives and affricates are more sensitive than stop consonants to 

white noise (Miller and Nicely, 1955; Busch and Eldredge, 1967; Horii et al., 1971; Phatak et al., 

2008). The only contrasts that were more impaired in white noise compared to speech-shaped 

noise were ‘dad’ versus ‘sad’ and ‘shad’ versus ‘chad’ in 48 dB SPL  noise and ‘dad’ versus 
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‘gad’, ‘shad’ versus ‘tad’ and ‘shad’ versus ‘chad’ in 60 dB SPL noise (p = 0.005; Tukey 

posthoc). We expected that A1 responses to speech sounds in each of the noise types and 

intensities would clarify the auditory mechanisms that support robust speech processing in noisy 

environments. 

Neural Responses to speech sounds in background noisy situations:  

Neural responses were recorded from 133 multiunit clusters of A1 neurons in barbiturate-

anesthetized rats. Neural responses were obtained in response to the same 11 consonant sounds 

behaviorally tested in quiet and in 48, 60 and 72 dB SPL speech-shaped noise and white noise. 

Responses recorded in silence were consistent with results from previous studies in humans and 

animals (Steinschneider et al., 1999; Wong and Schreiner, 2003; Steinschneider et al., 2004; 

 
Figure 2.2. Degradation of neural responses in different intensities of white noise and speech-

shaped noise. 

Neural responses were obtained from 133 primary auditory cortex (A1) sites in 8 anesthetized 

naïve adult rats. (a) Average number of spikes evoked by all consonant sounds in the first 100 

ms. None of the sounds had significantly driven activity in 72 dB SPL speech-shaped noise. (b) 

Average start latency evoked by all consonant sounds. Since there were no significantly driven 

spikes in 72 dB SPL speech-shaped noise, there was no latency in this condition. Black and 

magenta asterisks indicate neural responses in white noise and speech-shaped noise 

(respectively) are significantly degraded compared to quiet (p = 0.0001; Tukey post-hoc). Blue 

asterisks indicate that neural responses in white noise are significantly less degraded than 

responses in speech-shaped noise at that intensity (p = 0.0001; Tukey post-hoc).  
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Engineer et al., 2008; Skoe and Kraus, 2010). For example, voiced stop consonants (b/, /d/, /g/) 

evoked a single burst of activity whereas unvoiced stop consonants (/p/, /t/) resulted in a second 

peak of activity corresponding to the voicing onset. Stop consonants i.e. /b/, /d/, /g/, /p/, /t/, 

evoked a greater neural onset response compared to fricatives and affricates i.e. /s/, /sh/, /ch/ 

(average of 3.0±0.1 spikes versus 2.3±0.4 spikes, p = 0.0001; Tukey posthoc; Figure 2.3, grey 

lines).  

 
Figure 2.3. Average post-stimulus time histogram (PSTH) responses evoked by each speech 

sound in three different intensities of white noise and speech-shaped noise. 

Sounds are grouped according to manner of articulation. Cyan and light gray lines show 

amplitude envelope of speech and noise signals. Speech signal was calibrated so that loudest 100 

ms is at 60 dB SPL and noises were at 48, 60, 72 dB SPL. In quiet, most sounds, except voiced 

stop consonants evoke a 2 peaked response, the first peak is evoked by the consonant part of the 

sound, and the second peak is evoked by the vowel part of the sound. Stop consonants evoked 

the strongest onset response in quiet. For reference, sound /t/ evoked the strongest neural onset 

response at 377Hz. Voiced stop consonants (a-c.) were the most robust in all noise conditions (p 

= 0.0001; Tukey post-hoc). Fricatives and affricatives evoked the weakest response in quiet and 

noise (f-h.). For most sounds neural responses in white noise were significantly more robust than 

speech-shaped noise of equal intensities (p = 0.0001; Tukey post-hoc). 
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Neural responses to consonant sounds were degraded in the presence of background noise. 

The amount of degradation of the neural onset response depended on the intensity of the noise, 

type of speech sound, spectral composition of the noise and the characteristic frequency at each 

recording site. Increasing the intensity of background noise caused significant degradation of the 

neural onset response to all consonant sounds. Specifically, increasing the intensity of 

background noise reduced the total number of spikes and increased both start and end latency of 

the neural onset response to consonant sounds (Figure 2.2; F (3, 396) = 141.79, MSE = 5163.12, p 

= 0.0001; F (3, 396) =29.14, MSE = 1686.21, p = 0.0001; F (3, 396) = 15.72, MSE = 3202.99, p = 

0.0001; respectively). For example, the average number of spikes evoked by consonant sounds in  

the first 100 ms was 1.7 ± 0.2 spikes less in 60 dB SPL noise, compared to quiet (p = 0.0001; 

Tukey posthoc). The average start and end latency of sounds increased by 35± 14 ms and 62.5± 

14.5 ms respectively in 60 dB SPL noise compared to quiet (p = 0.0001; Tukey posthoc). The 

neural onset response to most sounds was prominent in 48 dB SPL noise and still present when 

the background noise and speech signal were of the same intensity (i.e. 60 dB SPL; Figure 2.3). 

The onset response to most speech sounds was eliminated by the presence of 72 dB SPL 

background noise. The severe reduction of neural activity by 72 dB SPL noise is consistent with 

our behavioral results that speech discrimination is severely impaired in this noise intensity. 

Neurophysiology studies in humans show that the cortical responses to some sounds are more 

degraded by noise than other sounds (Whiting et al., 1998; Martin et al, 1999; Billings et al., 

2010). Our recordings in rats also show a significant effect of stimulus on cortical responses in 

noise (Figure 2.3; F (30, 3960) = 68.67, MSE = 22133.63, p = 0.0001). Voiced stop consonants (/b/, 

/d/, /g/) were least affected by presence of background noise (Figure 2.3a-c; p = 0.0001; Tukey 
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posthoc). The number of spikes in the onset response evoked by voiced stop consonants was 

significantly greater than all the other consonant groups (i.e. unvoiced stop consonants, 

fricatives, affricates and glides). For example, sounds /b/, /d/, and /g/ evoked an average of 

1.67±0.10 spikes and were significantly above spontaneous activity, even in 72 dB SPL white 

noise (p = 0.0001; Tukey posthoc). On the other hand, the neural onset response to fricative 

sound /s/ was almost completely eliminated, even in the presence of 48 dB SPL white noise 

(Figure 2.3f; p = 0.0001; Tukey posthoc). The onset responses to unvoiced sounds were 

eliminated in 72 dB SPL white noise. The prominence of neural response for /d/ and absence of 

neural response for /sh/ in 72 dB SPL white noise supports our behavior result of robust speech 

discrimination of tasks with target sound /d/. As in previous studies, in both humans and animals, 

neural responses to vowel sounds were more robust than consonant sounds (Cunningham et al., 

2002; Russo et al., 2004; Song et al., 2010). For example, the neural response to vowel onset was 

present even in 72 dB SPL white noise for most sounds, whereas response to the unvoiced 

consonant was eliminated (Figure 2.3d-k). This robustness is likely due to the fact that vowel 

sounds are generally louder than consonants (Brinton, 2000).The differential effect of noise on 

neural responses to different sounds may clarify the greater behavioral sensitivity of certain tasks 

to noise. 

The spectral composition of background noise significantly altered the degree of degradation 

of the neural response. Speech-shaped noise had a greater impact on most sounds compared to 

white noise (Figure 2.3; F(1, 132) = 391.14, MSE = 60346.02, p = 0.0001). For example, sound /p/ 

evoked 1.18±0.12 spikes in 60 dB SPL white noise, and 0.27±0.08 spikes in 60 dB SPL speech-

shaped noise. The average number of spikes evoked by sounds /b/, /d/, /g/, /p/, /y/, /r/, and /l/ was 
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reduced by 0.94±0.14 spikes in presence of speech-shaped noise as compared to white noise of 

equal intensity (60 dB SPL, p = 0.0001; Tukey posthoc). The sounds /b/, /d/, and /g/  had 

significantly driven responses in 72 dB  SPL white noise, whereas neural responses to all sounds 

were indistinguishable from spontaneous activity in 72 dB SPL speech-shaped noise (p = 

0.0001; Tukey posthoc).These neural results provide support for our behavioral results and also 

results from previous human psychophysical studies which show that speech-shaped noise is 

more impairing than white noise sounds for most speech sounds (Busch and Eldredge, 1967; 

Dubno and Levitt, 1981).  

 

 
Figure 2.4. Average post-stimulus time histogram (PSTH) responses evoked by different speech 

sounds in the 45 low frequency A1 sites. 

Neural responses in low frequency neurons (characteristic frequency of neurons<4 kHz) are 

more robust in white noise than speech-shaped noise (p = 0.0001; Tukey post-hoc). High 

frequency sounds (e.g. /t/, /s/, /sh/ and /ch/) evoke weak responses in low frequency neurons 

even in quiet, which are completely eliminated in 48 dB SPL noise (e, f, g, h).  
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The neural responses evoked by the sounds /s/, /sh/, /ch/, and /t/, which primarily contain 

high frequency energy (> 10 kHz), were more degraded in white noise compared to speech-

shaped noise. For example, sound /t/ evoked 0.20±0.08 spikes in 60 dB SPL white noise and  

0.76±0.01 spike in 60 dB SPL speech-shaped noise. The average number of spikes evoked by /s/, 

/sh/, /ch/, and /t/, was reduced by 0.31±0.12 spikes in white noise as compared to speech-shaped 

noise (60 dB SPL, p = 0.0001, Tukey posthoc). Our neural results show that white noise impairs 

high frequency speech sounds more than low frequency sounds, as seen in previous human 

psychophysical studies (Miller and Nicely, 1955; Busch and Eldredge, 1967; Wang and Bilger, 

1971; Phatak et al., 2008). 

The high spatial resolution of neural responses obtained from our study allowed us to explain 

the differential effect of noise type by comparing responses of neurons tuned to different 

frequencies. Although both noise types were presented at the same overall intensities, white 

noise contains approximately 9 dB more high frequency (>10 kHz) energy compared to speech-

shaped noise which contains approximately 9 dB more low frequency (< 4 kHz) energy. As a  

result, speech-shaped noise degraded responses of low frequency neurons (characteristic 

frequency < 4 kHz) more than white noise (Figure 2.4), while white noise degraded neural 

responses of high frequency neurons (characteristic frequency >10 kHz) more than speech-

shaped noise. The number of spikes evoked in the low frequency neurons by most speech sounds 

was 1.84±0.26 spikes less in speech-shaped noise than in white noise (60 dB SPL; p = 0.0001, 

Tukey posthoc; Figure 2.4). The number of spikes evoked in the high frequency neurons by high 

frequency speech sounds (i.e. /s/, /sh/, /ch/, /t/) was 0.80±0.09 spikes less in white noise than in 

speech-shaped noise (60 dB SPL; p = 0.0001, Tukey posthoc). Most speech sounds in our study 
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contain mostly low frequency energy and evoke greater responses in low frequency neurons. 

Since speech-shaped noise degraded neural responses in the  low frequency region more than 

white noise, it is not surprising that most speech sounds were degraded to a greater extent by 

speech-shaped noise than white noise (Figure 2.4). The consonant sounds which primarily 

contain high frequency energy, i.e sounds  /s/, /sh/, /ch/, and /t/, evoked the most activity in the 

high frequency group of neurons. Since white noise degraded neural activity in the high 

frequency neurons more than speech-shaped noise, it seems reasonable that white noise degraded 

neural responses of high frequency sounds to a greater extent as compared to speech-shaped 

noise. Our results are consistent with earlier reports in humans that spectral content of both the 

speech signal and the background noise influence neural responses to speech sounds (Whiting et 

al., 1998; Martin et al., 1999; Kozou et al., 2005; Martin and Stapells, 2005; Billings et. al, 

2010).  

The different noise conditions had similar effects on behavioral and neural responses. We 

found a high correlation between the average number of spikes evoked by sounds in each 

discrimination task and the behavioral discrimination ability on that task (R
2 

= 0.63, p = 10
-18

, 

Figure 2.5a). These results are consistent with EEG and imaging (BOLD) studies in humans 

which show degradation of behavioral and neural responses proportional to the noise intensity 

(Whiting et al, 1998; Muller-Gass et al., 2001; Binder et al., 2004).   

Our observation that the average number of spikes evoked by speech sounds in noise is 

correlated with the ability of rats to discriminate between them should not be taken as evidence 

that spike timing is not important. When we quantified the difference in the number of spikes 

evoked by pairs of sounds in each speech contrast, we found that the difference was poorly  
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correlated with behavioral discrimination ability (R
2 

= 0.05, p = 0.05, Figure 2.5b). This 

observation is consistent with our earlier report that speech discrimination in quiet is not 

correlated with the difference in the total number of spikes evoked by each sound at each 

multiunit recording site (Engineer et al., 2008). In our previous study, speech discrimination in 

quiet was only correlated with A1 activity when spike timing was used. In this study, we also 

found that distinctness of neural activity patterns is well correlated with behavioral speech 

discrimination ability when neural responses were analyzed using spike timing.  

While the earlier study only considered the activity evoked within 40 ms of speech onset, in this 

study we used activity occurring during the first 100 ms duration. This is because background 

 
Figure 2.5. Correlation between neural and behavioral responses of all tasks. 

 (a) Average number of spikes evoked by 2 sounds in the discrimination task is well 

correlated with behavioral discrimination ability. (b) Difference in the average number of 

spikes evoked by 2 sounds in the discrimination task is poorly correlated with behavioral 

discrimination ability. Number of spikes was averaged together over the first 100 ms. (c) 

Normalized City-block distance between the average spatiotemporal patterns evoked by 

each sound involved in the discrimination tasks were well correlated with behavioral 

discrimination ability when the neural responses were analyzed over 100 ms duration and 

binned with 10 ms spike timing precision. Circles, triangles and squares represent 

performance in quiet, speech shaped noise and white noise, respectively. Size of the 

symbols indicates noise level, smaller symbols indicating greater amount of noise (i.e. 

lower signal to noise ratio). 
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noise significantly delayed the neural response to speech sounds. Neural activity was best 

correlated with behavioral discrimination when 100 ms of neural activity was binned with 10 ms 

spike timing precision (R
2 

= 0.61, p = 10
-17

;  Figure 5c). Neural activity was also significantly  

well correlated when neural responses were analyzed over 70-180 ms duration with 1-30 ms 

spike timing precision (R
2
> 0.55; P < 10

-12
). Correlation between behavioral and neural 

responses was high (R
2
> 0.55) when either City-block distance or Euclidean distance were used 

to quantify distinctness of neural responses. Although this result extents our earlier report to 

noisy conditions, this method requires the stimulus onset time to be known. In the following 

section we will explain the disadvantage of specifying the stimulus onset time and explain a 

neural analysis method that does not require the stimulus onset to be specified.  

 

Quantifying Neural Discrimination without Reference to Sound Onset 

Previous studies of neural coding using spike timing strategies generally assume that the 

decoding mechanism knows the precise stimulus start time (Gawne et al., 1996; Furukawa et. al, 

2000; Ahissar et al., 2001; Panzeri et al., 2001; Schnupp, et. al 2006; Wang et al., 2007; Foffani 

et al., 2004, 2008; Engineer et. al, 2008). The stimulus start time is often calculated from the 

average response of a large group of neurons (Chase and Young, 2007; Engineer et. al, 2008). 

Although it is reasonable to expect that stimulus onset time information is available in quiet 

situations, loud background noise significantly degrades neural responses making it difficult to 

determine the stimulus onset time even based on the average activity of many neurons. Therefore 

in this study, we developed a new form of neural classifier that is able to determine which speech 

sound was presented by analyzing neural activity without precise knowledge of stimulus onset  
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time. We compared the classifier performance with behavioral speech discrimination ability to 

determine the neural analysis methods that are correlated with behavior. 

In brief, the neural classifier examines activity from a single trial collected from a set of A1 

neurons and attempts to identify which of two possible sounds was presented by looking for the 

 
Figure 2.6. Consonant discrimination using relative spike timing. 

This figure illustrates how the classifier evaluates which of two speech sounds (‘dad’ or ‘bad’ in 
this case) was presented from a single trial of neural activity recorded at 60 A1 sites. (a, b) In this 

example, the average spatiotemporal patterns that the classifier was looking for were 100 ms in 

duration and binned with 10 ms spike timing precision. This classifier is referred to as 

Classifier100/10ms.  Neural activity from different A1 sites is arranged according to the 

characteristic frequency (CF) of each site. (c) Single trial spatiotemporal activity from the same 

60 sites is shown from 100 ms before the stimulus onset to 150 ms after the stimulus end. The 

similarity of the single trial to each of the average activity patterns is shown as red and black 

lines at the top of the figure, each point indicating the different possible stimulus start times. The 

point of greatest similarity occurred immediately after the word ‘dad’ was presented (asterisk). 
The classifier correctly identified that ‘dad’ had been presented, because the similarity of the 
single trial was highest to the average pattern generated by ‘dad’. Neural discrimination 
performance is determined by calculating the percentage of trials on which the classifier 

correctly guessed the presented sound (see Methods). The set of A1 sites shown in this example 

was able to correctly identify whether ‘dad’ or ‘bad’ was presented on 39 out of 40 presentations 
in quiet (97.5% correct).     
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spatiotemporal activity patterns generated by each sound (see Methods). Neural discrimination 

ability is determined by calculating the percentage of trials on which the classifier correctly 

guessed the speech sounds. 

We first tested whether the new classifier could mimic the behavioral discrimination ability 

on the eleven consonant tasks reported in our earlier study (Engineer et al, 2008). Using single 

trial data from groups of sixty A1 sites, the classifier was able to discriminate ‘dad’ from ‘bad’ in 

quiet 99±1% of the time, which is comparable to behavioral discrimination ability. Classifier  

performance on the eleven tasks was highly correlated with behavioral discrimination ability in 

quiet when the average spatiotemporal patterns were composed of 100 ms of neural activity 

binned with 10 ms precision (R
2 

= 0.75, p = 0.0005). This correlation was similar to the 

correlation observed using the classifier from our previous study, which was given the exact start 

time of each stimulus (R
2 

= 0.66, p = 0.005; Engineer et al., 2008).  

The new classifier required neural activity from at least twenty-five recording sites to achieve 

performance that was comparable to the old classifier using one site. Performance of the new 

classifier was almost at chance performance when only one A1 site was provided (51±0%). This 

poor performance when given neural data from only one recording site is because the classifier  

could not distinguish spontaneous activity from driven activity without knowledge of the 

stimulus onset time. When the spatiotemporal activity patterns included many sites, the new 

classifier was able to reliably discriminate between speech sounds using data from a single trial. 

Using a large number of sites provides the classifier with additional information about the spatial 

pattern of activity which is not available when only one recording site is used. When neural data 

from large number of sites were analyzed together, classifier performance improves because the  
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spatiotemporal pattern of driven activity across sites was distinct from spontaneous activity 

patterns. The sound ‘dad’, for example, causes high frequency neurons to fire 5-10 ms before 

low frequency neurons, while the sound ‘bad’ causes the neurons to fire in the opposite order 

(Figure 2.6a, b). When activity from many sites was analyzed, this pattern could be easily 

distinguished from spontaneous activity occurring during the 750 ms analysis window (Figure 

2.6c). This analysis (using published behavioral and neural responses) suggests that it is not 

necessary to know the precise stimulus onset time to decode A1 patterns. 

 
Figure 2.7. Correlation between Classifier100/10ms performance and behavioral discrimination 

ability in quiet and noise. 

(a) Classifier performance was significantly well correlated with behavioral discrimination ability 

in quiet, when average spatiotemporal patterns were analyzed using 100 ms duration and binned 

with 10 ms precision. (b) In noise, classifier performance analyzed using the same parameters 

was poorly correlated with behavioral discrimination performance. Symbols with black border 

are the tasks used in this study. Symbols with gray border are extra tasks used from our previous 

study (Engineer et. al, 2008; see methods). Circles, triangles and squares represent performance 

in quiet, speech shaped noise and white noise, respectively Size of the symbols indicates noise 

level, smaller symbols indicating greater amount of noise (i.e. lower signal to noise ratio). 
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In the current study, we tested five additional consonant discrimination tasks that were not 

included in our earlier study (Engineer et al, 2008), resulting in a total of 16 consonant 

discrimination tasks tested in quiet. Behavioral and neural discrimination from each data set were 

averaged together for the six tasks that were examined in both studies. We observed a high 

correlation between behavior and classifier performance (R
2 

= 0.72, p = 10
-5

; Figue 2.7a) when 

the classifier analyzed neural activity using 100 ms of activity binned with 10 ms precision. The 

correlation between neural and behavioral discrimination was also high when the average 

patterns had a duration of 70-150 ms and were binned with 5-20 ms precision (R
2
>0.55, P < 

0.0001). For future reference, we will refer to the classifier that analyzes activity from 60 sites 

using 100 ms durations binned with 10 ms precision as Classifier100/10ms. In our previous study in 

quiet, spike timing information was well correlated with behavioral discrimination ability and 

average spike count was not correlated with behavioral consonant discrimination ability. Neural 

responses analyzed using our new classifier also were very poorly correlated with behavioral 

consonant discrimination ability on the 16 tasks when average spike count over 100 ms duration 

was used (R
2 

= 0.11, p = 0.3). These results support the hypothesis from our earlier study that 

spike timing information is required to discriminate between consonant sounds in quiet 

conditions.   

After confirming that the new classifier was correlated with behavioral performance in quiet, 

we tested whether the classifier performance was correlated with speech discrimination in noise 

(n=11 tasks). Classifier100/10ms was unable to discriminate between speech sounds presented in 

even moderate noise. For example, Classifier100/10ms discrimination of ‘dad’ versus ‘bad’ in 48  
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dB SPL white noise was at chance (Figure 2.7b). Behavioral discrimination performance in this 

condition was at 91±1%. This discrepancy between neural and behavioral discrimination 

performance was seen across all noise conditions and discrimination tasks, leading to a poor 

correlation between behavior and Classifier100/10ms performance in noise (R
2 

= 0.2, Figure 2.7b). 

None of the spike timing analysis ranges which could predict behavior discrimination ability in 

quiet could predict behavioral discrimination ability in noise. This result led us to hypothesize 

that neural responses in noise are analyzed differently than in quiet.  

 
Figure 2.8. Correlation between Classifier400/60ms performance and behavioral discrimination 

ability in quiet and noise. 

 (a) In quiet, classifier performance analyzed using 400 ms duration binned with 60 ms precision 

was poorly correlated with behavioral discrimination performance. (b) In noise, classifier 

performance was significantly well correlated with behavioral discrimination ability, when the 

average spatiotemporal patterns were analyzed using 400 ms duration binned with 60 ms 

precision. Symbols with black border are the tasks used in this study. Symbols with gray border 

are extra tasks used from our previous study (Engineer et. al, 2008; see methods). Circles, 

triangles and squares represent perfromance in quiet, speech shaped noise and white noise, 

respectively. Size of the symbols indicates noise level, smaller symbols indicating greater 

amount of noise (i.e. lower signal to noise ratio). 
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Previous studies in the visual and auditory systems suggested that the brain uses longer 

neural integration windows when stimuli are presented in low signal to noise situations (Roitman 

and Shadlen, 2002; Binder et. al, 2004; Huk and Shadlen, 2005). We tested whether a classifier 

with longer durations of activity (for example, 400 ms instead of 100 ms) binned with coarser 

precision (for example, 60 ms instead of 10 ms) would compensate for the delayed and degraded  

speech responses in noise and result in a better correlation with behavior. Classifier performance 

was best correlated with behavioral performance on all tasks in the different noise conditions 

when the average spatiotemporal patterns from 60 A1 sites were analyzed using a duration of 

400 ms and binned with temporal precision of 60 ms (R
2 

= 0.68, p = 10
-17

; Figure 2.8b). For  

example, classifier performance on ‘dad’ versus ‘bad’ in 48 dB SPL white noise was at 96±1%. 

For future reference, we refer to the classifier that analyzes activity from 60 sites using 400 ms 

durations binned with 60 ms precision as Classifier400/60ms. In 48 to 60 dB SPL noise, 

Classifier400/60ms performance was significantly better on all eleven tasks compared to 

Classifier100/10ms performance (Figure 2.7b and Figure 2.8b; F (1,10) = 12.95, MSE = 0.11, p = 

0.001). Classifier400/60ms performance remained close to chance for most tasks in 72 dB SPL 

noise (p = 0.005 for 16 of 22 tasks), which is similar to the behavior discrimination performance.  

Classifier400/60ms performance was well correlated with behavioral performance in noise when 

neural responses were analyzed using 25 or more sites together (R
2
>0.55). Classifier 

performance was well correlated with behavioral performance in noise provided that neural 

activity was analyzed over 300-600 ms durations and binned with 50-100 ms temporal precision 

(R
2
>0.55, P < 10

-10
). None of the analysis ranges that were well correlated with behavioral 

discrimination ability in noise were well correlated with behavioral discrimination ability in  
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quiet. For example, Classifier400/60ms was poorly correlated with behavior in quiet because of a 

ceiling effect observed for many tasks (R
2 

= 0.11, p = 0.2; Figure 2.8a). Our observations that 1)  

neural responses analyzed over small integration windows can predict behavior in quiet but not 

in noise and 2) responses analyzed using longer integration windows can predict behavior in 

noise but not in quiet are consistent with earlier proposals that neurons use greater temporal 

integration in noisy conditions (Roitman and Shadlen, 2002; Binder et. al, 2004; Huk and 

Shadlen, 2005).  

 
Figure 2.9. Single trial responses analyzed using longer integration timescales as compared to 

quiet were well correlated with behavioral discrimination ability in all conditions. 

Hybrid classifier performance when the average spatiotemporal patterns in quiet were analyzed 

using 100 ms duration and binned with 10 ms precision and the average spatiotemporal patterns 

in noise were analyzed using 400 ms duration and binned with 60 ms precision are correlated 

with behavioral discrimination ability in quiet all conditions. Circles, triangles and squares 

represent performance in quiet, speech shaped noise and white noise, respectively. Size of the 

symbols indicates noise level, smaller symbols indicating greater amount of noise (i.e. lower 

signal to noise ratio). 
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A hybrid classifier that uses the 100/10 ms parameters in quiet and the 400/60 ms parameters in 

noise was highly correlated with behavior under all conditions tested (R
2 

= 0.67, p = 10
-19

; 

Figure 2.9). Hybrid classifier performance was well correlated with behavior when neural 

responses of more than 25 sites were grouped together (R
2
>0.55, P < 10

-11
; Figure 2.10a). 

Classifier accuracy was closest to behavioral performance (Figure 2.1a) when it was provided 

with neural activity recorded from sixty sites (Figure 2.10b). Classifier performance was well 

correlated with behavioral discrimination ability when the average patterns in quiet were 

analyzed using 70-150 ms durations and binned with 5-20 ms precision and when the average 

patterns in noise were analyzed using 300-600 ms durations and binned with 50-100 ms  

precision (R
2
>0.55, P < 10

-11
). These results support our hypothesis that neural responses can 

explain behavioral discrimination provided they are analyzed over longer integration periods and 

with lesser temporal precision in noise.  

Although the prediction of the hybrid classifier could be off by as much as 30% for a specific 

task in a specific noise condition (i.e. ‘shad’ vs. ‘chad’ in 48 dB speech shaped noise), the hybrid  

classifier was highly accurate in predicting the average performance of rats across eleven tasks in 

different noise conditions (R
2 

= 0.89, p = 0.002, Figure 2.11a). If relative spike timing 

information was not used (i.e. spike count only), the hybrid classifier was not able to match this 

level of correlation regardless of the number of sites or duration of activity examined 

(R
2
<0.35).For example, Classifier performance on most tasks was poorly correlated with 

behavior discrimination ability even when noise dependent integration windows (i.e. 100 ms in 

quiet and 400 ms in noise) for spike count were used (R
2 

= 0.03). Classifier performance in both 

quiet and noise was poorly correlated with behavior discrimination ability when spike count over  
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the entire duration of the sound was used (R
2 

= 0.1).  Collectively, our results suggest spike 

timing information is required to explain behavioral speech discrimination ability and that the 

precision of the spike timing information depends on whether significant background noise is 

present. 

 

 
Figure 2.10. Average neural discrimination and correlation between the hybrid classifier and 

behavioral performance as a function of sites 

(a) Correlation (R
2
) between neural and behavioral discrimination performance improved 

significantly (F (1, 10) = 12.95, MSE = 0.11, p = 0.001) as a function of sites. Neural 

discrimination ability in quiet and noise were significantly well correlated with behavior when 

neural responses from more than 25 sites were analyzed together (R
2
> 0.55; P < 10

-11
). Neural 

discrimination from 60 multiunit clusters was best correlated with behavior (R
2 

= 0.68, p = 10
-

17
). (b) Average neural discrimination ability of all tasks in quiet, 48dB SPL and 60 dB SPL 

noise increased as a function of sites and was comparable to behavioral discrimination ability. 

Increasing the number of sites did not affect neural discrimination ability in 72 dB SPL noise 

which is also comparable with behavioral discrimination ability at this noise level. 
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2.6 DISCUSSION 

Our study provides the first evidence that rats, like humans, can discriminate between most 

speech contrasts in high levels of background noise. Neural responses to speech in noise in the 

rat were similar to neural responses recorded in humans. The observations that behavioral and 

neural responses are similar for rats and humans supports the hypothesis that human speech 

sound processing employs the same basic neural mechanisms as other mammals. More 

specifically, our results suggest that rapid speech sound transitions are encoded in spatiotemporal 

activity patterns at least up to the level of A1, even without explicitly providing the stimulus 

onset time to the neural classifier. These responses are likely decoded using longer temporal 

integration windows in noisy conditions compared to quiet conditions. Collectively, our results  

 
Figure 2.11. Hybrid classifier percent correct can explain variance of behavioral discrimination 

caused by either noise conditions or discrimination tasks alone. 

The hybrid classifier can explain 89% of the variance (p = 0.002) caused by the seven noise 

conditions when the classifier performance is averaged across all eleven tasks. Size of the 

symbols indicates noise level, smaller symbols indicating greater amount of noise (i.e. lower 

signal to noise ratio). 
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provide support for the development of animal models to better understand speech processing 

and speech processing impairments in humans 

Comparison with human psychophysical and human neurophysiology literature:  

Our behavioral results reveal a number of important similarities between human and rat 

speech discrimination ability in noise. Normal hearing humans can discriminate between 

consonant vowel stimuli even when speech and noise are of equal intensity (Miller and Nicely, 

1955; House et al., 1965; Horii et al., 1971; Wang and Bilger, 1973; Dubno and Levitt, 1981; 

Phatak et al., 2008). Our study shows that rats can also accurately discriminate between speech 

sounds even when speech and noise are of equal intensity. The average behavioral discrimination 

ability of rats is still significantly above chance in -12 dB signal to noise ratio (SNR) i.e. 72 dB 

SPL white noise. This result is similar to human psychophysics studies which show almost 

chance performance in white noise between -10 and -16 dB SNRs (Wang and Bilger, 1973; 

Miller and Nicely, 1955; Phatak et al., 2008).  

Although the speech discrimination threshold in speech-shaped noise appears to be lower in 

rats than in humans, methodological differences can account for the apparent difference. The 

average speech discrimination ability of rats was at chance in -12 dB SNR speech-shaped noise, 

while human performance does not fall to chance in speech-shaped noise until -20 dB SNR. Two 

factors could account for the 8 dB difference in threshold. First, due to a subtle difference in how 

intensity is defined, our consonant sounds were approximately 4 dB quieter than most human 

studies. Intensity is traditionally defined in human studies as the average intensity throughout the 

duration of the stimulus. In our studies, speech sound intensity was quantified based on the most 

intense 100 ms (Engineer et al., 2008). Second, subjects in the human studies were provided 
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additional information that is expected to further lower the threshold. In Phatak and Allen 

(2007), the subjects were allowed to repeat the speech stimuli as many times before responding. 

Repetition of stimuli provides approximately 2.5 dB advantage in noise (Miller et al., 1951). In 

House et al., 1965, the speech stimuli had semantic meaning associated with them which 

provides  additional information that can aid identification in noise. Native speakers have 

approximately 6 dB advantage over non-native speakers in noise when words have linguistic 

meaning associated with them (Cooke et al., 2007). The rats in our study did not have either form 

of additional information available to them. After accounting for these methodological 

differences, the performance of rats in speech-shaped noise is found to be similar to human 

performance. The similarity of rat and human speech discrimination thresholds supports 

proposals that the early stages of speech sound processing employ the basic auditory processing 

mechanisms common to all mammals (Kuhl and Miller 1975; Merzenich et al., 1993; Tallal et 

al., 1993; Cunningham et al., 2002; Mesgarani et al., 2008). 

Human psychophysical studies have observed that certain speech sounds are more easily 

masked by continuous noise than others and that some types of noise mask certain sounds more 

than others. These differences provide another opportunity to evaluate the similarity of speech 

discrimination in rats and humans. The hypothesis that rats and humans employ similar brain 

mechanisms would be strengthened if rats exhibit similar impairments in noise as humans (like 

similar threshold of noise intensity where speech sounds were still intelligible). Our behavioral 

results in rats confirm the following key findings from human psychophysics studies. In both rats 

and humans, most speech sounds are more impaired in speech-shaped noise compared to white 

noise (Busch and Eldrege, 1967; Dubno and Levitt, 1981) and high frequency sounds are much 
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more impaired in white noise as compared to speech-shaped noise (Miller and Nicely, 1954; 

Wang and Bilger, 1971). Voicing contrasts are much more robust than other speech contrasts in 

white noise, whereas their impairment is very similar to other contrasts in presence of speech-

shaped noise in both rats and humans (Miller and Nicely, 1954; Wang and Bilger, 1971; Dubno 

and Levitt, 1981). Our neuro-physiological results reveal a number of important similarities 

between neural responses to speech in noise recorded in rats and humans. The addition of 

background noise increases the latency and decreases the amplitude of consonant responses in 

both rats and humans (Martin et al., 1999; Whiting, et al., 1998; Martin and Stapells, 2005). Our 

recordings mimic human imaging results which show that the neural representation of vowel 

sounds is more robust to noise compared to consonant sounds (Russo et al., 2004; Song et al., 

2010). The higher resolution view of auditory cortex responses provided by microelectrode 

recordings in rats provides a possible neurobiological explanation for the behavioral observation 

that the spectral content of both speech and noise influence speech discriminability (Miller and 

Nicely, 1954; Busch and Eldrege, 1967; Dubno and Levitt, 1981; Phatak et al., 2008). The 

similarity of behavioral and neural responses between rats and humans suggests that the rat is a 

reasonable animal model of speech sound processing and that the rat model could be useful in 

understanding the greater noise sensitivity of certain clinical populations, including individuals 

with hearing loss and learning impairments (Cunningham et al., 2002; Ziegler et al., 2005; 

Ziegler et al., 2009; Anderson et al., 2010). 

Comparison with neural decoding literature:  

An extensive literature on neural decoding has shown that spatiotemporal patterns in the 

cortex provide significant information about the sensory world (Abeles et al., 1996; Villa et al., 
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1999; Butts et al., 2007; Kayser et al., 2009; Huetz et al., 2010). Although the amount of 

information is almost invariably greater when spike timing is included in the analysis, there is 

relatively little behavioral evidence that spike timing information can predict behavior (Reinagel 

and Reid, 2000; Panzeri et al., 2001; Foffani et al., 2004; Butts et. al, 2007; Panzeri and Diamond 

2010; Huetz et al., 2010). There is a high correlation between behavioral consonant 

discrimination ability in quiet and the distinctness of cortical activity patterns, but only when 

spike timing information is included (Engineer et al., 2008). This result differed from earlier 

studies in primates showing that cortical decoding based on spike count was best correlated with 

behavior (Romo and Salinas, 2003; Liu and Newsome, 2003; Lemus et al., 2009). The most 

likely explanation for the apparent contradiction is that the primate studies used continuous or 

periodic stimuli that lack the kind of temporal transitions that are present in consonant stimuli. In 

this study, we tested consonant sounds embedded in background noise to determine the effect of 

degrading stimulus onset timing on behavioral and neural discrimination. Because background 

noise makes it harder to determine when the sounds occur, we developed a method of decoding 

neural responses without providing the classifier with the stimulus onset time.  Our results 

provide the first behavioral evidence that a code based on relative spike timing can account for 

behavior over a wide range of conditions without the need for precise knowledge of stimulus 

start time. The observation that neural decoding is well correlated with behavior provides strong 

support for the long held hypothesis that sensory scenes are encoded in highly distributed 

spatiotemporal activity patterns (Abeles et al., 1996; Villa et al., 1999; Butts et al., 2007; Kayser 

et al., 2009; Huetz et al., 2010). 
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The precision of spike timing needed to accurately explain consonant discrimination 

behavior seems to depend on whether the sounds are presented in quiet or noise. Neural activity 

analyzed with longer temporal integration compared to quiet is necessary to account for 

consonant discrimination in noise. This result is consistent with previous reports in the visual and 

auditory systems which indicate neural responses are averaged over longer durations in low 

signal to noise ratio situations (Roitman and Shadlen, 2002; Huk and Shadlen, 2005; Binder et 

al., 2004). We know of no study that directly related neural discrimination in cortex based on 

different levels of temporal integration with behavioral discrimination in high and low noise 

situations. Our combined neural classifier model uses spike timing activity integrated over a 

longer window in noise and results in neural discrimination that is comparable to observed 

behavior discrimination.  
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3.2 ABSTRACT 

The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release 

with sensory stimulation. Repeatedly pairing electrical stimulation of the nucleus basalis (NB) 

with a tone increases the number of neurons in primary auditory cortex (A1) that respond to the 

paired tone frequency. Pairing NB stimulation with tone trains alters the ability of neurons in A1 

to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone 

altered spectral tuning in the same way as NB-tone pairing. In this study, we tested whether 

pairing VNS with temporally modulated acoustic stimuli can change the temporal response 

properties of A1 neurons. Rat A1 neurons respond strongly to tone trains at repetition rates up till 

10 pulses per second (pps). VNS paired with 15 pps tone trains increased the temporal following 

capacity of A1 neurons and pairing VNS with 5 pps tone trains decreased the temporal following 

capacity of A1 neurons.  Pairing of these temporal modulations with VNS did not affect the 

frequency selectivity or tonotopic organization of auditory cortex neurons. VNS is well tolerated 

in patients. As a result, VNS-tone pairing represents viable method to direct temporal plasticity 

in a variety of conditions associated with temporal processing deficits. 



48 

 

3.3 INTRODUCTION 

Acoustic experience can modify response properties of neurons in the auditory cortex. 

Neural response properties can change depending on the relevance of acoustic stimuli used for 

behavior training (Recanzone et al., 1993; Bao & Merzenich, 2004; Polley et al., 2006). For 

example, pairing fast tone trains with food reward increases the temporal following capacity of 

auditory cortex neurons. Behavioral relevance of either intensity or frequency features causes 

frequency specific or intensity specific plasticity without affecting other spatially organized 

feature representations. Pairing electrical stimulation of the cholinergic nucleus basalis (NB) 

with acoustic stimuli also causes stimulus feature specific plasticity (Kilgard & Merzenich 

1998a, Kilgard & Merzenich 1998b; Kilgard et al., 2001). For example, pairing fast or slow tone 

trains with NB stimulation can increase or decrease the maximum following rate of auditory 

cortex (A1) neurons, respectively. These studies show that specific features of acoustic stimuli 

are responsible for directing cortical plasticity. 

A recent study showed that vagus nerve stimulation (VNS) paired with tones of a 

particular tone frequency can induce map plasticity specific to the paired frequency (Engineer et. 

al, 2011). The degree and direction of spatial plasticity induced by VNS tone pairing parallels the 

spatial plasticity with NB stimulation tone pairing. For example, as with NB stimulation tone 

pairing, VNS tone pairing causes an increase in the percent of A1 neurons responding to the 

paired tone and decrease in the percent of neurons responding to the unpaired tones. If similar 

neural mechanisms are responsible for driving plasticity observed with VNS and NB stimulation, 

then VNS should be capable of inducing stimulus feature specific plasticity as observed with NB 

stimulation. In this study, we tested whether pairing VNS with rapid tone trains can increase the 
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temporal following rate of A1 neurons. We paired VNS with tone trains of random carrier 

frequencies but a fixed repetition rate. The maximum following rate of many rat A1 neurons is 

approximately 10 pulses per second. We hypothesized that pairing VNS with 15 pps tone trains 

would increase the maximum following rate of A1 neurons and pairing VNS with 5 pps tone 

trains would decrease the maximum following rate of A1 neurons. 

3.4 MATERIALS AND METHODS 

Subjects and Experimental groups: 

Nineteen female Sprague Dawley rats were used in these experiments. The rats weighed an 

average of 286 ± 21 g and were housed in 12:12 hr reversed light cycle at a constant humidity 

and temperature. Thirteen rats were randomly assigned to experimental groups which were 

implanted with vagus nerve stimulators and paired with tone trains of either 15 pps (n=7) or 5 

pps (n=6).  The remaining rats (n=6) were used as naïve controls. All handling, housing, and 

surgery and testing of the animals was approved by the University of Texas Institutional Animal 

Care and Use Committee. 

 

Vagus Nerve Cuff Implantation Surgery: 

Custom-made cuff electrodes were implanted on the left vagus nerve of the experimental 

rats. Construction of this electrode and surgical procedures are the same as described in our 

previous study (Engineer et al., 2011). In brief, the cuff was 4mm long and made from Micro-

Renethane tubing (8 mm diameter). The bipolar stimulating electrodes were made from Teflon 

coated multi-stranded platinum-iridium wires and placed 2 mm apart inside the cuff. An 8 mm 

region of the Teflon coating was stripped to provide contact with the vagus nerve. A cut was 
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made lengthwise along the tubing to allow the cuff to be wrapped around the nerve and then 

closed with silk threads. 

The surgery was conducted under pentobarbital anesthesia (50 mg/kg) and a state of 

areflexia was maintained throughout the experiment with supplemental doses of dilute 

pentobarbital (0.2– 0.5 ml; 8 mg/ml). Anesthesia depth was monitored by heart rate, breathing 

rate, corneal reflexes, and response to toe pinch. Nourishment was provided using 1:1 mixture of 

dextrose (5%) and standard Ringer’s lactate solution and body temperature was maintained at 37 

degrees C. Doses of cefotaxime sodium (2 x 10 mg, s.c.), 2: 3 mixture of atropine and 

dexamethazone (4mg/kg) s.c solution were given to the rats before and after the surgery to 

prevent infection and reduce fluid accumulation in lungs. Doses of dextrose/Ringer’s (10 x 1 ml 

total) were given throughout and after the surgery to provide nourishment. An incision was made 

to expose the lambda landmark on the skull. Four to five bone screws were drilled into the skull 

at points close to the lambda suture and over the cerebellum. These screws provided an anchor 

for a custom made skull cap which contained 4 electrodes. An incision and blunt dissection of 

the muscles in the neck exposed the left cervical branch of the vagus nerve. Two of these 

electrodes were used to deliver current to stimulating electrode, one for monitor EEGs and one 

for electrical grounding during the daily VNS sessions. The leads from cuff electrodes were 

tunneled under the skin and attached to the skull cap. All incisions were sutured and the exposed 

two-channel connector encapsulated in acrylic. A topical antibiotic cream was applied to both 

incision sites. Immediately after the surgery, rats were given amoxicillin (5 mg) and carprofen (1 

mg) to prevent infection and facilitate recovery.  
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VNS stimulation and tone-train pairing: 

After a week of recovery from surgery, tone-train stimuli were paired with VNS. Rats 

were un-anaesthetized, unrestrained and were placed in  a 25 cm X 25 cm X 25 cm cage which 

was inside a  50 cm X 60 cm X 70 cm sound- shielded booth with 3 in acoustic foam lining. The 

speaker was placed inside the sound shielded booth and was 20 cm above the cage. VNS 

stimulation parameters used were similar those used in Engineer et al. (2011) and were identical 

for each rat in the study.  

The acoustic tone-train stimuli presented in this study were similar to stimuli presented in 

previous nucleus basalis stimulation studies (Kilgard & Merzenich 1998b; Kilgard et al., 2001). 

The tone-trains consisted of six 25-ms long tones which were paired with 500 ms of vagus nerve 

stimulation (Figure 3.1). The electrical stimulation was delivered as 100 us charge-balanced 

biphasic pulse with 0.8 mA current and consisted of  a 0.5 s long train of 30 Hz (500 ms train 

duration). The carrier frequency of the tone was equally distributed across the frequency range 

represented in A1 and was either one of seven frequencies (1.3, 2.2, 3.7, 6.3, 10.6, 17.8, 

29.9kHz). The frequencies used from train to train were randomly varied but the frequency of the 

tones within each train was constant. Tone amplitude was 20–30 dB above the minimum rat 

hearing threshold. Interstimulus intervals varied randomly between 10 to 30 seconds to prevent 

rats from anticipating the stimulus timing. The tone pips in stimulus trains were presented in a 

given rat at 5 or 15 pps. Electrical stimulation began with the onset of the third tone. Impedance 

of the cuff electrodes was monitored every day and was at 4.4±1.5 kOhm. The impedance was 

stable across the entire training duration for all the rats. VNS tone-train pairing was delivered 
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300-320 times per day for 20 days (5 days a week), with each pairing sessions lasting 2.5 hours 

(Figure 3.1).  

Electrophysiology data recording and analysis: 

Twenty-four hours after the last pairing, animals were anesthetized with sodium 

pentobarbita (50 mg/kg) and a state of areflexia was maintained throughout the experiment with 

supplemental doses of dilute pentobarbital (0.2– 0.5 ml; 8 mg/ml). Anesthesia depth was 

monitored by heart rate, breathing rate, corneal reflexes, and response to toe pinch. Nourishment 

was provided using 1:1 mixture of dextrose (5%) and standard Ringer’s lactate solution and body 

temperature was maintained at 37 degrees C. A tracheotomy was performed to minimize 

 
 

Figure 3.1. Schematic of the timing of VNS tone train pairing.  

A 0.5 second, 30Hz train of 0.8 mA 100 µs pulse width was delivered to the left vagus nerve via 

a platinum iridium bipolar cuff electrode. VNS was paired with the third tone in the tone 

train.Each tone in the tone train was 25 ms long with a 5 ms ramp on and 5 ms ramp off. The 

tone train comprised of 6 tone pips and was 400 ms long when presented at 15 pps and 1200 ms 

long when presented at 5 pps. Rats received VNS on an average every 30 seconds, 300 times 

during each 2.5 hour session. VNS was delivered on 20 weekdays. Note: Carrier frequency of 

the tones shown in the figure is not to scale.  
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breathing problems and breathing sounds, and a cisternal drain was made to minimize cerebral 

edema. A part of the skull over the temporal ridge was removed to expose the right primary 

auditory cortex. The dura was removed and the cortex was maintained under a thin film of 

silicone oil to prevent desiccation. Four parylene coated tungsten microelectrodes (FHC, 1-2 

MΩ) were lowered simultaneously to a depth of 600 µm so that they were in layer IV/V of the 

primary auditory cortex. Blood vessels were used as landmarks to mark each of the electrode 

recording sites. To determine the characteristic frequency at each site we played ninety 

logarithmically spaced tones ranging from 1- 47 kHz at 16 intensities ranging from 0-75 dB SPL. 

The tones were 25 ms long and their presentation was randomly interleaved. We placed the 

speaker 10 cm away from the left ear. Neural response characteristics such as start latency, end 

latency and characteristic frequency at each recoding site were used to determine whether the 

electrodes were placed in the primary auditory cortex.  

After all the tones were presented, we played tone-trains of variable repetition rates (3, 5, 

7, 9, 10, 11, 14, 15, 17, 20, 25 pps). To determine the RRTF for each site, six tones (25 ms with 

5-ms ramps, 70 dB SPL) were presented twelve times at each of eleven repetition rates. To 

minimize adaptation effects, repetition rates were randomly interleaved, and two seconds of 

silence separated each train. The tone frequency used to determine the RRTFs was one of the 

seven paired frequencies closest to the characteristic frequency of the site. To reduce the 

variability resulting from different numbers of neurons at recording site, response amplitude was 

normalized using the number of spikes evoked at each site to an isolated tone. The normalized 

RRTF was defined as the average number of spikes evoked for each of the last five tones in the 

train divided by the number of spikes evoked by the first tone in the train. Thus, a normalized 
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spike rate of one indicates that, at the given repetition rate, each of the tones in the train, on 

average, evoked the same number of spikes as the first tone. Paired pulse depression i.e. 

normalized response for the second tone was determined by calculated the average number of 

spikes evoked by the second tone and normalizing it by spikes evoked by the first tone. Values 

greater than one indicate facilitation; values less than one indicate response adaptation. Only 

spikes occurring from 5–40 ms after each tone onset were used to calculate the RRTF.  

3.5 RESULTS 

As in previous studies, most A1 neurons in naïve animals responded well to tones 

presented at 10 pps (Kilgard et al., 1998b; Boa et al., 2004).  Each successive tone typically 

evoked the same number of spikes as the first tone for up to 10 pps (Figure 3.2a). For repetition 

rates higher than 10 pps, the successive tones evoked lesser spikes than spikes evoked by the first 

tone.  

Animals which received VNS paired with tone trains had significantly altered cortical 

temporal response properties. Pairing VNS with 15 pps tone trains increased the strength of 

response to tone trains faster than 9 pps (Figure 3.2b). Compared to naives, these animals had 34 

% more spikes for tone trains faster than 9 pps. For example, the representative neuron in Figure 

2 b had 60% more spikes than naïve neuron at 10 pps. In contrast to naives, many neurons in 

these animals responded strongly to repetition rates between 10 pps and 15 pps (Figure 3.2b). 

A1 neurons in these animals typically showed a stronger facilitation response for fast tone trains. 

A facilitation response is seen when response to the repetitive stimuli is equal to or greater than 

response to the first tone. For example, neuron in Figure 2b had a facilitation response up till 
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tone trains as high as 15 pps and had 405% increase in the number of spikes than a typical 

neuron in the naïve animal at this repetition rate. In contrast, pairing VNS with 5 pps tone trains  

 
Figure 3.2. Temporal plasticity induced by pairing vagus nerve stimulation (VNS) with tone 

trains. 

Dot rasters and repetition rate transfer function are shown for representative A1 sites in naives 

(a) and after pairing with 15 pps tone trains(b) and 5pps tone trains (c). Carrier frequency varied 

from train to train and was equally distributed over the octave space. Each dot represents a single 

action potential. The short horizontal gray lines indicate the occurrence of each tone in the tone 

train. Neural responses occurring in these periods were used to make the RRTF function on the 

right of each dot raster. The solid vertical line shows the average number of spikes evoked by the 

first tone in the tone train and the dotted vertical lines show standard error of mean for the first 

tone response. (a) RRTF of naïve A1 neurons shows a general decrease in response strength to 

stimuli faster than 10 pps. B) VNS paired with 15 pps tone trains increased the temporal 

following capacity of A1 neurons. c) VNS paired with 5 pps tone trains decreased the temporal 

following capacity of A1 neurons. The filled circles indicate responses significantly different 

than those evoked by the first tone.  
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decreased the strength of response to tone trains faster than 9 pps. Compared to naives, these 

animals had 14 % less spikes above 9 pps. For example, the representative neuron in Figure 3.2c 

had 52% less spikes at 10 pps than the naïve neuron in Figure 3.2a. Neurons in these animals 

typically showed a suppression response above repetition rates of 9 pps. Even at a slow repetition 

rate of 9pps, this neuron had a strong suppression response and evoked 43% less spikes than the 

naïve neuron.  

To ensure accurate quantification of the following capacity of neurons, we used response 

evoked by the first tone to normalize the response evoked by the successive 5 tone trains pips. 

Up to 10 pps, the normalized cortical response in naives was 1, showing that neurons respond 

equally well to successive tone trains as to the first tone (Figure 3.3a). For repetition rates higher 

than 10pps, the normalized cortical response in naives dropped drastically, and around 15pps the 

A1 neurons had a very weak temporal following capacity. This shape of the RRTF is similar to 

naives from previous studies (Kilgard & Merzenich, 1998b; Kilgard, et. al, 2001).  

Pairing VNS with 15 pps tone trains increased the temporal following capacity of A1neurons.  

Compared to naives, these animals had significantly stronger normalized cortical responses 

above 9 pps. For example, at 10 pps, the normalized cortical response in these animals was 22% 

larger than in naives. The shape of RRTF at fast repetition rates (> 10 pps) shifted up showing 

the higher temporal following capacity after pairing (Figure 3.3a). A strong facilitation response 

was seen up to 11 pps. The maximum following rate after pairing increased to 11 pps as 

compared to 10 pps in naives. The normalized response at this repetition rate was significantly 

higher than the normalized response in naïve animals (Figure 3.3a; unpaired ttest p<0.05). These 
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results show that pairing VNS with fast tone trains increases the temporal following capacity of 

A1 neurons. 

 

 
Figure 3.3. Mean normalized RRTF for all groups. 

a) Normalized cortical following response recorded from naives and animals that had VNS 

paired with 15 and 5 pps tone trains. Cortical response was calculated by averaging spikes from 

tones 2 to 6 in the tone train and normalized by the spikes evoked by the first tone. Normalized 

cortical response showed a right-ward shift for animals that had VNS paired with 15 pps tone 

trains indicating increased temporal following capacity in these animals as compared to naives. 

Normalized cortical response showed a left –ward shift in animals which had VNS paired with 5 

pps tone trains indicating decreased temporal following capacity compared to naives. This 

pattern was also seen when neural responses were normalized using just the 2
nd

 or the 3
rd

 tone. b) 

Normalized cortical response was calculated by considering spikes evoked by the 2
nd

 tone in the 

tone train. The 2
nd

 tone generally evoked the least of all spikes in the tone train indicating a 

paired pulse depression effect. The normalized response was also weaker than when all tones 

were considered together. c) Normalized cortical response was calculated by considering spikes 

evoked by the 3
nd

 tone in the tone train. Of all tones in the tone train, the third tone evoked the 

strongest response and therefore resulted in the strongest normalized spike rate. 
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In contrast, pairing slow tone trains with VNS decreased the temporal following capacity of 

A1 neurons. The overall RRTF function in these animals showed a significant decrease in 

responses to stimuli higher than 9 pps (Figure 3.3a). The normalized cortical following response 

above 9 pps was significantly lower than in naives and in animals which had VNS paired with 15 

pps tone trains(Figure 3a; unpaired ttest p<0.05). For example, at 10 pps, the normalized cortical 

response in these animals decreased by 11% compared to naïves and by 27% compared to 

animals which had VNS paired with 15 pps tone trains. On an average, for all repetition rates 

above 9 pps, the normalized responses in these animals were 14% smaller than naives and 31% 

smaller than in animals which had VNS paired with 15 pps tone trains.  The average maximum 

following rate after pairing decreased to 7 pps. The normalized response at this repetition rates 

was significantly lower than the normalized response of naïve animals and also lower than 

normalized response of animals which had VNS paired with 15 pps tone trains (Figure 3.3a). 

These results provide the first evidence that VNS can drastically alter the temporal response 

properties of A1 neurons to refine or degrade the capacity of the cortex to respond to rapidly 

successive stimuli.  

Evidence from previous studies suggests that the specificity of temporal plasticity to the 

paired repetition rates is due to altered cortical excitability (Kilgard et al., 2001; Boa et al., 

2004). Naïve animals showed a significant paired pulse depression effect at 11 pps (Figure 

3.3b). PPD is reported when the average responses evoked by the 2
nd

 tone is significantly lower 

than to average responses evoked by the 1
st
 tone, i.e. when the normalized response is 

significantly below 1 (paired ttest p<.05). We observed a significant change in paired pulse 

depression with VNS pairing. Animals which had VNS paired with fast tone trains showed a 
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significant paired pulse depression effect only at 14 pps.  For example, the number of spikes 

evoked by the 2
nd 

tone was 1.1 ±.1 lower than the number of spikes evoked by 1
st 

tone.  On the 

other hand, animals which had VNS paired with slow tones, had a significant paired pulse 

depression effect at a low repetition rate of 10 pps. These results suggest that VNS pairing with 

fast tone trains decreases paired pulse depression and pairing VNS with slow tone trains 

increases paired pulse depression. These changes in PPD could result in altered temporal 

plasticity effects when VNS is paired with temporally modulated stimuli. 

Of all the tones in the tone train, the third tone generally evoked the strongest response 

(Figure 3.3c). Although this result seems surprising at first, it can be explained by the paired 

pulse depression seen for the second tone. PPD for the second tone eventually resulted in a 

facilitation response for the 3
rd

 tone.  This was especially true for fast repetition rates i.e. faster 

than 10 pps. The threshold of following tone trains seems higher when responses from only the 

third tone in the tone train are considered. Compared to a facilitation response upto10 pps when 

all tones in the tone train were considered, the facilitation response is seen up to 11 pps in naïve 

animals when only the 3
rd

 tone is considered (Figure 3.3c). After pairing VNS with 15 pps tone 

trains, the facilitation response for the 3
rd

 tone was present up to 15 pps instead of 14 pps as seen 

when normalized response was calculated from all tones in the tone trains. Similarly, in animals 

which had VNS paired with 5 pps tone trains, a facilitation response for the 3
rd

 tone was seen up 

till 10 pps. At most repetition rates, a ripple like effect of alternating paired pulse depression and 

facilitation was seen with the 4
th

 tone evoking lesser spikes than the 2
nd

 tone and the fifth tone 

evoking lesser spikes than the 3
rd

 tone but more spikes than the 4
th

 tone. The 6
th

 tone evoked the 

weakest response compared to all other responses in the tone train.  
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Spectral plasticity: 

Since VNS was paired with tone trains of variable carrier frequencies we did not expect 

any spectral map plasticity. Examining frequency representations showed that animals of all 

groups had tonotopically organized A1. The size of A1 was similar across all groups (Naives: 

1.77 ±0.4; 15 pps with VNS: 1.82±0.51; 5pps with VNS 1.72±0.2). There was no significant 

change across any groups in the percent of sites responding to tones of different frequencies. 

Analyzing tuning curve properties showed that VNS with tone train pairing did not significant 

change receptive field sizes. Bandwidth of neural responses was similar across all groups 

(Bandwidth at 30 dB above threshold was 2.6±0.05 octaves for naives, 2.65±0.05 octaves for fast 

group and 2.58±0.08 octaves for the slow group). These results affirm the hypothesis of feature 

specific plasticity and show that only temporal, not spatial features of neurons are altered when 

VNS is paired with temporally modulated stimuli.  

Some of the basic response properties like driven spikes (2.07±.05, 2.17±.04, 2.14±.07), 

start latency (11.4±.2 ms naives, 11.1 ± .1 ms in fast, 11.6± .1 ms in slow), and peak latency did 

not change significantly. Spontaneous activity and end of response latency changed significant 

with VNS pairing. Spontaneous activity decreased when VNS was paired with 5 pps tone trains 

but was unaffected when VNS was paired with 15 pps tone trains. End of response latency in 

animals which had VNS paired with slow tone trains was significantly longer than naives 

(39±0.8 ms in slow vs 36.3±0.4 ms in naives unpaired ttest p<0.05). End of response latency of 

neurons in animals which had VNS paired with 15 pps tone trains was not significantly different 

than naïve animals (35.7±0.4 ms). The broadening of response to tones in animals with VNS 
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paired with slow tone trains suggests slower recovery of response in these animals and is similar 

to results from previous studies (Kilgard et al., 2001; Schriener et al, 1997). 

3.6 DISCUSSION 

A recent study showed that VNS with tone pairing can cause map plasticity in the 

auditory cortex that is specific to the paired tone. The changes in spatial map representation 

observed in this study were similar to those seen with NB stimulation tone pairing. NB 

stimulation with temporally modulated tones has been shown to induce temporal plasticity in A1. 

Based on these studies we predicted that VNS with temporally modulated stimuli would induce 

temporal plasticity in A1. To test this prediction we paired VNS with fast tone trains i.e. at a rate 

faster than the rate naïve animals can generally keep up with. Pairing VNS with fast tone trains 

increased the capacity of A1 neurons to follow fast tone trains. Pairing VNS with slow tone 

trains decreased the temporal following capacity of A1 neurons showing the VNS is induces 

input feature specific plasticity in A1. This result is similar to results with NBS tone train 

pairing. 

Further comparison with NBS: 

 NB stimulation with tone train pairing has been shown to significantly alter neural 

response properties like spontaneous activity, latency and receptive field sizes (Kilgard et al., 

2001). We saw similar changes in spontaneous activity, end of response latency after VNS 

pairing (Table 3.1). Spontaneous activity decreased in animals which had VNS stimulation 

paired with 5 pps tone trains but did not change in animals which had VNS paired with 15 pps 

tone trains.  This result is similar to results from previous studies with NB stimulation and tone 

train pairing (Kilgard et. al, 2001).  Increase in end of response latencies was seen with both 
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VNS and NB in animals which had VNS paired with 5 pps tone trains. The number of driven 

spikes did not increase in either group. This result too is similar to results seen with NB 

stimulation. As with NB stimulation tone train pairing, VNS tone train pairing did not induce any 

spatial map plasticity.  

 

Although most response properties changed in similar direction and extent in VNS and 

NB pairing, some of response properties did not. NB stimulation with tone trains of both 5 pps 

and 15 pps increased the bandwidths at all intensity levels. VNS pairing with tone trains however 

did not significantly change bandwidths at any intensity level. The non similarity of this property 

Table 3.1. Degree and direction of VNS induced plasticity and comparison with effects seen with 

NB stimulation from previous study. 

Direction and the number of arrows indicate the direction and magnitude of observed plasticity 

for the tabulated neural response parameters. Zeros indicate no significant difference from naïve 

controls. Comparison is made with results from previous study where NBS was paired with 

similar tone trains in 2 groups i.e. VNS was paired with 15pps in one group and 5 pps in the 

other group. Green and red color indicates whether the direction of plasticity seen with VNS and 

NB pairing was same or different. Black indicates parameters not studied in NB. 
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with NB stimulation, however suggests that plasticity effect of VNS could be more input 

specific. 

Potential mechanisms: 

 The exact mechanisms responsible for inducing VNS directed plasticity is unknown. 

Previous studies have shown that VNS realizes a number of neuromodulators like acetylcholine, 

norepinephrine, serotonin and other neuromodulators (Albert et al., 2009; Hassert et al., 2004; 

Dorr & Debonnel, 2006; Follesa et al., 2007). The similarity in the degree and direction of 

plasticity effects observed with NBS and VNS for most neural response properties suggest the 

possibility that release of acetylcholine may be play a role in VNS directed plasticity (Table 1). 

Some neural response properties changed in a different direction than seen with NVS tone train 

pairing. For example, NBS pairing with tone trains increases receptive field sizes of A1 neurons. 

However there was no significant change in receptive field sizes when VNS was paired with the 

same tone train stimuli. The similarity of most plasticity but not all plasticity effects between 

VNS and NBS pairing indicate that these techniques share some common but not same neural 

mechanisms. It is highly likely that the synergistic action of the different neuromodulators 

together is responsible for directing VNS regulated plasticity. 

Clinical relevance: 

VNS is FDA approved and is a safe and effective treatment for certain types epilepsy and 

chronic depression (Groves & Brown, 2005; Albert et al., 2009). Pairing VNS with tones has 

been shown to be a valuable tool in treating tinnitus equivalent in animals (Engineer et al., 2011). 

Our study showed that VNS with tone train pairing can change temporal response dynamics of 

A1. Deficits with temporal processing have been commonly seen in a number of learning 
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impaired populations. Dyslexics have significantly smaller EEG responses when presented with 

rapid stimuli compared to normal subjects (McAnally and Stein, 1997).  Primary auditory cortex 

responses of poor readers’ exhibit significantly more paired pulse depression compared to 

normal readers (Nagarajan et al., 1999).  VNS paired with 15 pps tone trains increased the 

strength of response to fast tone trains and also reduced the paired pulse depression as compared 

to naïve animals. Autistic individuals exhibit significantly less paired pulse depression than 

normal individuals which might increase their propensity for sensory overload (Buchwald et al., 

1992; O'Neill et al., 1997). Vagus nerve stimulation paired with 5 pps tone trains increased 

paired pulse depression as compared to naives. Vagus nerve stimulation paired with temporally 

modulated stimuli has the capability to change cortical temporal response properties in an input 

specific manner. Together these results indicate the potential of VNS pairing with temporal 

stimuli to possibly find treatment options for disorders primarily related to temporal processing 

deficits.  
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4.2 ABSTRACT 

A large number of studies show that speech perception problems arise from underlying 

cortical temporal processing deficits. Intensive behavioral training with non-speech temporally 

complex stimuli is capable of increasing speech discrimination capability in a pathological 

nervous system. Behavioral training with these temporal stimuli has been shown to increase 

temporal processing capability of the cortex in animals. Together these results suggest that 

improved temporal processing of the auditory cortex is responsible for improved speech 

perception. Based on these studies we hypothesized that animals with increased cortical temporal 

following capacity in response to tone trains will also have better neural discrimination ability of 

compressed speech stimuli. Repeated pairing of VNS with fast tone trains increases temporal 

following capacity of primary auditory cortex (A1) neurons. To test our hypothesis we paired 

VNS with fast tone trains for 20 days and recorded A1 responses to contiguously presented 

compressed speech sounds from A1 of barbiturate-anesthetized rats. After pairing, neural activity 

patterns evoked by compressed speech sounds were more distinct compared to naïves and 

control animals. Neural discrimination ability quantified using spike timing based classifier 

showed increased neural discrimination ability for compressed speech sounds in animals which 

had VNS paired with fast tone trains. 
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4.3 INTRODUCTION 

A number of biologically relevant sounds, like speech sounds, animal vocalizations, etc. 

have a distinct temporal structure which is utilized by the auditory system for accurate perception 

of these sounds. The underlying temporal processing capability of the auditory cortex can predict 

behavioral discrimination ability on rapidly presented speech sounds (Ahissar et. al, 2001). An 

influential hypothesis suggests that neural deficits in general auditory temporal processing of 

rapid stimuli are directly responsible for speech processing deficits in learning impaired 

populations (Merzenich et al., 1996; Kraus et al. 1996; Stark and Heinz 1996a; 

Tallal et al., 1998).This hypothesis arises from a large body of work in dyslexic and LLI children 

and is based on the following evidence. 

 Dyslexic and LLI populations display behavioral and neurophysiologic deficits in 

temporal processing. For example, LLI subjects require processing time at least an order of 

magnitude longer to discriminate or remember any brief stimulus if followed in rapid succession 

(tens of ms) by another stimulus (Tallal and Piercy 1973; Farmer and Klein 1995; Tallal et al. 

1985; 1981; Elliot et al. 1989; Reed 1989; Wolff et al.; 1990). Neural responses recorded to rapid 

stimuli in these populations are weaker than normal subjects and have been associated with 

speech perception deficits (McAnally and Stein, 1997; Protopapas et al. 1997; Nagarajan et al., 

1999). Intensive behavioral training with rapid non speech stimuli has been shown to improve 

identification non speech and speech stimuli in these populations (Merzenich et al.1996; Tallal et 

al. 1996). Plasticity studies in animals have demonstrated that intensive behavior training with 

rapid stimuli increases temporal processing capacity of the auditory cortex (Merzenich et al., 

1993, 1995; Bao & Merzenich, 2004; Zhou & Merzenich, 2009).Together these studies 
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hypothesize that improvement in behavioral processing of rapid stimuli is a result of increased 

temporal processing capacity of the auditory cortex. The effect of increased temporal following 

capacity of the auditory cortex on processing of rapidly presented speech stimuli has not been 

directly studied in the same species. 

In this study we investigated how change in temporal response properties of auditory cortex 

neurons affects neural representation of rapidly presented speech stimuli. Specifically, we 

hypothesized that improvement in temporal response properties of neurons will improve neural 

representation of rapidly presented speech stimuli. Repeated pairing of VNS with fast tone trains 

has been shown to increase temporal following capacity of primary auditory cortex (A1) neurons 

(Chapter 3). To test our hypothesis, we paired VNS with fast tone-trains and recorded A1 

responses to strings of speech stimuli compressed at different levels in both naïve and in animals 

which has VNS paired with fast tone trains. 

4.4 METHODS 

Stimuli 

We used 5 of the 20 English consonant-vowel-consonant (CVC) words, ending in ‘ad’ (as in 

'tad') used in the Engineer et al. (2008) study. These sounds were ‘bad’, ‘dad’, ‘sad’, ‘wad’, 

‘yad’. A detailed description of the recording and processing on these sounds can be found in 

Engineer et al. (2008). In brief, we recorded these sounds in a double-walled, sound-proof booth. 

All speech sounds were produced by a female speaker. The fundamental frequency and spectrum 

envelope of each word was shifted up in frequency by a factor of two using the STRAIGHT 

vocoder (Kawahara, 1997) to better match the rat hearing range (Sally and Kelly, 1988). The 

intensity of the speech sounds was adjusted so that the intensity during the most intense 100 ms 
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is 60 dB SPL. Speech sounds ‘sad’, ‘wad’ and ‘yad’ were approximately 600 ms, 590 ms and 

560 ms long respectively and sounds ‘bad’ and ‘dad’ were 500 ms long.  

 Speech sounds were concatenated together without any inter-stimulus interval between 

them to generate stimuli ‘sad-wad-dad-yad’ and ‘sad-wad-bad-yad’. These stimuli are here on 

referred to as ‘word strings’. These word strings were then compressed to 70%, 50%, 30%, 20% 

and 10% of their original length using the STRAIGHT vocoder (Figure 4.1). Speech sounds 

‘bad’ and ‘dad’ were also compressed to 50% and 30% of their original length and presented in 

isolation and serve as control sounds for compressed sounds presented word strings. 

 

Subjects and electrophysiology recordings 

All methods regarding subjects, surgery procedures for implantation of vagus nerve stimulator, 

surgery procedures for electrophysiology recordings and analysis, tone and tone train stimuli for 

this Chapter are the same as in Chapter 3. As a brief overview, nineteen female Sprague Dawley 

rats were used in these experiments; thirteen of which rats were randomly assigned to 

experimental groups implanted with vagus nerve stimulators and paired with tone trains of either 

15 pps (n=7) or 5 pps (n=6). The remaining rats (n=6) were used as naïve controls.  The 

experimental groups of animals was implanted with a vagus nerve stimulation cuff electrode and 

were placed in sound- shielded booth in which stimulation of the vagus nerve was paired with 

tone train stimuli of either 15 pps or 5 pps repetition rate depending on the experimental group. 

The carrier frequency of the tone was equally distributed across the frequency range represented 

in A1 and was either one of seven frequencies (1.3, 2.2, 3.7, 6.3, 10.6, 17.8, 29.9 kHz). After 

pairing VNS with tone-trains for 20 days, the primary auditory cortex (A1) in these animals was  
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mapped under pentobarbital anesthesia (50 mg/kg). After playing tones and tone trains, neural 

responses were recorded to the compressed speech stimuli.  

 

 

 

 
 

Figure 4.1. Spectrogram of word string ‘sad-wad-dad-yad’.  
Spectrogram of word string ‘sad-wad-dad-yad’ is shown without compression and when the 
word string is compressed to 70%, 50%, 30%, 20%, 10% of its original length. The word strings 

were generated by concatenating the speech words without any interstimulus interval between 

individual speech words. These sounds are shifted up by an octave to match for the frequency 

hearing range of rats. 
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Neurophysiology Data Analysis 

Classifier: To quantify neural discrimination performance, we used the nearest neighbor 

classifier from our previous study (Engineer et al., 2008). Analysis using a neural classifier 

allows direct correlation of neural and behavioral discrimination in units of percentage correct. 

Another advantage of using a neural classifier is that it analyses neural data on individual trial 

basis. This is because, in real life, speech sounds often need to be identified based on single trial 

basis. For a given recording site, the classifier compares each trial to the memory template of 

both the sounds. The memory template is average neural activity of the remaining 19 trials and is 

based on the assumption that the brain has heard the sound 19 times. The current trial is excluded 

from this average to prevent artifact. The sound whose memory template was closest to the trial 

activity (smallest Euclidean Distance) was guessed by the classifier to have generated the neural 

activity of the trial under consideration. In case both the Euclidean Distance’s (E.D.) are same, 

the classifier randomly chooses which sound the trial belongs to. For a given recording site, 

neural discrimination performance (% correct) between 2 speech sounds is calculated by 

comparing the classifier sound guesses of all the trials to the correct sounds presented during 

those trials.  Total neural discrimination for a discrimination task was obtained by averaging 

neural discrimination performance of all the recording sites. The neural activity is binned into 

several neural integration windows over a specific duration. Neural integration windows were in 

the range from 1ms to 500ms. The duration time was also in a range starting from the total 

duration of the onset response (40ms) to the total duration of the sound (500ms). Maximum 

window size tested was 500ms because this is the duration of sounds ‘bad’ and ‘dad’ when they 

were uncompressed. Euclidean distance is the square root of the sum of squared differences 
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between firing rate at each neural integration time. Other measures like Minkowski Distance and 

Cityblock distance were also used to test the results. 

4.5 RESULTS 

We used speech ‘sentences’ to record neural responses from primary auditory cortex of 

naïve (n=6), control (n=6) and experimental rats (n=6). One of the speech sentences was ‘sad-

wad-dad-yad’ and the other one was ‘sad-wad-bad-yad’. These 2 speech sentences are referred to 

here on as word strings. We recorded neural responses to these word strings compressed to70%, 

50%, 30%, 20% and 10% of its original length. Neural responses were also recorded to sounds 

individual sounds ‘bad’ and ‘dad’ compressed at different levels which served as control neural 

responses for comparison when these stimuli were compressed in word strings. Neural responses 

to word strings have not been previously studied in animal cortex. Therefore, the first half of the 

results section describes neural responses to compressed and non compressed word strings in 

naives. The second half of the results section describes how neural responses to the same word 

strings were affected in animals which had VNS paired with fast tone-trains. 

 

Neural responses to word strings in naives 

Neural responses to most speech sounds in the word strings were similar to neural responses 

of these sounds in isolation from previous studies in humans and animals (Steinschneider et al., 

1999; Wong and Schreiner, 2003; Steinschneider et al., 2004; Engineer et al., 2008; Skoe and 

Kraus, 2010).  For example, voiced stop consonant ‘ba’ evoked only one peak of response 

whereas unvoiced consonants ‘sa’, ‘ya’ and ‘wa’ evoked a second peak of response 

corresponding to the voicing (Figure 4.2). Neural responses to sound ‘dad’ had an altered 
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responses than reported in previous studies where it were presented in isolation.  Neural response 

of voiced stop ‘da’ evoked 2 peaks of responses in close succession (~ 25 ms apart) as opposed 

to only one peak when presented in isolation. The second peak of response is likely due to the 

forward masking effects of sounds presented closely before. These results are consistent with 

previous studies which show frequency specific suppressed responses due to forward masking 

(Schriener 1997, Condon and Weinberger, 1991).  

 

Neural response cues to most sounds were preserved even when the word stings were 

compressed. For example, neural response to unvoiced consonant ‘sa’ continued to evoke 2 

 
 Figure 4.2. Spectrograms of word strings and PSTH response of naïve animals. Spectrograms of 

word strings ‘sad-wad-bad-yad’.  
 (a) and word string ‘sad-wad-dad-yad’ (c) without any compression. Neural response to word 
string ‘sad-wad-bad-yad’  (b) and word string ‘sad-wad-dad-yad’ (d) without any compression. 
Neural responses were recorded from 170 multiunit clusters of primary auditory cortex (A1) 

neurons of anesthetized naïve rats (n=6). Most neural responses to speech sounds in word strings 

were similar to neural responses of these sounds in isolation. Filled triangles show where each 

speech sound in the word string begins.  
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peaks of response even when compressed to 10% of its original length (Figure 4.3). Most 

temporal cues of sounds were prominent even up till compression level of 50%. Sounds ‘dad’ 

and ‘yad’ continued to evoke 2 peaks of response until compression level of 50 % and sound 

‘wad’ continued to have a 2 peaked response up till 30% compression, after which they evoked 

only one peak of response. Temporal response properties of neurons were significantly degraded 

when sounds were compressed to more than 20%. At 20 % compression, the middle sounds 

‘bad’, ‘dad’ and ‘wad’ only had a single peak of response for the entire sound. Compression of 

sounds significantly decreased the number of driven spikes (paired ttest p<.01). For example, 

stimulus string ‘sad wad dad yad’ evoked 34% less driven spikes when compressed to 50% of its 

original length. This result was expected since compression of speech sounds provided with 

lesser spectral energy than available without compression. These results are similar to results 

from previous human neurophysiologic results which show that temporal pattern of neural 

responses to speech sentences are degraded but still present even when sounds are compressed to  

20% of their original length (Ahissar et al., 2001). Our results demonstrate the similarity of 

neural responses to compressed speech sounds in humans and animals and support the long 

debated hypothesis that underlying auditory processing of complex sounds is similar in humans 

and animals. 

Although compression reduced the number of driven spikes, the spatiotemporal patterns 

between sounds were preserved even at high compression levels. As in our previous study, 

sound‘s’ evoked high frequency neurons (Engineer et al., 2008; Chapter 2). This pattern was 

seen even when the word strings were compressed to 10% of its original length. The primary 
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distinction between spatiotemporal patterns of sounds ‘ba’ and ‘da’ is the relative timing at 

which they evoke activity in the different groups of neurons. Sound ‘ba’ evoked low frequency  

 

neurons followed by high frequency  neurons and sound ‘da’ evoked high frequency neurons 

first followed by low frequency neurons a few milliseconds later (Figure 4.4). This 

distinguishing pattern was seen even when the sounds were presented in a word string that was 

compressed to 20% of its original length. This result is similar to results from our previous study 

where speech sounds were presented in isolation and without any compression (Engineer et al.,  

 

 
Figure 4.3. PSTH responses to word string ‘sad-wad-dad-yad’ compressed to different levels 
from naives. 

Although most temporal patterns of neural responses to the word string were degraded with 

compression, the distinguishing temporal patterns were still present even under compression. 

Filled triangles show where each speech sound in the word string begins.  
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2008; Chapter 2). These results show that spatiotemporal patterns of speech sounds are preserved 

even under highly adverse situations like rapidly presented speech sounds.  

Previous studies have shown that A1 neurons can accurately discriminate between 

spatiotemporal patterns of speech sounds when spike timing information is preserved (Engineer 

et al., 2008; Chapter 2). For example, A1 neurons can discriminate between speech sounds ‘bad’ 

and ‘dad’ up to 79.5 ± 0.8% when spike timing with 1ms precision is used over 40 ms of neural 

onset response (Engineer et al., 2008). Neural responses analyzed using relative spike timing 

 
Figure 4.4. Neurograms and difference neurograms for speech sounds in naives. 

Multiunit data was collected from 170 recording sites in 6 anesthetized, experimentally naive 

adult rats. Neurograms to the speech sounds ‘bad’ and ‘dad’ when they were presented in 
isolation and in word strings where they were compressed to different levels. Neurograms show 

the average poststimulus time histograms (PSTH) responses across all the A1 sites. Average 

PSTHs were derived from 20 repeats and are ordered by the characteristic frequency (kHz) of 

each recording site (y axis). Difference neurograms are obtained by subtracting the neurogram 

responses of the two speech sounds and show distinctness between neurograms. Time is 

represented on the x axis (0 to 40 ms). 

 

 

Time (ms)

C
F

 (
k

H
z
)

   0  20  40    

2
4
5
8

11

Isolation No Compression 70% 50% 30% 20% 10%

B

D

B-D



77 

 

information between speech sounds has been shown to accurately predict behavioral speech 

discrimination ability. A1 responses are poor predictors of behavioral discrimination ability  

when temporal information is removed, i.e. only average firing rate is used. We used same neural 

classifier as used in our previous study to determine neural discrimination words ‘dad’ vs ‘bad’ 

when presented in a word string (Engineer et al., 2008). As in our previous study, neural 

discrimination ability was quantified using 1 ms spike timing precision over a duration of 40 ms. 

Neural discrimination ability of sound ‘dad’ vs ‘bad’ without any compression when presented in 

a word string was at 81 ± 1% (Figure 4.5). This result is comparable to neural and behavioral 

discrimination performance from our previous study when speech stimuli were presented in 

isolation.  

Neural discrimination performance was decreased but was significantly above chance level 

as increased compression (Figure 4.5). Neural discrimination performance of sounds ‘dad’ vs 

‘bad’ consistently degraded with increased compression but still significantly above chance even 

when stimuli were compressed to 10% of their original length. This is because the 

spatiotemporal patterns between sounds were still distinct at this level of compression (Figure 

4.4). We did not have behavioral discrimination ability between word strings compressed to 

different levels. However, neural discrimination ability of A1 neurons in our study is comparable 

with previous human psychophysical studies which demonstrate speech sentence discrimination 

at similarly high levels of compression (Ahissar et. al, 2001). Together these results support the 

hypothesis of common underlying auditory processes between humans and animals even in 

highly adverse conditions like rapidly presented speech. 
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Neural responses after pairing VNS with tone trains 

A large number of studies suggest that temporal processing capability of the auditory 

cortex is responsible for limitations over speech processing capability. These studies suggest that 

increased speech perception capability in pathological nervous systems is caused by the 

increased temporal following capacity of auditory cortex neurons. Based on these studies we  

 

hypothesized that A1 neurons which have increased temporal following capacity in response to 

tone trains will also have better speech discrimination ability on compressed speech stimuli.   

To test our hypothesis we paired VNS with fast tone trains for 20 days and recorded A1 

cortex responses to contiguously presented compressed speech sounds. Repeated pairing of VNS 

with fast tone trains increases the temporal following capacity of A1 neurons (Chapter 3). We 

 
Figure 4.5. Neural discrimination performance in naives. 

Neural discrimination performance between sounds ‘bad’ and ‘dad’ which were presented in 
word strings ‘sad-wad-bad-yad’ and ‘sad-wad-dad-yad respectively. A nearest neighbor classifier 

(see methods) with 1 ms spike timing precision over  40 ms duration was used to determine the 

neural discrimination ability.  
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quantified neural discrimination ability of sounds ‘dad’ and ‘bad’ presented in a word string and 

compressed to different levels. As in naives, neural responses were quantified using 1 ms spike 

timing over 40 ms duration. Neural discrimination ability in animals that received VNS pairing  

 

with fast tone trains was significantly higher compared to naives (Figure 4.6).  The largest 

benefit of  pairing VNS with fast tone trains was seen from compression level of 20%-50%. For 

example, neural discrimination ability when word strings were compressed to 30% of their 

original length was at 10% greater than naives. Our results support the hypothesis that increased 

 

 
Figure 4.6. Improvement in neural discrimination performance of animals which had VNS paired 

with fast tone trains. 

Pairing VNS with fast tone trains increased significantly increased neural discrimination 

performance of sounds ‘bad’ vs ‘dad’ which were compressed to from 20-50% of the original 

length of the word string as compared to naives(unpaired ttest p<.05). Neural responses in the 

‘fast group’ were recorded from 181 multiunit A1 clusters of 7 anesthetized experimental rats in 
the fast group. The same neural classifier using 1 ms spike timing precision over 40 ms duration 

was used to quantify neural discrimination ability of the speech sounds. Neural discrimination 

ability in the ‘control’ group of rats recorded from 160 multiunit A1 sites of 6 anesthetized rats 
was not significantly different from naives.  Filled symbols show whether neural discrimination 

ability was significantly different from neural discrimination ability of naives at the same 

compression level.  
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temporal following capacity of neurons underlies the increased neural discrimination ability of 

contiguously presented compressed speech. 

The advantage of increased neural discrimination ability after pairing appears to be 

specific to the level of compression and the context in which the speech sounds were presented.  

 

Neural discrimination after pairing was not significantly different from naïves when word strings 

were presented without compression and at 70% compression. These results suggest that after 

pairing, A1 neurons have an increased propensity for stimuli with high degree of compression 

 

 
Figure 4.7. Neurogram and difference neurograms evoked by speech sounds after VNS pairing with 

fast tone trains. 

Multiunit data was collected from 180. Neural responses evoked by the speech sounds ‘bad’ and 
‘dad’ when they were presented in isolation and in word strings compressed to different levels in 
animals which had VNS paired with fast tone trains. From compression level 50%-20%, 

neurograms in these animals were more distinct than neurograms in naïve animals. Average 

poststimulus time histograms (PSTH) placed on top of the neurograms were derived from 20 

repeats are ordered by the characteristic frequency (kHz) of each recording site (y axis). Time is 

represented on the x axis (0 to 40 ms). 
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than A1 neurons in naives. A1 neurons in animals that received pairing also had significantly 

worse neural discrimination ability than naives when the compressed sounds were presented in 

isolation. This result shows that pairing increases neural discrimination ability only when sounds 

are presented in a word string. Together these results show that the beneficial effects of VNS  

pairing with fast tone trains are only seen when speech sounds are presented in compressed word 

strings. 

The improvement in neural discrimination ability after VNS is paired with fast trains can 

be explained by the enhanced spatiotemporal differences at high compression level. When no 

compression is applied the distinction between spatio-temporal patterns of sounds ‘bad’ and 

‘dad’ are similar in both naïve and VNS group (Figure 4.4, 4.7). We used Euclidean distance to 

quantify distinction between spatiotemporal patterns these sounds.  Euclidean distance between 

 

 
Figure 4.8. Euclidean distance between speech sounds for all groups. 

Euclidean distance between speech sounds ‘bad’ and ‘dad’ presented in word strings at different 
compression levels. Euclidean distance was used to quantify the distinctness of two neurograms 

with 1ms spike timing precision over 40 ms duration. Euclidean distance between the speech 

sounds was significantly more distinct in animals which had VNS paired with fast tone trains 

than in naïve animals for compression levels 50%-20% (unpaired ttest; p<.05)  
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the neurograms of sounds at this level of compression is similar in both groups (Figure 4.8). At 

compression levels 50% - 20%, the distinctions in spatio-temporal patterns between the speech 

sounds was much greater in the VNS group than in naives. Euclidean distance between the 

neurograms of these sounds at this level of compression is different across the 2 groups (Figure 

4.8). These results show that VNS pairing with fast tone trains results in distinct spatiotemporal 

patterns which help in better neural discrimination ability of compressed speech sounds.  

To test whether the effect of pairing VNS could only be induced only by fast tone trains 

pairing, we paired tone trains of a different frequency. These animals served as a control group 

since the only difference between this group and the group which had VNS paired with rapid 

tone trains was the frequency of the tone train (5 pps vs 15 pps). Neural discrimination ability in 

these animals was not significantly different than naives at any levels of compression (Figure 

4.6). As quantified by Euclidean distance between the groups, the spatiotemporal patterns of 

sounds in these animals were also similar to spatiotemporal patterns in naives (Figure 4.8). 

Together these results show that animals which did not have improved temporal following 

capacity did not have improved neural discrimination ability of compressed speech and animals 

which had improved temporal following capacity had improved discrimination of speech sounds. 

Our results demonstrate that neural discrimination ability of compressed speech sounds 

increases when rapid tone trains are paired with VNS and support the hypothesis that 

improvement in the underlying temporal processing capability of auditory cortex can improve 

neural discrimination ability of contiguously presented compressed speech sounds. 
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4.6 DISCUSSION 

In this study we investigated how change in temporal response properties of auditory 

cortex neurons affects neural representation of rapidly presented speech stimuli. Specifically we 

hypothesized that improve temporal response properties will result in better neural 

discrimination of compressed stimuli than naives. Vagus nerve stimulation was paired with fast 

tone trains to improve the temporal response properties of primary auditory cortex neurons 

(Chapter 3). A string of words compressed at different levels was presented in both naïve and in 

animals which has VNS paired with fast and slow tone trains. Our results show that animals 

which had VNS paired with fast tone trains show a significant increase in the neural 

discrimination ability of rapidly presented compressed speech sounds.  

A number of studies suggest that underlying neural temporal processing deficits are 

responsible for speech processing deficits in learning impaired populations. For example, 

Dyslexics have significantly smaller EEG responses when presented with rapid stimuli compared 

to normal subjects (McAnally and Stein, 1997).  Primary auditory cortex responses of poor 

readers’ exhibit significantly more paired pulse depression compared to normal readers 

(Nagarajan et al., 1999). Intensive behavioral training with rapid non speech stimuli can increase 

speech discrimination ability in these populations (Merzenich et al.1996; Tallal et al. 1996). Our 

study shows that the degree of temporal plasticity seen in our study when VNS is paired with fast 

tone trains is similar to behavior training techniques (Bao & Merzenich, 2004).  VNS paired with 

15 pps tone trains increased the strength of response to fast tone trains, reduced the paired pulse 

depression and increased speech discrimination ability of compressed speech sounds as 

compared to naïve animals. These results support the hypothesis that general auditory temporal 
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processing mechanisms could underlie processing of complex sounds like conversational speech.  

Our results show the similarity of neural response properties between humans and animals and 

propagate the use of animal models for studying speech sound processing disorders. 

Results from previous work in our lab show that rats can behavioral discriminate isolated 

speech sounds even when they are compressed to 10% of their original length. Previous studies 

have shown that humans can discriminate between speech sentences even when they are 

compressed to 20% of their original length (Ahissar, et al., 2001). Neural discrimination ability 

seen in our study  results with a words ‘dad’ vs ‘bad’ in word strings shows a degraded but above 

chance performance by A1 neurons even when speech sounds are compressed. These results 

indicate the behavioral and neural capability of representing highly compressed speech sounds is 

similar to humans. Further studies which directly behavioral and neural performance on 

compressed and rapidly presented speech are needed to understand how the auditory cortex 

neurons represent rapidly presented speech. 
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