ASTR 288C — Lecture 6
Monday, 12 October 2009

Scientific Data Format

Introduction

Data formats are a critical, and often overlooked part of the scientific process.
There is little point in collecting data if it can not be used afterwards. Data needs to
be saved in a form that allows it to be easily used, and retain all of the original
information. In many cases data will be archived and may be used long after the
original observations have been written up an published, so it is critical that data be
stored in formats that allow researchers to use it in the future.

There are two underlying goals to scientific data formats. The first is to
create a format that allows data to be stored in a way that is convenient, flexible, and
portable. The second is to format data so that it can be stored in long-term archives
that are easy to search and retrieve data from, and easy to use the data once it has
been retrieved.

Historically the final resting place for scientific data has been in the scientific
literature. Scientists publish tables of data in refereed journals or peer-reviewed
books and other researchers use the data in these articles. The advantage of this
system was that the data was fairly easy to find. It was located with the publication
where it was originally presented. The disadvantage of this system is that it can be
difficult to convert data that has been published in a table in an article into a form
that is useful to other researchers. In general data had to be copied from an article
by hand, which is slow, manpower intensive, and can easily lead to transcription
errors. Another problem is that very large data sets, and raw data were usually not

published and tended to remain in the hands of the original researcher. This often
led to data being lost.

| Scientific Data Lifecycle | [Scientific Data Lifecycle |
From this (publish and forget).. =iothisgne
» — || S—
(@ =
M=
S :

[
!

[[(B

Modern data storage tends towards archiving. The emphasis is on publishing
results in the refereed literature and describing the data. Samples of data are

usually published along with a pointer to the long-term archive that contains the
totality of the data. This has the advantages that data can be searched and retrieved
by the astrophysics community, and that large amounts of data can be archived for
future use. Another advantage is that the data is automatically in an electronic form,
which makes it easy to use.

The rapid growth of data archives since the 1990s has made it important to pick
data formats carefully. To be useful a format needs to have the following qualities.

Portable

Data needs to be stored in a way that allows it to be shared between
scientists. This means that it needs to be accessible on any computer system
and not use proprietary data formats, such as GIF.

Lossless

Data must be stored in a way that no information is lost in the process of
storing or recovering the data. This means that lossy data formats such as
JPEG are not acceptable as a way of storing scientific data. Any compression
that is done on data must be done in a way that preserves all of the
information in the data. This is particularly true for raw data. High level data
products that have been produced by analysing or processing the raw data
can be truncated to the precision of the data if the raw data is available to
allow the high level products to be recreated in the future. This is acceptable
because the precision of calculations is often much higher than the precision
of the data. The digits beyond the precision of the data do not carry useful
information, so they may be removed to save space. However, as disk space
becomes cheaper there is less need to do this sort of data truncation.

Indexable

Data must be stored in a way that allows it to be indexed and searched.
Ideally, this is done by storing data using self-describing data formats. For
example, each data file includes a description of what is in the file.

The American Standard Code for Information Exchange (ASCII) is the de

facto standard for representing characters on computers. It is widely used to store
information in plain text files. An example of an ASCII file is the following list of
distances from short-hard gamma-ray bursts to the centres of their host galaxies.

Offsets of short-hard GRBs from their putative host galaxies.

#

Sources: 1 - Berger et al. (2005, Nature, 438, 988)

& - Fox et al. (R008, Nature, 437, 845)

3 - Soderberg et al. (2006, astro-ph/0601455)
4 - astro-ph/0901.4038v_a

#GRB kpc r/r_e Source

#

050809 44 13 Q
050709 3.8 1.8 P
080724 2.87 04 1
051221 0.760 0.29 3

The file contains metadata describing what is in the file, and four columns of
numeric data.

Plain text files are widely used for quick-and-dirty data storage, but not
widely used for raw data, or for archive-quality final data. The advantages of plain
text are that it is easy to create ASCII files and easy to edit them. This means that it
is generally straightforward to create ASCII files in any given format, and meta data
can be added or edited as needed. Plain text files can be read by most data
manipulation packages, and can usually be understood by a human. Plain text data
files tend to be useful for the intermediate stages of data analysis, such as input for
plotting routines, or isolating a subset of the data for a specific data analysis. Plain
text files are also useful if you want to experiment with a small subset of data to see
how certain changes affect the results of an analysis.

A big disadvantage of plain text files is that they are not inherently self-
documenting. Any metadata must be deliberately written to the file, and there is not
standard way of presenting the meta data. In the above example the “r/r_e” column
is not described. There is no way of knowing, from the contents of the file, what the
numbers in this column represent (in this example it is the ratio of the distance of
the GRB from the centre of the host, r, to the effective radius of the host, re).
Similarly, there is no description of the “kpc” column. One can not tell what it
represents from the contents of the file alone (in this example it is the distance of
the GRB from the centre of the host in kpc). .

An even more fundamental problem with using plain text files to store
astronomical data is that the structure of the file is not specified within the file. In
this case it is fairly easy for a human to see that there are four columns of data.
However, in the following example it is not clear if the data is four columns, or a 4 x
4 matrix.

1.012 2.111 2.111 0.000
2.909 8.321 4.534 0.000
5.132 9.876 1.357 0.000
0.000 0.000 0.000 0.000

Finally, plain text data files, while very efficient for dealing with small
amounts of data, they rapidly become very large when dealing with large amounts
of data, such as images. Binary representations of such data can take significantly
less space. This is particularly true of raw data sets, which can be very large.

XML, or Extensible Markup Language, is not a true data format. Itis a way of
adding meta-data to ASCII files so that the file becomes self-documenting. If an XML
file is constructed correctly the file can stand alone and tell any user (or software)
exactly what is in the file and what the structure of the data is. XML is a generalized
form of HTML that was designed to transport and store data with the goal of
describing what the data is. An example of XML is given here.

<photometry>
<photometry source="IMC930475">
<date>2008-04-14</date>
<starttime>03:12:15</starttime>
<exposure>2000</exposure>
<filter>R</filter>
<magnitude>15.87</magnitude>
<magerror>0.03</magerror>
</source>
<photometry source="IMC930476">
<date>2007-02-28</date>
<starttime>11:42:04</starttime>
<exposure>2000</exposure>
<filter>R</filter>
<magnitude>18.23</magnitude>
<magerror>0.15</magerror>
</source>
</photometry>

In this example every entry in the file is tagged with a descriptor that says what that
entry is. In fact, there is more meta data in this example that there is actual data.
Software can read this meta data description and deal with the actual data in an
appropriate way. In principle any data can be stored in XML files, but they suffer
from the same size problem as simple ASCII files do-they rapidly become very large,
and thus are not well suited for image data or large quantities of raw data. Itis not
unusual for the majority of an XML file to be meta data. The XML format can be well
suited for reduced data.

The advantages of XML are similar to the advantages of plain text, except that
XML files are self-documenting. The data is described within the file, and the
structure of the file is described by standardized metadata. The disadvantage is that
XML files are not easy for a human to read. They generally require software to
present the data in a way that a human can understand it. Other disadvantages are
that XML is not always suited to very large data sets, and the large amount of

metadata needed can result in very large files.

The Flexible Image Transport System (FITS) is a file structure that was
developed to be a standard way of storing astronomical data, such as images and
spectra. Prior to the late 1980s almost every observatory stored its data in a
different format. These formats were often optimized to a particular instrument or
a particular computer system. Several attempts were made to develop standard
data storage formats for astronomical data, but FITS has been the most successful.

FITS was originally developed in the late 1970's as an archive and
interchange format for astronomical data files. Since the 1990s FITS has also come
into wide use as an on-line file format that can be directly read and written by data
analysis software. FITS is much more than just another image format (such as JPG
or GIF) and is primarily designed to store scientific data sets consisting of
multidimensional arrays and 2-dimensional tables containing rows and columns of
data. Data that is stored in a FITS file is self-documenting.

A FITS file consists of one or more Header + Data Units (HDUs), where the
first HDU is called the "Primary HDU', or "Primary Array'. The primary array
contains an N-dimensional array of pixels, such as a 1-D spectrum, a 2-D image, or a
3-D data cube. Five different primary data types are supported: unsigned 8-bit
bytes, 16 and 32-bit signed integers, and 32 and 64-bit single or double precision
floating point reals. FITS can also store 16 and 32-bit unsigned integers.

Any number of additional HDUs may follow the primary array; these additional
HDUs are called FITS “extensions'. There are currently 3 types of extensions defined
by the FITS Standard (defined at http://archive.stsci.edu/fits /fits standard/).

* Image Extension
An image extension is an N-dimensional array of pixels in binary format, like
in a primary array.

* ASCII Table Extension
This is an extension that contains rows and columns of data in ASCII
character format.

* Binary Table Extension
This is an extension that contains rows and columns of data in binary
representation.

Every HDU consists of an ASCII format "Header Unit' followed by an optional
"Data Unit". For historical reasons, each header or data unit must be an exact
multiple of 2880 bytes long. Any unused space at the end of the header or data unit
is padded with fill characters (ASCII blanks or NULs depending on the type of unit).

Each header unit consists of any number of 80-character keyword records,
which have the general form:

KEYNAME = value / cornment string

The keyword names may be up to 8 characters long and can only contain uppercase
letters, the digits 0-9, the hyphen, and the underscore character. The keyword
name is (usually) followed by an equals sign and a space character (=) in columns 9
and 10 of the record, followed by the value of the keyword which may be either an
integer, a floating point number, a character string (enclosed in single quotes), or a
boolean value (the letter T or F).

The last keyword in the header is always the "TEND' keyword, which has no
value or comment fields. There are many rules governing the exact format of a
keyword record (see the FITS Standard for details) so it is generally better to rely on
standard interface software like CFITSIO or FTOOLS to correctly construct or parse
the keyword records rather than directly reading or writing the raw FITS file.

Each header unit begins with a series of required keywords that specify the
size and format of the following data unit. A 2-dimensional image primary array
header, for example, begins with the following keywords:

SIMPLE = T / file does conform to FITS standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 2 / number of data axes

NAXIS1 = 440 / length of data axis 1

NAXIS2 = 300 / length of data axis 2

The required keywords may be followed by other optional keywords to
describe various aspects of the data, such as the date and time of the observation.
Other COMMENT or HISTORY keywords are also frequently added to further
document the contents of the data file.

The data unit, if present, immediately follows the last 2880-byte block in the
header unit. Note that some HDUs do not have a data unit and only consist of the
header unit.

An example of the structure of a FITS file is given below.
» ftlist example.fits H

Name Type Dimensions

HDU1l Primary Array Null Array

HDUZ2 whR250005527I Image Real4(1138x1141)
HDU& MAGHIST BinTable 69 cols x 5 rows

In this example the Primary Array (HDU 1) is empty, except for a set of keywords
that describe the data in the file. The first extension (HDU 2) is an image with

dimensions 1138 x 1141 and the data is stored as 4-byte real numbers. Notice that
there are different types of extensions in a single file. This file contains a null array
(HDU 1), two-dimension image (HDU 2), and a binary table (HDU 3). Each image
extension is independent of the others in the file.

There is a lot of information about FITS available at
http://swift.gsfc.nasa.gov/docs/heasarc/fits.html . Although FITS was originally
designed to be a standard format for astronomical data there are several different
versions of FITS. The differences are mostly minor and generally consist of different
versions of FITS using different keyword names. For the most part all versions of
FITS files can be read by the major software packages.

Software

FITS files are not intended to be read or modified directly by humans. They
are intended to be used in conjunction with software that reads, writes, and
modifies FITS files. The standard software package for working with FITS files is the
FTOOLS software developed at NASA’s High Energy Astrophysics Science Archive
Research Centre (HEASARC; http://heasarc.gsfc.nasa.gov/). FTOOLS can be
obtained from http://swift.gsfc.nasa.gov/docs/software/lheasoft/download.html .
There is also a set of subroutine libraries, called FITSIO, that can be used to work
with FITS file in various programming languages. FITSIO is described in detail at
http://swift.gsfc.nasa.gov/docs/software/fitsio/fitsio.html . Supported
programming languages are

e C++

° C :|:|:

e Perl

e Tcl

¢ Python

* Ruby

* S-lang

e MatLab

e LabVIEW

* Photoshop

ftlist

FTLIST is an FTOOL that prints out the contents of a FITS file. For a detailed
description of FTLIST see the help page for FTLIST (type fhelp ftlist) at the command
line prompt. FTLIST has five modes, each of which returns a different type of
information about the FITS file. The modes are

* H—oprints a one-line summary of the contents of each HDU in the FITS file.
This is good for determining the general structure of the file, and for
identifying which HDU the data you are interested in is in.

e (C—prints information (name, units, etc.) about each column in each FITS
table. This works for ASCII and binary table HDUs.

¢ K—prints the keywords and their values for each HDU. This works for every
type of HDU.

* [—prints the pixel values of the image array. This works for image HDUs.

e T—prints the contents of a FITS table. This works for ASCII and binary table
HDUs.

More than one mode can be specified at a time. For example, to print out the HDU
summary (H option) and the header keywords (K option) in the first extension
(HDU 2) of the input file “infile.fits” and exclude the COMMENT keywords type

> ftlist infile.fits+1 hk exclude=comment

FITS files can contain a large amount of information. It is not unusual to have
a FITS file with several dozen columns of data. Because of this is often useful to
view only a subset of the data in the file. The help page for FTLIST contains detailed
information about how to do this.

fv
Fv is an interactive browser, editor, and viewer for FITS files. To start Fv

simply type fv at the command line. This will put up a window that looks something
like this.

'® 06X fv | This is the main menu for Fv. From this one can create new
News File... FITS files, open an existing file, access various catalogues
Open File... and databases, and run FTools on your FITS file.

SkyView...
Catalogs...

VizieR...

Run Ftool...
Connect to Hera...

Display Device

Hide All Windows
File Summary
Header

Table

Image Table
Vector Table

Preference
Clipboard

Help
Quit

When a FITS file is open a dialogue box that looks a bit like this will appear.

e 06 X! fv: Summary of white.cat in /n/ursa/A288/sholland/astr288c/lab9/
File Edit Tools Help
Index Extension Type Dimension View
/0 Primary Image 0 Header l l l
1 MAGHIST Binary 69 cols X 5 rows Header | Hist | Plot | Al | Select I

The “Header” button opens a window that allows one to view and edit the keywords
for the chosen extension. For example, the header of the MAGHIST extension looks
like this.

V 1)
O O O X fv: Header of white.cat[1] in /Volumes/Apps_and_Docs/sholland/Documents/’
File Edit Tools Help
Search for: ¥ Find |Case sensitive? HNo
XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / 8-bit bytes
NAXIS = 2 / 2-dimensional binary table
NAXIS1 = 312 / width of table in bytes
NAXISZ = 5 / number of rows in table
PCOUNT = 0 / size of special data area
GCOUNT = 1 / one data group (required keyword)

TFIELDS = 69 / number of fields in each row
TTYPE1L = 'MET ' / Mission time
TFORM1 = 'D ' / data format of field: 8-byte DOUBLE
TUNIT1 = 'seconds ' / physical wnit of field
TTYPEZ = 'EXTNAME ' / Image identifier
TFORMZ = '12A ' / data format of field: ASCII Character
TUNITZ = ' ' / physical unit of field
TTYPE3 = 'TSTART ' / Image start time
TFORM3 = 'D ' / data format of field: 8-byte DOUBLE
TUNIT3 = 'seconds ' / physical wnit of field
TTYPE4 = 'TSTOP ' / Image stop time
TFORM4 = 'D ' / data format of field: 8-byte DOUBLE
TUNIT4 = 'seconds ' / physical unit of field
TTYPES = 'EXPOSURE' / Corrected exposure time
TFORMS = 'E ' / data format of field: 4-byte REAL
TUNITS = 'seconds ' / physical unit of field
TTYPE6 = 'TELAPSE ' / TSTOP - TSTART

|TI'YPE5 = 'EXPOSURH' / Corrected exposure time I

Notice that editing is done in the one-line box at the bottom of the window. To edit
a keyword select the line that you are interested in and edit it when it appears in the
bottom line. Edits do not take affect until the <return> key is pressed. Changes to a
file need to be saved by selecting “save” under the “file” menu.

Selecting the “All” button lets one view the data in the FITS extension. The

data in the MAGHIST extension looks like this.

® O O X fv: Binary Table of white.cat[1] in /Volumes/Apps_and_Docs/sholland/Documents/Teaching/umd/astr288c/2009/lectu

File Edit Tools Help
MET EXTNAME TSTART TSTOP EXPOSURE TELAPSE
Select D 1248 D D E E
All seconds seconds seconds seconds seconds
Invert Modify Modify Modify Modify Modify Modify
1 2.500056023845E+08 | wh2500055271 | 2.500055274930E+08 | 2.500056772760E+08 | 1.474206E+02 | 1.497829E+02
2 2.500060300993E+08 | wh250006020E | 2.500060202123E+08 | 2.500060399864E+08 | 1.946226E+01 | 1.977414E+01
3 2.500062029299E+08 | wh250006193E | 2.500061930540E+08 | 2.500062128058E+08 | 1.944023E+01 | 1.975176E+01
4 2.500107279820E+08 | wh2500106281 | 2.500106280899E+08 | 2.500108278741E+08 | 1.966332E+02 | 1.997842E+02
5 2.500173582108E+08 | wh2500172081 | 2.500172083230E+08 | 2.500175080985E+08 | 2.950474E+02 | 2.997755E+02
Go to: Edit cell:

To edit a cell select the cell and do the editing in the “Edit cell:” box at the bottom of
the window. Press <return> for the edit to take effect. Be sure to save changes
using the “File” menu.

Data can be plotted by selecting “Plot”.

X\ Select Plot Columns

FLUX_AA Click on a column name then select the

FLUX AA ERR corresponding plot axis or error bar

FLUX _AA_BKG Axis Column name or expression to plot
FLUX_AA BKG_ERR |
FLUX_AA_LIM S [EIME |
FLUX AA COIl_LIM ¥ FLUX HZ :
FLUX_HZ = I
FLUX HZ_ERR X Error |
FLUX_HZ_BKG |
FLUX_HZ BKG_ERR Y Error | FLUX_HZ_ERR

FLUX_HZ_LIM Rowss:

FLUX_HZ_COI_LIM

COI_RATE_LIMIT Add my curve to current graph

FILTER

RA Plot Clear Close Help

Any column can be plotted on any axis, or as an error bar, by selecting the column of
interest and clicking on the axis of interest. Alternately, just type the name of the
column directly.

Images can be displayed and manipulated in similar ways.

10

Lab Work

The goal of this lab is to gain some familiarity working with FITS files. To do
this we will examine two FITS files. One that contains a Swift/UVOT image of the
optical afterglow of GRB 090812, and one that contains a light curve for the optical
afterglow of this gamma-ray burst. We will also use Fv to create a new FITS file.

First, find the following files that you used last week:
“sw00359711000uwh_sk.img” and “sw00359711000uwh_sk.cat”. If you do not
have these files then you can download them from
http://lTheawww.gsfc.nasa.gov/” sholland/astra88c/autumn_2009/index.html .
Move this file to your working directory.

Viewing FITS Files
Fv is a very powerful tool for interactively examining FITS files.

1. Log into your account, download the two files, and put them into your
working directory.

2. Start Fv.

> astroload heasoft
> fv &

3. Open “sw00359711000uwh_sk.cat” and make a plot of the flux density of the
source, FLUX_AA (with error bars from FLUX_AA_ERR) as a function of TIME.
Print this plot and hand it in as part of your homework. You can close the
plotting windows now if you wish.

4. Choose “All” for the MAGHIST extension in the summary window to answer
this question. The MAGHIST extension contains one row for each image in
the “sw00359711000uwh_sk.img” file. Look at the PLATE_SCALE column in
the MAGHIST extension. Is the plate scale the same for all five of the images?
What is the plate scale of the last image? Hand this in as part of your
homework. Include the units. You can close this window if you wish.

5. Close the “sw00359711000uwh_sk.cat” window and open the file
“sw00359711000uwh_sk.img”.

6. What is the value of the DATE-OBS keyword for the last extension in this file?
Hand this in as part of your homework. Use the “Header” button.

7. What is the value of this image (extension wh2717498191) at row 230
column 322? Hand this in as part of your homework. Use the “Table” button.

11

There are several ways to use FTools to create a FITS file. One way to create

a FITS file that contains a simple image is to use Fv. The procedure is as follows.

12

1.

Start Fv
> fv &

Select “New File...”. This will open a create image box. Enter a filename. This
can be anything that you want, but it should end with “fits” so that it can be
easily identified as a FITS file. One possibility is YOURNAME fits. Let’s
assume that the file is called “fred.fits”. Set the image data type to be “Float
(-32)". Set the image dimensions to “8,8” (without the quotation marks).
This indicates that the image should have 8 rows and 8 columns. Now, click
on “Create”.

Add the following keyword to the header data. Do this by clicking on
“Header” in the summary window that pops up at the end of step 3. Select
the “END” keyword then choose “Insert Key” from the Edit menu. Now, add
this keyword.

CREATOR = ‘YOUR NAME’ / Person who created this file

The single quotes must be included. Replace YOUR NAME with your name.
Save the changes from the File menu.

Set the image values by clicking on “Table” in the summary window. Set the
pixel values to anything that you like. You may leave some of them as zero,
but not all of them. Edit a pixel value by selecting a cell (pixel) and typing
the new value in the “Edit cell:” box. Press <return> to enter the new value.
When you are done save the image from the File menu. You can view your
image with the “Image” button in the summary window.

Create a binary table extension using the “New Extension...” item in the Edit
menu.

Add a column of data to the binary table extension by pressing the “All”
button for that extension then choosing “Edit”=>”"Insert”=>”Column”. The
new column should have the following properties.

Column Name: Data

Column Format: choose 4-byte real from the menu next to the format cell.
Column Unit: leave blank

Display Format: leave blank

Insert Before: End of Table

. Edit the value in row 1 column 1 so thatitis 1.12358 and then save the

changes.

. E-mail your final FITS file to Stephen.T.Holland@nasa.gov . This will be part

of your homework for this week.

13

