

1

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

IS-ENES – WP8

D8.5 - Towards Flexible Construction of ESMs using BFG, Final
Report

Abstract:

Grant Agreement Number: 228203 Proposal Number FP7-INFRA-2008-1.1.2.21

Project Acronym: IS-ENES

Project Co-ordinator: Dr Sylvie JOUSSAUME

Document Title
Towards Flexible Construction of ESMs
using BFG, Final Report

Deliverable D8.5

Document Id N° ISENES_D11.5_20130227.doc Version 1 Date 27/2/2013

Status Final

Filename
ISENES_D8.5_Towards_Flexible_Construction_of_ESMs_using
_BFG_FINAL_V1.0

Project Classification Public

2

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

Authors

G.D. Riley, P. Slavin, R. W. Ford (now at STFC Daresbury) UNIMAN (6)

Revision Table

Version Date
Comments Authors, contributors,

reviewers

0.1 08/01/13 First draft P. Slavin, G.D. Riley

0.2 25/01/13 Added Infrastructure API details P. Slavin, G.D. Riley

0,3 08/02/13 Extend coverage and edit G.D. Riley

0,4 13/02/13 Ready for project review G.D. Riley

0,5 27/02/13 Responses to reviewer comments and final tidying G.D. Riley

1 26/03/13 Responses to final reviewer comments and release of

Version 1.0.

G.D. Riley

3

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

TABLE OF CONTENTS

1. Executive Summary .. 4

1.1. Overview .. 4

1.2. Implementation status.. 6

1.3. The cost of BFG-compliance ... 7

1.4. Organisation .. 7

2. Infrastructure API .. 7

2.1. Introduction .. 7

2.2. High-Level Structure .. 9

2.3. Representation of Model Entities - Data Structures and Types .. 11

2.3.1. Partitions ... 11

2.3.2. Local and Halo storage .. 12

2.3.3. Addressing Model Entities ... 13

2.4. Summary of Overview ... 14

3. Implementation ... 14

3.1. Code Generation from Metadata ... 15

3.2. Scientific Model Implementation .. 16

3.2.1. The Execution Environment .. 16

3.2.2. Scientific Model Initialisation .. 17

3.2.3. Scientific Model Execution ... 17

3.2.4. Scientific Model Finalisation .. 18

3.3. Summary ... 19

4. Infrastructure API for the Model Coupling Toolkit (MCT) .. 19

4.1. Overview of the MCT ... 19

4.2. Infrastructure API Extensions to the Model Coupling Toolkit ... 20

4.2.1. Halo Exchange .. 20

4.2.2. Inter-Model Communication .. 21

4.2.3. Runtime Symbol Resolution .. 22

5. Infrastructure API – notes on OASIS3-MCT and ESMF ... 22

6. Update on BFG2 Online Access ... 23

7. Update on other work including support for Climate and Integrated Assessment Modelling 24

8. Conclusion and future work .. 24

4

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

1. Executive Summary

This work package undertakes research into the performance aspects of configuring,
deploying and running Earth System Models (ESMs).The work package covers a number of
key areas relating to model performance including: research portability and performance of
key models on a range of platforms, including emerging petascale PrACE machines; work to
develop tools to ease the composition of new ESMs from existing model components and
coupler technologies which will help to lower the technical hurdle for small climate research
organisations.

Within these objectives, task 3, Flexible Construction of ESMs, undertakes research into
future coupling technologies seeking to provide flexibility in the construction and deployment
of future, community-based, ESMs using appropriate underlying coupling systems, and other
software infrastructure, as provided by technologies such as OASIS, MCT and ESMF.

Further information and references to papers related to BFG can be found on the BFG
website: http://www.cs.manchester.ac.uk/cnc/projects/bfg.

A BFG2 wiki page can be found at: https://source.ggy.bris.ac.uk/wiki/GENIE_BFG.

The recommended reference to BFG2 is:

C.W. Armstrong, R. W. Ford and G. D. Riley. Coupling integrated Earth System Model
components with BFG2, Concurrency and Computation: Practice and Experience, Vol. 21
No. 6, pp. 767--791, 2009, DOI: 10.1002/cpe.1348.

1.1. Overview

This document presents developments in the last period of the IS-ENES project related to
research in flexible coupled modelling and the Bespoke Framework Generator (BFG). This
work builds on that reported in D8.3, “Towards Flexible Construction of ESMs using BFG”,
and background on BFG presented in that deliverable is not repeated in full here. Familiarity
with Sections 2 and 3 of D8.3 is assumed.

The developments described fall into the following categories:

1. Investigation of extensions to BFG to provide support for parallel models, utilising,
where possible, the functionality provided by existing software infrastructures and
coupling technologies, such as MCT, ESMF and OASIS (OASIS3-MCT);

2. The provision of support for parallel models using the emerging quasi-uniform grids
(for example, cubed sphere and icosahedral) which are designed to extend the
scalability of models, as required for future, many-core computing systems;

3. Extensions to BFG to support the integrated assessment community – an update to
work reported in the previous deliverable, D8.3;

4. Further developing the BFG portal.

The work in items 1 and 2 will be included in a future release of BFG; BFG2 remains the
current release.

As described in the previous deliverable, the philosophy of BFG has two main themes. The
first theme is the isolation of science code from the technical details of any specific
supporting software infrastructure technology. The second theme is that of metadata-driven
configuration and code-generation.

Isolating science code from details of specific infrastructure technologies provides flexibility in
the use of that model, both in terms of coupling a model to other models and in terms of
deploying models onto a variety of computing systems. For example, it allows the
implementation of the infrastructure to change with no impact on the science code. This

5

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

promotes, among other things, the sharing of models between groups in the community by
allowing one model to be used in the context of a coupled model implemented explicitly using
another technology. For example, such a model may be 'targetted' to use ESMF or OASIS as
the coupling technology as required.

As described in D8.3, BFG takes in metadata, in the form of XML files, describing:

1. the individual models involved in a coupled model,

2. the composition of the models into a coupled model; providing information concerning
the data to be exchanged between each model, including coupling rates etc.,

3. deployment requirements such as the mapping of models to executables and their
execution orders (models may be executed in-sequence or concurrently, for example.
Deployment metadata also specifies the target coupling technology to be used to
implement coupling exchanges between models.

Using the metadata, BFG generates the additional code required, beyond the source code of
individual models, to implement the coupled model. The generated code consists of one or
more main program control codes (an implementation of what is often called the Driver layer
or Superstructure) and communication library code (often called infrastructure code) to
implement the exchange of coupling data between models. Both the driver-layer code and
communications-layer code make use of the selected target (pre-existing) coupling
technology.

Achieving isolation of science code requires the definition and implementation of an
Application Programmer Interface (API). As described in D8.3, BFG supports two levels of
interfaces: a minimal interface, known as the component-compliant API, for scientific model
code implemented essentially as subroutines, and a less flexible program-compliant API for
use with models implemented as existing programs.

In pursuit of providing support for parallel models, the API provided to the scientific model
developer has to be extended beyond providing support for the coupling of parallel models to
include, for example, access to functionality supporting halo-exchanges within a parallel
model.

Several existing infrastructures provide support for such functionality, including MCT and
ESMF, and several modelling groups simply provide their own infrastructure library for this
functionality; on the other hand, OASIS only provides support for coupling, for example.
Given that an aim of BFG is to provide the flexibility for a coupled model to use any of a
number of existing ('targeted') software technologies, the aim in the design of the API to be
used by the scientific developer discussed in this document is to provide a minimal
specification of the functionality required (e.g. for the coupling of parallel models and for
halo-exchanges within parallel models). The rest of this section gives an overview of the API
and its implementation and use.

The translation of the API call into an implementation in a specific technology (say, MCT or
ESMF for halo-exchange, or ESMF or OASIS3-MCT for coupling) is achieved in the
implementation of the API with the support of metadata. Prior to running a coupled model, in
addition to the standard BFG metadata required to describe models, their composition and
deployment, metadata describing the parallel partition of computational meshes is required.
Further, in addition to selecting a 'target' coupling technology, the target technology to be
used for halo-exchange etc. must be specified.

In an initialisation phase for the coupled model, the specific mechanisms required to
implement halo-exchanges (of the required halo depth) and coupling exchanges are set up
For example, for MCT, appropriate global segment maps, rearrangers and routers etc. must
be created and registered for each coupling field ready for use by models; or ESMF routers
must be initialised; or OASIS3-MCT definition calls must be invoked and appropriate

6

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

namcouple file generated, etc.. Details of the mechanisms created (for example, pointers to
the segment maps, routers etc. to be used with each field in the models) must be registered
in model-specific data structures for later use by scientific models.

At run-time, an API call made by a model to perform a halo-exchange or a coupling (or some
other infrastructure functionality) is linked to the specific implementation mechanism (defined
through metadata and implemented and registered in the initialisation phase) through the use
of a standard BFG 'tag'. The tag provides a key to the accessing of model-specific data
structures which contain details of the implementation mechanism to use in a specific
context. For example, the tag allows a model to access the pointer (in the model-specific
data structure) to the correct MCT rearranger to use for the halo exchange of a particular
field with whatever halo depth was specified.

This document presents background details of the provision of support to a parallel model in
using (partitioned) non-uniform meshes. The main part of the document concentrates on the
use of MCT to provide implementation of the required functionality, with the focus on the
provision of (simple) halo-exchange within the processes of a parallel model and on the
coupling exchange between two models of a scientific 'field' defined on a non-uniform mesh
which is partitioned differently in the two models.

The complexity of providing grid transformations between different meshes in the two models
is avoided. The emphasis instead being on the provision of an Infrastructure API that can
be implemented in a variety of existing technologies. In this approach, the existing
technologies, such as MCT, ESMF, OASIS3-MCT etc., are viewed as providing a 'tool-kit' of
functionality. Through the use of the Infrastructure API and with the use of metadata, a
coupled model developer may select the 'best-of-breed' existing implementation technology
appropriate for their circumstances.

In this document, the term 'Infrastructure API' will be used to refer to both the set of
operations exposed to users by the API and to the coded implementation of the API
functionality.

It is hoped that the approach of isolating science code from specific infrastructure technology
implementation details, and the flexibility to select appropriate technology, may also inform
the current debates in the ESM community concerning framework interoperability and the
possible adoption of a single, common software infrastructure. For the latter initiative, see the
recent report, “A National Strategy for Advancing Climate Modeling”, from the National
Academy of Sciences in the U.S, 2012
(https://download.nap.edu/catalog.php?record_id=13430).

1.2. Implementation status

The work described in this document has resulted in a manually generated prototype
example of what a BFG-generated solution would look like for a coupled system consisting of
parallel models (this is a so-called 'manUgen' version). This work has not yet been integrated
into a new BFG release and BFG2 continues to be the latest release. The prototype targets
MCT as the existing infrastructure. Separately, investigations of the use of OASIS3-MCT and
ESMF in supporting parallel models with quasi-uniform meshes have been undertaken.
These exercises support the assertion that the layered, metadata-driven Infrastructure API
described in this document will allow the incorporation of both OASIS3-MCT and ESMF as
BFG 'targets' for coupled parallel models in future work resulting in a new release of BFG

A snapshot of the prototype code is available on the BFG website,
http://cnc.cs.man.ac.uk/projects/bfg

7

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

1.3. The cost of BFG-compliance

BFG is a metadata-driven code-generation system. Making a model BFG-compliant requires
metadata describing the model to be generated and, potentially, changes to the model code.
The following comparison with making a model either OASIS-compliant or ESMF-compliant
can be made.

A model that exists in its own program unit (separate executable) can be made OASIS-
compliant through the addition of code (calls to oasis library routines) to define the grid and
partition used and to define the coupling variables. In addition, put and get calls must be
added to the code and an appropriate namcouple file written to control the coupling.

To make the same model BFG program-compliant requires metadata describing the model
(and its composition into a coupled model) to be written but the only code changes required
are the planting of calls to BFG puts and gets, equivalent to the OASIS puts and gets, a call
to a BFG initialisation routine and calls to BFG routines that mark significant control phases,
such as the end-of-timestep. BFG will generate the appropriate grid, partition, and variable
definitions for OASIS – these will be contained in the BFG-generated initialisation routine –
and an appropriate namcouple file.

Making a model BFG component-compliant is a similar process to making the same model
ESMF-compliant. Again, BFG metadata must be provided, and from the metadata, calls to
ESMF initialisation routines are generated, so do not have to be written. The model's (init,
run and finalise) code is essentially the same, though the coupling data in the BFG model will
be explicit in the argument list, and BFG-generated wrapper code will contain the required
import and export states and manage them. BFG will also generate appropriate ESMF
coupler components, again, based on the metadata description of the models and coupling
requirements (i.e. BFG composition and deployment metadata).

In summary, BFG compliance requires the generation of metadata and this results in a
(potentially significant) reduction in the amount of code related to coupling that needs to be
hand-written in individual models and in the coupled model.

1.4. Organisation

This document is organized as follows; Section 4provides an overview of the motivation for
the work reported; Section 7describes the Infrastructure API for which a prototype, manually
generated implementation has been developed; Section 14details the implementation of the
Infrastructure API and provides some examples of its use by scientific models; Section
19discusses the implementation of the Infrastructure API in terms of a specific, existing target
technology, the Model Coupling Toolkit (MCT); Section 22briefly discusses the targetting of
OASIS3-MCT and ESMF; The next two sections provide updates on two other BFG-related
topics discussed in D8.3: Section 23provides an update on the online access of BFG and
related tooling and Section 24discusses developments in the use of BFG for Climate and
Integrated Assessment Modelling. Finally, Section 24concludes and offers some pointers to
future work.

2. Infrastructure API
2.1. Introduction

This section examines the structure of the Infrastructure API and considers the design
decisions taken in arriving at this structure. Comparisons are made with the decisions made
in the current BFG release, BFG2. The guiding principle in making these decisions has been
the aim to provide a useful and convenient range of functionality to scientific model
developers, but to do so in a manner which provides flexibility in the choice of an existing

8

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

software infrastructure to implement the functionality. As such, a distinction has been
maintained between the mechanisms (i.e. the functionality provided by the API) that are
made available to scientific model developers, and the policies which determine how these
mechanisms are used in a particular model to implement the modeller's design. Whereas
the mechanisms are defined by the Infrastructure API, models retain the freedom to make
use of the API in the manner that is appropriate to achieve their scientific objective. Thus,
design decisions relating to the internal data structures and algorithms to be used in a model
remain the preserve of the model developer, with the API providing routines which are
sufficiently general in their application to act as tools to be used by model developers (a so-
called 'tool-kit' approach).

In keeping with this objective, the Infrastructure API is implemented as a set of modular
layers, permitting implementation choices, particularly in terms of the choice of using a
particular existing technology, to be made according to the requirements of the coupled
model being developed and the computing system to be used, etc. while maintaining a
consistent interface to scientific models.

This modular structure also enables the simple integration of scientific models into an
automatic coupling framework, such as the Bespoke Framework Generator (BFG).
Interactions between models then take the form of invocations of API procedures having
well-defined interfaces that remain constant in spite of any changes to the implementation of
the underlying implementation layer.

The resulting design is characterised by a loose coupling between the conceptual layers
describing the structure of a coupled model. This structure is depicted in Figure 1, which is
explained in the next section, where the hierarchy of layers comprising a coupled mode is
shown to be sub-divided into a range of alternate implementation-specific modules, which
may be substituted without implications for the model code.

9

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

2.2. High-Level Structure

Models are isolated from implementation details through the use of the Infrastructure API
module depicted in Figure 1. Models then perform their data exchanges and associated
operations by calls to the relevant API procedures. Implementation of these exchanges by
the API code makes use of lower-level coupling, communications and other infrastructure
functionality, the details of which are hidden from model code. As such, a consistent high-
level interface is presented to models by the Infrastructure API, irrespective of the particular
infrastructure library employed. This latter library may, therefore, be substituted for others in a
transparent way from the models' perspective, according to the requirements of the
execution environment. The Model Data Definitions layer is created by BFG from the
metadata associated with the coupled model and, for example, captures the coupling
requirements of the model in a coded fashion. The model data definitions are added to at run
time as specific implementation choices for coupling exchanges and halo exchanges are
determined. For example, given the specification of a particular coupling technology, say
MCT, in the BFG metadata, for each coupling exchange specified in the composition
metadata, appropriate Global Segment Maps and MCT routers must be defined and set up
for the model partitions specified. Pointers to these maps and routers will be saved in the

Figure 1: Modular structure of the Infrastructure API and Metadata Framework
showing how BFG metadata flows through the BFG system resulting in Model Data
Definitions which configure the run-time use of existing coupling technologies, such
as MCT, OASIS and ESMF. The technologies are made available to the models in a

coupled model through the infrastructure API layer.

10

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

appropriate model-specific data structures so that the correct router can be used when the
coupling exchange is invoked by a model. Further details of the population and use of this
information can be found in Section 15.

This technique is implemented by a set of subroutines which accept parameters expressed in
terms of the client model's semantics and which then convert these parameters into the
specific forms required by the underlying implementation layer.

The operations provided by the Infrastructure API can be divided into three principle
categories:

i. Type conversion operations

ii. Infrastructure functionality specification operations

iii. Communication and other operations (including, for example, coupling exchanges
and halo-exchanges)

The first category of operations permits the data types and structures native to a client model
to be expressed in a form suitable for use by the underlying communications layer. As such,
the client model can preserve the forms and types of its data in the manner most appropriate
to its internal operations, while interacting with the Infrastructure API by way of data types
which remain unchanged irrespective of the internal implementation of the infrastructure
layer.

This is achieved by way of an internal translation layer in the Infrastructure API which
presents a uniform interface to client scientific models from which it receives model-specific
parameters that are used to construct (during initialisation) and access (at model run-time)
an instance of a structure which encapsulates that model's state. Further details of the
implementation of these operations are given below.

The second category of operations consists of infrastructure specification operations. During
initialisation (both of individual models and the coupled model), API routines may be called in
order to define the relationships (for example, requirements for halo exchanges and coupling
exchanges) in and between models that are to be implemented by the Infrastructure API. For
example, in a model, partition information for the mesh(es) used by the model may be
defined and, based on the partition information, halo exchanges with appropriate halo depth
may be set up, and coupling exchanges with other models specified. This process is a
process of configuration driven by metadata describing the model, mesh partitions and halo
and coupling requirements for each field in the model. This is the process illustrated in Figure
1. In response to these definitions, the Infrastructure API translates the representation of the
relationships, as specified by the models, into specific forms that employ the syntax of the
appropriate infrastructure implementation layer(s), for example, MCT or ESMF for halo-
exchange and coupling, OASIS3-MCT for coupling. These routines will set up appropriate re-
arrangers and routers for MCT, or initialise router handles in ESMF or define the partition and
variable definitions required by OASIS3-MCT. In summary, BFG metadata is processed (by a
BFG code generator) resulting in the generation (amongst other things) of model-specific
data structures which capture the requirements for each model for functionality such as halo
exchanges and coupling exchanges. During model (and coupled model) initialisation, these
data structures are read, and appropriate Infrastructure API routines invoked to initialises the
selected coupling technology mechanisms to implement the halo and coupling exchanges .
Information about the mechanisms set up in this process is added to the model-specific data
structures (such as pointers to MCT re-arrangers for halo exchanges etc.). This information is
then available for access in Infrastructure API calls made in the 'run' routines of models to
initiate actual halo and coupling exchanges.

The final category of facilities provided by the Infrastructure API is concerned with operations

11

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

that are invoked as the models run. These routines trigger the communication, exchange or
transformation of data within or between client models. For example, routines exist to effect
halo exchange within a model, to enquire about the storage of data on other processes and
to communicate data between coupled models. As with the other categories of facility, client
models invoke these operations using a high-level representation of the operation to be
performed (in terms of the semantics of particular models) and the detail of effecting the
operations is determined by the Infrastructure API using the selected implementation.

The theme which pervades each of these categories is the presentation by the Infrastructure
API to the models of a uniform and consistent interface which encapsulates the attributes of
the target, existing infrastructure-layer implementations. The remainder of this section
describes some of the facilities that are offered to client models and gives details of their
implementation.

2.3. Representation of Model Entities - Data Structures and Types

2.3.1. Partitions

In order to support an intuitive (to the model developer) representation of the data structures
and types employed by client models, the Infrastructure API defines several generic types
which correspond to commonly used structures within scientific models. While the naming
and functionality of these types indicates their intended usage, each type is defined in a
sufficiently abstract manner that few assumptions are made about the detail of its use within
a model. That is, the Infrastructure API provides a flexible mechanism for models to employ,
but does not prescribe the how they are to be used in a model. This section describes
support for models which use unstructured meshes (including quasi-uniform meshes). These
meshes are being incorporated in the new dynamical core models being developed by most
ESM groups around the world as they promise better scalability.

The use data types that are populated at run-time, rather than being generated from (static)
metadata by BFG, is a departure from the traditional approach taken by BFG.

Perhaps the most fundamental type defined in the Infrastructure API is the Segment. This is
defined (Figure 2) as a primitive which is intended to form a linked-list structure that

describes the decomposition of a computational mesh into a set of partitions comprised of
regions of contiguous global indices. This is the de-facto standard for the representation of
partitions of an unstructured mesh and is used by MCT, ESMF and OASIS. Each Segment
type describes one such region, specifying the starting index in its base value and the
number of contiguous indices in this region in its run value. The next pointer connects the
region to the remaining regions which collectively describe a complete partition of the mesh.

This structure constitutes a high-level representation of the decomposition of any generic
memory structure in which component elements may be identified by way of an global
integer index value. As such, the type is equally suited to the representation of a piecewise

type Segment

 integer ::base, run type(Segment),pointer

 ::next

end type Segment

Figure 2: The generic Segment type

12

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

partition of a matrix as to the representation of a partitioned computational mesh. Similarly, a
sparse structure may be represented by defining Segments which correspond to only the
populated regions. Within the Infrastructure API, and in the examples that follow, this type
will be employed to represent both the elements of a mesh, and the vertices (and edges) of
which those elements are comprised. In scientific models, fields may be associated with
each of these topological entities (elements, vertices and edges) depending on the
discretization used in the numerical scheme employed. The term grid is usually used to
describe a mesh and its discretization in the ESM community, especially for finite-difference
models. The finite-element community usually do not refer to a grid but only to a
(computational) mesh and the discretization used. The collective structure which arises from
the linking of several Segment types is referred to as a Segment Map.

In a parallel model, each process associated with a model with call Infrastructure API
routines to define its own local segment map. Within the Infrastructure API layer, a global
segment map view is maintained by each of the target infrastructures (MCT, ESMF, OASIS).
In MCT, this global view has to be constructed through the use of calls to lower-level
routines. ESMF and OASIS have high-level routines which automatically construct the global
view.

2.3.2. Local and Halo storage

The Infrastructure API can read mesh decompositions of the sort that are produced by the
SCOTCH or METIS mesh partitioning systems and translate these into a Segment-based
format.

Having defined a (global) segment-based view of a mesh partition, other Infrastructure API
routines can be called to construct halo definitions of arbitrary depth. Halos will typically be
required for fields defined on elements, edges and vertices.

This stage of the use of the Infrastructure API typically commences with the reading of a
mesh partition (either from a file or set of files or as the result of a previous phase of
computation at run-time) and results in the construction, for each process associated with
each model, of two sets of mesh points, the local and halo sets. Each of these sets are
represented internally by way of the Segment structure described above. In addition, a
range of routines are available to enable models to test the ownership of a mesh point,
manipulate local and halo points as sets, and exchange halo points between the processes
of a model. From the perspective of a client model, the set of local or halo points may be
considered as an abstract unit and manipulated using routines which maintain this
abstraction (see Figure 3).

13

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

As an example, it is possible that two models coupled using the Infrastructure API could use
the same mesh, but each employ a different decomposition for their local calculations. In this
case, the set of all processes participating in each model possesses a complete partition of
the mesh, and to support coupling between the models, the infrastructure has to be made
aware of the correspondence between the partitions (across processes) used by both
models. This correspondence is set up during the model and coupled model initialisation,
driven by the requirements described by the BFG metadata, as described in Section
9.Further, a single model may have to deal with more than one mesh.

These circumstances are supported by the Infrastructure API through the facility to associate
an arbitrary number of Segment Maps with a model and to specify the connectivity between
regions of the partitions which these maps represent. This high-level declaration of
connectivity is translated by the Infrastructure API into the correct primitives appropriate to
the particular target infrastructure that is in use.

2.3.3. Addressing Model Entities

Interactions between the client scientific model and the Infrastructure API require a
mechanism to mediate communication between them. BFG uses a “tag” mechanism for this
purpose. The tag provides a link between the data involved in a particular operation (e.g. a
coupling exchange) of a scientific model to the metadata describing that data. In a coupling
operation, the metadata will include details of the target model of the coupling and also
information about on which timesteps the coupling is actually to take place. This metadata

Figure 3: Mesh decomposition into per-process Local and Halo data

14

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

fulfils the same role as that provided by the information in the namcouple file in OASIS3. In
BFG, the tag may be explicitly stated in an in-place operation (a put() or get()) or be inferred
from the position of the data in an argument list (see IS-ENES deliverable D8.3 for more
details).

The tag mechanism is an important part of the design of BFG supporting the isolation of
science code from the implementation details of the infrastructure layer. The tag provides the
link between the scientific model and the metadata related to the infrastructure operations
invoked by the model.

In the current work extending BFG (beyond the current release, BFG2) to support parallel
models, the tag mechanism is being generalised so that it can be used to refer to more
general entities involved in infrastructure operations other than coupling exchanges, such as
halo exchanges.

In the current BFG2 release of BFG, the tags are integers and the tag values have to be
unique within a model. The infrastructure uses other context information, such as the (MPI)
process id of the calling routine to ensure global uniqueness. In the current work developing
BFG (beyond the current BFG2 release) to support parallel models, tags are now allowed to
take a string value1. This is intended to provide a meaningful label for the developer that
corresponds to the operation being invoked (e.g. a coupling exchange or a halo exchange).
After specifying a tag name for a particular entity to the Infrastructure API, all future
interactions between the model and the API which refer to this entity can be conducted in
terms of the model's tag.

As in the current BFG2 implementation (see D8.3), tags are extracted from the BFG
metadata describing models. A tag is associated with coupling data defined either explicitly in
descriptions of any in-place calls (put and get) present in a model, or, for coupling data
defined in argument lists, BFG allocates a tag based on the arguments position in the
argument list.

Tags defined by a model form part of a global namespace that is managed by the
Infrastructure API. The Infrastructure API assumes the role of resolving a tag from a string
value to the entity to which it refers. Further details on the use of tags is provided in the
following two implementation-oriented sections.

2.4. Summary of Overview

This section has examined the general structure of the Infrastructure API and has considered
the design decisions taken in arriving at this structure. The following section describes the
facilities provided by the Infrastructure API from the perspective of a scientific model and
illustrates how a model may employ the API.

3. Implementation

This section provides an overview of the implementation of scientific models which make use
of the Infrastructure API. Firstly, the role of model-specific metadata in conjunction with the
BFG system is considered. Then, the API is examined from the perspective of a scientific
model which employs its coupling and halo communications facilities. The implementation of
the API in terms of MCT is discussed in the next section.

1 An alternate representation is to encapsulate both the tag and the entity (e.g. data) it identifies within an object.

This has the advantage of reducing the possibility of coding errors that arise by specifying an arbitrary tag.

15

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

3.1. Code Generation from Metadata

This section describes the role of a coupling framework generator, such as the Bespoke
Framework Generator (BFG), in translating model-specific metadata and multi-model
composition information into data structures and executable code that are then employed by
the Infrastructure API.

Note that, as explained in the introduction, a manual prototype implementation of the design
described in this section has been produced in the current IS-ENES project, and this
prototype targets MCT as the existing infrastructure. Implementing the code generation is
planned for a future release of BFG.

A custom composite data type is generated by the BFG for each of the models in a coupled
model and this data type contains model-specific details of whichever existing infrastructure
(MCT, ESMF, OASIS) if being targetted. This type is called a ModelInfo structure. Each
instance of this type contains variables which represent the state of one model in the coupled
model. These variables consist of both book-keeping values, relating to the operation of the
Infrastructure API itself, and values which are specific to the particular target infrastructure
that is in use. In this respect, the ModelInfo type represents a repository of the attributes that
characterise a particular model within the coupled model at run-time (i.e. within the coupled
model's execution environment).

Figure 5 depicts the process by which model-specific metadata is translated into executable
code which defines types, variables and procedures employed by the coupled scientific
model during its execution. The BFG system defines an XML-based metadata
representation standard. As described in Section 4, BFG metadata describes models
(including the coupling data they require and can provide), compositions and deployment.
The metadata is parsed by the BFG and, in conjunction with a system of templates which
assist in the production of syntactically-valid code, executable statements are generated
which implement the coupling described by the input metadata.

A typical ModelInfo structure generated as a result of this process is illustrated in Figure 5
Many of the attributes within this structure are declared as pointers which are initialised by
the modelsInit() procedure, as described in Section 9. The specific modelsInit()procedure is
also generated by the BFG system and permits model-specific characteristics (such as the
specific mechanism to be used to implement a coupling exchange) to be determined at
runtime and stored in the Infrastructure API's state, in the appropriate ModelInfo
strucuture(s), for example, for future reference in Infrastructure API calls made by the 'run'
routines of models, for example, to initiate a coupling exchange of a particular field. This
initialisation routine allocates storage for the values within each model's ModelInfo structure,
populates values according to the names and connectivity specified by the BFG metadata,
and maintains the internal state required by the Infrastructure API.

To better encapsulate the operations of the Infrastructure API, the ModelInfo type is not
accessed directly by scientific models. Instead, a series of “lookup routines” are generated
which allow the contents of a model's state, as represented by a ModelInfo structure, to be
resolved from model code through the use of a “tag” identifier, as outlined in Section 13..

In order to isolate the code of the scientific model from changes in its underlying execution
environment, the source code generated by the BFG is written to separate files which are
included in scientific models by a mechanism appropriate to the language in which those
models are written. The source file describing the ModelInfo type and its associated
initialisation routine is therefore the primary mechanism by which per-model specifications
defined in metadata are translated into characteristics of the coupled executable produced by

16

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

the Infrastructure API.

In addition, the BFG generates an outline Makefile suitable for use with GNU Make. The
makefile requires additional work from the developer to ensure it does the required job but
the generated file includes sufficient detail to be a useful step towards compiling and building
a coupled model. The makefile generator, along with other useful utilities, is available on the
BFG portal described in Section 23

Changes to the metadata input to the BFG system are therefore immediately reflected in
terms of the generation of an updated ModelInfo type on recompilation of the coupled
executable. This technique, combining code generation from metadata with the use of an
intermediate Infrastructure API, therefore provides substantial flexibility in terms of the ease
with which it allows the transparent substitution of communications libraries and other
changes in the execution environment, while preserving a uniform and consistent interface to
the client model code.

3.2. Scientific Model Implementation

This section considers the Infrastructure API from the perspective of a scientific model which
wishes to make use of the facilities the API offers. As such, it begins by examining the
structure of the execution environment which is shared by scientific models operating in
conjunction with the Infrastructure API. It then describes the stages of execution through
which a model will pass, and presents the API routines that are available to models at each
of these stages.

3.2.1. The Execution Environment

Code generated by the BFG from metadata, Infrastructure API code, existing infrastructure
code libraries and model code are linked together in an 'execution framework'. This
framework provides a global address space for entities relevant to the coupled scientific
models it supports. This includes the models themselves, communications routines provided
by the Infrastructure API, and the range of structures and types ancillary to the coupled
models.

type ModelInfo

 character(len=32) :: modelName

 Integer :: modelID

 Integer :: tagCount

 character(len=32), dimension(:), pointer :: tags, haloMap

 type(GlobalSegMap), dimension(:), pointer :: gsmap

 integer, dimension(:), pointer :: halodepth

 type(AttrVect), dimension(:), pointer :: av

 type(Router), dimension(:), pointer :: route

 type(Rearranger), dimension(:), pointer :: rearr

 Integer :: comm

 integer, dimension(2) :: peer

end type ModelInfo

Figure 5: Illustration of a typical ModelInfo structure for MCT

17

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

In the scheme employed by the Infrastructure API, the mapping of a mesh to the parallel
threads of execution of a scientific model is implicitly determined by the particular
decomposition of that mesh. The execution framework manages the creation of processes
according to the characteristics defined by a mesh partition – this may be achieved through
explicit programming or with the help of routines from the target infrastructure, if that
provides appropriate support. Processes dedicated to the execution of one model's workload
are created as a well-defined group by a top-level executable ultimately typically using the
Message Passing Interface (MPI). This enables the Infrastructure API to exert a level of
oversight and coordination over the processes participating in the execution of a scientific
model and provides the mechanism by which per-model data and attributes are
communicated by the Infrastructure API to the relevant model code (this functionality is ofter
provided by a Driver layer in existing technologies).

As a result of this grouping, each executing instance of a scientific model has a
Communicator type identifier available to it, through the local comm variable, that uniquely
identifies the model of which it is a part and enables communication with its peers.

3.2.2. Scientific Model Initialisation

The Infrastructure API's execution framework (equivalent to the Driver layer) divides the
lifespan of a scientific model into three distinct stages that are performed sequentially:

i. Initialisation

ii. Scientific calculation execution

iii. Finalisation

These correspond conceptually to the construction, operation and destruction of an object
instance in the object-oriented programming methodology.

The initialisation stage is the point at which the Infrastructure API establishes the data
structures, inter-model routes and halo-exchange mappings that will subsequently be
accessed in the calculation stage, based on metadata description expressed in an instance
of the ModelInfo type. Memory allocation for these entities is managed by the API, with
transitory allocations being freed on an ad-hoc basis during program execution, while
globally persistent allocations are freed in the finalisation stage.

It is during the initialisation stage that code generated by the BFG system as a result of
metadata specifications is executed. This generated code includes both static declarations
and definitions of scientific model characteristics derived from its metadata, and dynamically
allocated structures whose appropriate size and content can be determined only at runtime.

The initialisation stage can be further divided into global and subsequent per-model stages.
In the global initialisation stage, the Infrastructure API establishes the runtime environment in
which scientific models will execute, preparing the internal state and book-keeping that will
underpin their subsequent execution. The initialisation of a particular model then creates the
internal structures specific to the computational task that it will perform. One aspect of this
initialisation is that each instance of a scientific model possesses a reference to its own
metadata and execution state in the form of a 'this' pointer. This attribute of each model
permits model code to perform introspective operations, querying its own state so as to
establish an awareness of the execution environment which the Infrastructure API has
constructed for it. This feature may be employed by the authors of scientific models to
optimise code for particular environments, or to create model-specific operations which build
upon the routines offered by the Infrastructure API.

3.2.3. Scientific Model Execution

Each scientific model coupled by the Infrastructure API is provided with one or more run

18

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

procedure within which the core of its scientific computation is performed. (The name of the
run procedure is chosen by the developer, and a model may have several such procedures.)
Control is passed from the Infrastructure API's execution framework to this procedure after
the above initialisation phases are complete, and is resumed by the framework when this
code returns.

It is during this stage of execution that a scientific model makes use of the runtime
communications and data management facilities provided by the Infrastructure API. These
facilities, described in Section 2, provide convenient and portable mechanisms to perform
common tasks routinely encountered in scientific models. Notable amongst these are those
primitives which facilitate communication between coupled models (coupling exchange) and
also those that operate between the processes within a particular model (halo exchange).

Inter-model communication may be effected with the 'in-place' put() and get() operations.
BFG2 can also generate inter-model communications for data passed into the scientific
model through the argument list. These routines cause the communication of data to or from
the address space of one process from or to that of another. Whereas the primitives provided
by a basic communications layer may allow arbitrary data to communicated in a similar
fashion, the put() and get() routines provided by the Infrastructure API consist of code
generated from metadata specifically for the purposes of the models in question. As such,
the scientific models linked with the Infrastructure API may make use of their own model-
specific semantics when calling these routines, and are isolated from the details of the
selected specific target infrastructure technology.

For example, an abstract representation of one version of the halo-exchange operation
provided by the Infrastructure API's haloExchange() routine is depicted in Figure 6. Other
variants of halo exchange, for example, supporting asynchronous exchanges, will also be
provided.

This routine accepts a pointer to local storage (typically of a field) and a tag value identifying
a particular entity to the Infrastructure API (i.e. in the global address space of the execution
environment). On return, the pointer refers to a local copy of the field after the halo
exchange, as specified in Section 2.

3.2.4. Scientific Model Finalisation

This stage of model execution is conceptually the inverse of the initialisation stage. A

subroutine haloExchange(v, tag)

 real, dimension(:), target, allocatable, intent(INOUT) :: v

 character(len=*) :: tag

end subroutine haloExchange

Figure 6: Example of a haloExchange() subroutine definition provided in the
Infrastructure API for use by a model to initiate a halo exchange

19

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

scientific model may have one, several or no finalise routines, depending on the particular
behaviour of the model. If finalise routines exist, it is here that data structures and storage
specific to the model are freed and returned to the execution environment. A model can call a
single (Infrastructure API) finalise routine. Within this routine the Infrastructure API makes
reference to its internal register of resources allocated for the model, both those originating
from metadata and those from dynamic allocation during model execution, and ensures that
those entities associated with the invoking scientific model are freed as appropriate.

As with the other routines provided by the Infrastructure API, this interface routine translates
an operation that is general and broadly-specified at the level of the scientific model into a
sequence of lower-level operations that are specific to the underlying, targetted,
infrastructure technology in use. By doing so it allows the scientific model writer to
concentrate on the scientifically meaningful portion of his code and to benefit from an
abstract and simplified representation of coupling and communications operations.

3.3. Summary

The section has given a description of how the structures and programming principles that
were presented in Section 2 have been translated into an Infrastructure API for coupled
scientific models which provides these models with a convenient set of high-level types and
operations that facilitate the implementation of scientific models.

One of the characteristics of scientific models employing this Infrastructure API is the
isolation of the science models from the details of other models and details of supporting
infrastructure; flexible, in terms of the ease with which the targetted existing infrastructure
technologies may be substituted for each other; and portable, in terms of the consistent and
uniform interface that is presented to scientific models irrespective of the particular
environment in which they execute.

The following section considers aspects of the implementation of the Infrastructure API that
are specific to the Model Coupling Toolkit (MCT), and describes the relation between the
routines presented by the API to client scientific models and the underlying MCT operations
to which they will be resolved.

4. Infrastructure API for the Model Coupling Toolkit
(MCT)

4.1. Overview of the MCT

The Model Coupling Toolkit defines a relatively small series of types and operations which
facilitate the organisation of data within models and the exchange of data in and between
models in coupled models. This section describes how the primitives provided by MCT have
been extended and combined by the Infrastructure API to make higher-level operations
available to coupled scientific models.

In keeping with the mesh partitioning technique described in Section 7, MCT represents the
entirety of a partitioned mesh as a GlobalSegmentMap. A GlobalSegmentMap is associated
with the partition of a mesh across the set of processes associated with a model. In MCT,
the GlobalSegmentMap is constructed from the bottom up; each process specifies (to the
infrastructure) a set of segments that it owns. Each segment is defined using a “base +
offset” notation that describes a contiguous region of sequentially numbered points in the
global indexing used to describe the full mesh. Sparse partitions may therefore be
represented by omitted regions of the mesh index space, and halo regions are indicated by
the duplication of the haloed region of the mesh in the segments of multiple processes. MCT
does not itself enforce a notion of ownership in definition of halo mesh points. This feature is

20

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

left to client scientific models to implement in a way that is meaningful within the context of
their algorithms.

MCT describes communication connections between coupled scientific models using the
concept of a route. Each route connects two models by describing a translation between the
GlobalSegmentMaps defined by each individual model. The fundamental unit of transfer
between coupled models is the AttributeVector. This is a composite type consisting of storage
for the data to be transferred and an indexing system which permits each AttributeVector to
contain multiple fields of both integer and real data. A particular set of data is specified using
its “field name”, a text label which uniquely identifies a field in the vector. The contents of
AttributeVectors are transmitted and received across routes using the send() and recv()
operations. The transfer of data values between the globally-indexed points owned by each
processes of each model, as defined by the GlobalSegmentMaps, is managed transparently
by MCT.

One characteristic of this scheme is that data used within a scientific model must be explicitly
copied into an AttributeVector before it may be communicated to a peer process, and data
received into an AttributeVector, as a result of a communication operation, must be explicitly
copied into the local storage of a scientific model before that model may operate upon it. As
will be described below, the Infrastructure API provides convenient routines which manage
this copying in an efficient manner and allow scientific models to invoke abstract
communications operations. These models are therefore not required to manage the low-
level detail of communication between processes.

In terms of the architecture depicted in Figure 1, MCT provides a range of low-level coupling
and communications routines that are encapsulated by the Infrastructure API. In this
capacity as an implementation-level toolkit, MCT is interchangeable with OASIS and ESMF;
the Infrastructure API maintains a consistent set of interface routines which remain constant
despite changes to these lower levels of the execution environment. Scientific models which
make use of the Infrastructure API are isolated from the details of these lower layers entirely.

4.2. Infrastructure API Extensions to the Model
Coupling Toolkit

This section describes how some of the high-level operations provided by the Infrastructure
API are implemented using MCT.

4.2.1. Halo Exchange

The Infrastructure API maintains an explicit representation of a haloed region, since this is a
concept model developers require. This concept implies the notion of a set of local mesh
points which are under the ownership of one of the processes participating in a model's
execution. This is achieved by providing each process with two GlobalSegmentMaps, one
for the local (but globally indexed) points 'owned' by the process and and one for the halo
points required by the process. These two maps form the basis of the Infrastructure API's
haloExchange() routine which permits the intra-model exchange of halo data between
processes. Although MCT AttributeVectors underlie the communications (and coupling)
operations, these are not exposed to scientific models using the Infrastructure API but
instead are created and used transparently.

The haloExchange() procedure has the signature described in Figure 1818186. The tag
parameter is first used to identify a particular MCT AttributeVector which corresponds the
local storage of the calling process – essentially, the process' id and the tag are sufficient to
identify this uniquely. Then, the AttributeVector representing the halo data for this process is
similarly identified; both of these lookups are performed using several of the various name

21

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

resolution functions provided by the Infrastructure API to support the use of MCT; specifically
these include the tagToModel(), tagToAV() and haloOf() functions. The AttributeVectors
required by a model will have been set up and registered in the ModelInfo structure of the
model during model initialisation, as described in Section 14.

The vector parameter to haloExchange() is a pointer to a vector within the address space of
the calling process, whose contents are local to the calling scientific model. That is, this
vector is part of the model's internal storage and operations performed upon it are local to a
particular process. The contents of the vector are assumed to be the model's sequentially
arranged local mesh points – the process will also maintain a mapping from the global index
space of the mesh partition it owns to a local indexing scheme, as well as the mesh
connectivity information required by the model.

On invocation of the haloExchange() routine, this data vector is used to initialise an MCT
AttributeVector which is then communicated to any other processes for which any of these
(global) points are halo points. In addition, a second AttributeVector is created which is
populated with the calling processes halo points, the appropriate values being communicated
by MCT from the processes which own these points. These communications operations are
performed by MCT by way of its rearrange() procedure, and the construction of
AttributeVectors appropriate as parameters to this procedure is performed by the
importRAttr() routine.

The haloExchange() routine therefore modifies the vector pointer parameter passed to it so
that, on return, it has been redefined to point to a vector, in a packed format, in which the
calling processes sequentially arranged local points are followed immediately by its
sequentially arranged halo points. That is, the caller's halo point values have been
appended to the vector argument.

All of these interactions with MCT, and the allocation and freeing of the required storage for
communication, are managed transparently by the Infrastructure API. The scientific model
code therefore remains isolated from the detail of effecting these communication tasks.

4.2.2. Inter-Model Communication

In addition to communication within the group of processes executing a single scientific
model, the Infrastructure API provides routines to facilitate the exchange of coupling data
between models. The put() and get() routines accept similar parameters to the
haloExchange() procedure in that they are passed a pointer to a vector local to the calling
model, and a tag which allows the Infrastructure to access the metadata describing the
coupling exchange. Within the put() and get() routines, the tag is used to identify first the
model, and then the particular resource in a remote model which is being specified, by way
of the Infrastructure API's name resolution functions described above. Each resource in a
remote model corresponds to a particular route to that resource, and the correct route for
communication to this model is selected. Finally, the MCT primitives Send() and Recv() are
used to send from or receive to the appropriate MCT AttributeVector.

Routines are also provided to allow scientific models to interrogate the Infrastructure API's
abstract representations of model entities and data types. These are transformed into the
correct MCT statements to produce the equivalent information. For example, the
localStorage() and haloStorage() functions return the size of the corresponding
AttributeVector used by MCT to store the calling processes local and halo data respectively.
The related commStorage() routine sets a pointer argument passed to the routine to point
directly to the contents of an MCT AttributeVector, while preserving the encapsulation of this
object. This enables a scientific model to manipulate data that is held by the underlying
technology toolkit without having to copy this from the toolkit's storage into its own. This will
be more efficient in circumstances where a model requires only a small number of accesses
to a large data structure and copying this entire structure would result in many unnecessary

22

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

operations.

4.2.3. Runtime Symbol Resolution

Underlying the simplicity of the interfaces presented to scientific models by these
Infrastructure API routines is the maintenance of an extensive internal state and a series of
methods to update this state at runtime. The ModelInfo structure illustrated in Figure 5 is
populated by way of several internal Infrastructure API routines which enable the structure's
pointer attributes to act as generic containers for their types. MCT routes and
GlobalSegmentMaps are added to this structure by way of the addRoute() and addMap()
procedures. These procedures allocate storage for routes and GlobalSegmentMaps that is
internal to the Infrastructure API. An indexing system which links tags, routes and
GlobalSegmentMaps is maintained which permits objects to be retrieved from their
containers using a “key”, the tag, whose form is specified by the scientific model author; this
technique replicates the general functionality provided by an associative array. This allows
model authors to employ meaningful and convenient labels for the entities that exist in their
model's namespace.

Although code generated by metadata of the sort that originates from the BFG system can
specify the types that are required for a particular coupling, the MCT toolkit must be invoked
at runtime to create instances of these types and populate these with appropriate values.
This ability to modify model state at runtime enables substantial flexibility in establishing the
coupling between models. Metadata may be used to comprehensively represent all of those
scientific model characteristics that may be determined statically prior to execution, but it is
frequently the case that other attributes of the execution environment cannot be determined
until runtime. In this sense, the Infrastructure API's runtime abstraction layer builds upon and
augments the coupling specifications provided by the BFG by providing a set of dynamic
operations that work with the coupling framework's static code.

A circumstance in which the runtime characteristics of the Infrastructure API are particularly
valuable is where the portability of a scientific model is an objective. The runtime
management of model state enables it to adapt to the current execution environment in a
manner that is not possible for metadata-generated code; as such, scientific model
developers are freed from the burden of incorporating modifications into their models that
seek to account for characteristics of a particular execution environment. Instead, ensuring
that the operations of the scientific model are translated into the correct primitives to
correspond to a particular local environment becomes the responsibility of the Infrastructure
API.

5. Infrastructure API – notes on OASIS3-MCT and ESMF

In order to assess how the Infrastructure API would target OASIS3-MCT as an
implementation technology, the two model tutorial provided with the OASIS3-MCT download
was simplified to a case equivalent to that implemented using MCT. The two models were
modified to use the same, simple, unstructured mesh with each model partitioning the mesh
differently, using the ORANGE (segmented) partitioning type in OASIS. The association of
the mesh with geographical information was also removed, to simplify the problem and the
namcouple file modified to reflect these changes.

The steps required to couple the models with OASIS3-MCT and the implications for using
OASIS3-MCT as a target for the Infrastructure API are as follows. In the model initialisation
phase:

1. Set up the partitioned mesh on a per-process basis for each model. This requires the
Infrastructure API to call the oasis_def_partition() operation with the appropriate

23

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

ORANGE partition information, which the Infrastructure can compute from the mesh
partition definition it has.

2. Set up the variable definitions. This is equivalent to setting up the AttributeVectors
used in MCT (and in OASIS3-MCT, the oasis calls themselves translate this
information into MCT calls). This involved defining the shape of the data, allocating an
id and name for the field, and passing the dimension information and partition
information into the oasis_def_var() operation. The required information can be
obtained from the Infrastructure ModelInfo structure set up during the coupled model
initialisation phase.

3. End the definition phase with a call to oasis_enddef().

In the models initialise, run and finalise sections, the Infrastructure API calls to put() and get()
(with appropriate tags) simply have to be translated into oasis_put() and oasis_get() calls for
the appropriate fields. The time information required in these calls can be set from the (BFG)
metadata describing the coupling, which is available to the Infrastructure API. BFG would
also generate the appropriate namcouple file, which would be read during the OASIS
initialisation invoked during the Infrastructure API's initialisation phase.

This exercise suggests that there are no issues with targetting OASIS3-MCT from the
Infrastructure API.

A similar exercise has been undertaken to explore targetting ESMF infrastructure (not
superstructure) for halo exchange (OASIS does not provide support for halo exchange). The
targetting of ESMF for coupling is still a work in progress at this point. There is already a level
of support for ESMF as a target in the existing BFG2 (see the previous report, D8.3,
“Towards Flexible Construction of ESMs using BFG”.

6. Update on BFG2 Online Access

In the previous report, D8.3, “Towards Flexible Construction of ESMs using BFG”, work on a
BFG portal was discussed. The portal can be accessed at: http://bfg.cs.man.ac.uk. In D8.3,
four lines of possible future work were mentioned:

1. The editing of uploaded BFG files. This will allow users to change properties (such as
target platform) and fix any errors in the XML, reported, for example, by the verifier
tool, etc.,

2. The running of the BFG Makefile generator tool,

3. The running of the BFG1 to BFG2 translation tool,

4. Graphical views of the BFG coupling descriptions (using existing BFG translation
tools which convert BFG descriptions into visual representations).

Tasks 2 (Makefile generator) and 3 (BFG1 to BFG2 translation) have been completed and
these tools are now available through the BFG portal. Some basic functionality for Task 1
(editing) and task 4 (visualisation) have been added to the portal and these are planned to be
further developed in the future.

The BFG2 Makefile generator, takes BFG2 coupled XML documents and attempts to create
an appropriate Makefile to compile the generated code. As BFG2 coupled XML documents
do not keep any information about compilation, a separate configuration file is read to specify
appropriate compilers, linkers and libraries. The BFG1 to BFG2 translator automatically
translates BFG1 coupled documents into BFG2 coupled documents. As the BFG1 API is a
subset of the BFG2 API, any BFG1 models can be used in BFG2 couplings.

24

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

7. Update on other work including support for Climate
and Integrated Assessment Modelling

Deliverable 8.3 mentioned a number of areas that we were either working on, or planning to
work on, for our remaining effort in WP8 task 3. This section summarises progress on these
aspects.

1. Import and Export of models. There is now prototype support for exporting BFG2
models to either OASIS3-MCT ot ESMF. Model export means that models written to
BFG's API can be automatically wrapped to make then compliant to other coupling
systems. Therefore a BFG model can be used as either a native OASIS-MCT model
or a native ESMF component with no change to the source code, thereby providing
one step towards mujlti-framework support. This will be made available in the next
BFG2 release. However, staff changes have meant that the importing of models has
not yet been addressed.

2. Support for Parallel Models. Good progress has been made here, as discussed in the
main part of this document, and we have working manually written solutions for
OASIS3-MCT, MCT and ESMF which will serve as reference implementations to
extend the BFG2 metadata appropriately and ultimately allow us to add code
generation support in BFG2.

3. Open source BFG. The latest releases of BFG2 are now being made available as
source code on the BFG web site (currently, version 1.1.2, see:
http://www.cs.man.ac.uk/cnc/projects/bfg). There are also plans to host the
repository on CCPForge (ccpforge.cse.rl.ac.uk) with open read access to the
repository, but that has not yet been completed.

4. Updated BFG2 implementation. BFG2 has been further updated to reduce the
reliance on XSLT which has been replaced with Python XML. This has helped with
code maintenance, allowing Python language support to be added more easily and
improved the speed of code generation significantly.

5. Validation of XML input. Little progress has been made with the checking of
consistency between metadata and code, however a compresensive XML input
check routine has been added to the BFG2 toolset. This check is performed before
all BFG2 transformation tools by default and picks up many of the errors that users
can make in the input XML. It may also be run on its own and may be used from the
portal in this way. Whenever a new error is reported by a users, that is not picked up
by the tool, a check for this error is subsequently added in the next release.

6. New Examples. A UM model example was going to be tested using BFG's program
compliance. This has not been completed due to staff changes (the person tasked to
do this moved jobs part way through the project).

8. Conclusion and future work

The aim of the research and development of BFG2 in IS-ENES is to demonstrate that a
coupling technology that would support both program-based coupling of model codes
(through the use of in-place put and get-style operations) and component-style composition
is a viable option. The generative programming techniques that can underpin the approach
have been prototyped and demonstrated in simple example coupled models. The key to the
approach is to support the separation of science code from that of the coupling infrastructure.
Enabling both coupling approaches within a single framework gives users the ability to

25

This document is produced under the EC contract 228203.

It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General
Assembly

choose the approach appropriate to their needs. Further, supporting the isolation of model
science code from the coupling technology has been demonstrated to promote the
engagement of external communities in coupled model development and in the sharing of
models across and between communities. This is exemplified in the case of the Integrated
Assessment community in the EU Ermitage project and in the Tyndall Centre's CIAS tool.

In this report, work has been presented which is designed to extend BFG to support parallel
models using the emerging non-uniform meshes, designed to overcome the known
scalability limitations of traditional long-lat meshes used in global models. A prototype design
and development of a metadata-driven, run-time configured, Infrastructure API has been
presented. The API is consistent with the goals of BFG to isolate science code from
infrastructure technology details. A specific targetting of the API to the existing Model
Coupling Toolkit has been presented and exploratory work has been undertaken for
targetting OASIS3-MCT and ESMF.

It is anticipated that this work will inform the current debates in the ESM community
concerning framework interoperability and the possible adoption of a single, common
software infrastructure as discussed in the IS-ENES foresight report, “Infrastructure strategy
for the European Earth System Modelling community 2012-2022”,(https://is.enes.org/the-
project/communication/ENES foresight.pdf) and in the recent report, “A National Strategy for
Advancing Climate Modeling”, from the National Academy of Sciences in the U.S.A, 2012
(https://download.nap.edu/catalog.php?record_id=13430).

