
15 Generalized
Linear Models

D ue originally to Nelder and Wedderburn (1972), generalized linear models are a remarkable

synthesis and extension of familiar regression models such as the linear models described in

Part II of this text and the logit and probit models described in the preceding chapter. The current

chapter begins with a consideration of the general structure and range of application of generalized

linear models; proceeds to examine in greater detail generalized linear models for count data,

including contingency tables; briefly sketches the statistical theory underlying generalized linear

models; and concludes with the extension of regression diagnostics to generalized linear models.

The unstarred sections of this chapter are perhaps more difficult than the unstarred material in

preceding chapters. Generalized linear models have become so central to effective statistical data

analysis, however, that it is worth the additional effort required to acquire a basic understanding

of the subject.

15.1 The Structure of Generalized Linear Models

A generalized linear model (or GLM1) consists of three components:

1. A random component, specifying the conditional distribution of the response variable, Yi

(for the ith of n independently sampled observations), given the values of the explanatory

variables in the model. In Nelder and Wedderburn’s original formulation, the distribution

of Yi is a member of an exponential family, such as the Gaussian (normal), binomial, Pois-

son, gamma, or inverse-Gaussian families of distributions. Subsequent work, however, has

extended GLMs to multivariate exponential families (such as the multinomial distribution),

to certain non-exponential families (such as the two-parameter negative-binomial distribu-

tion), and to some situations in which the distribution of Yi is not specified completely.

Most of these ideas are developed later in the chapter.

2. A linear predictor—that is a linear function of regressors

ηi = α + β1Xi1 + β2Xi2 + · · · + βkXik

As in the linear model, and in the logit and probit models of Chapter 14, the regressorsXij are

prespecified functions of the explanatory variables and therefore may include quantitative

explanatory variables, transformations of quantitative explanatory variables, polynomial

regressors, dummy regressors, interactions, and so on. Indeed, one of the advantages of

GLMs is that the structure of the linear predictor is the familiar structure of a linear model.

3. A smooth and invertible linearizing link function g(·), which transforms the expectation of

the response variable, µi ≡ E(Yi), to the linear predictor:

g(µi) = ηi = α + β1Xi1 + β2Xi2 + · · · + βkXik

1Some authors use the acronym “GLM” to refer to the “general linear model”—that is, the linear regression model with

normal errors described in Part II of the text—and instead employ “GLIM” to denote generalized linear models (which

is also the name of a computer program used to fit GLMs).
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Table 15.1 Some Common Link Functions and Their Inverses

Link ηi = g(µi) µi = g−1(ηi)

Identity µi ηi

Log logeµi eηi

Inverse µ−1
i η−1

i

Inverse-square µ−2
i η

−1/2
i

Square-root
√

µi η2
i

Logit loge
µi

1 − µi

1

1 + e−ηi

Probit �−1(µi) �(ηi)

Log-log −loge[−loge(µi)] exp[−exp(−ηi)]

Complementary log-log loge[−loge(1−µi)] 1−exp[−exp (ηi)]

NOTE: µi is the expected value of the response; ηi is the linear predictor; and �(·) is the
cumulative distribution function of the standard-normal distribution.

Because the link function is invertible, we can also write

µi = g−1(ηi) = g−1(α + β1Xi1 + β2Xi2 + · · · + βkXik)

and, thus, the GLM may be thought of as a linear model for a transformation of the expected

response or as a nonlinear regression model for the response. The inverse link g−1(·) is

also called the mean function. Commonly employed link functions and their inverses are

shown in Table 15.1. Note that the identity link simply returns its argument unaltered,

ηi = g(µi) = µi , and thus µi = g−1(ηi) = ηi .

The last four link functions in Table 15.1 are for binomial data, where Yi represents the

observed proportion of “successes” in ni independent binary trials; thus, Yi can take on

any of the values 0, 1/ni, 2/ni, . . . , (ni − 1)/ni, 1. Recall from Chapter 15 that binomial

data also encompass binary data, where all the observations represent ni = 1 trial, and

consequently Yi is either 0 or 1. The expectation of the response µi = E(Yi) is then

the probability of success, which we symbolized by πi in the previous chapter. The logit,

probit, log-log, and complementary log-log links are graphed in Figure 15.1. In contrast to

the logit and probit links (which, as we noted previously, are nearly indistinguishable once

the variances of the underlying normal and logistic distributions are equated), the log-log

and complementary log-log links approach the asymptotes of 0 and 1 asymmetrically.2

Beyond the general desire to select a link function that renders the regression of Y on the

Xs linear, a promising link will remove restrictions on the range of the expected response.

This is a familiar idea from the logit and probit models discussed in Chapter 14, where the

object was to model the probability of “success,” represented by µi in our current general

notation. As a probability, µi is confined to the unit interval [0,1]. The logit and probit links

map this interval to the entire real line, from −∞ to +∞. Similarly, if the response Y is a

count, taking on only non-negative integer values, 0, 1, 2, . . . , and consequently µi is an

expected count, which (though not necessarily an integer) is also non-negative, the log link

maps µi to the whole real line. This is not to say that the choice of link function is entirely

determined by the range of the response variable.

2Because the log-log link can be obtained from the complementary log-log link by exchanging the definitions of “success”

and “failure,” it is common for statistical software to provide only one of the two—typically, the complementary log-log

link.
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Figure 15.1 Logit, probit, log-log, and complementary log-log links for binomial data. The

variances of the normal and logistic distributions have been equated to facilitate the

comparison of the logit and probit links [by graphing the cumulative distribution

function of N(0, π2/3) for the probit link].

A generalized linear model (or GLM) consists of three components:

1. A random component, specifying the conditional distribution of the response vari-

able, Yi (for the ith of n independently sampled observations), given the values

of the explanatory variables in the model. In the initial formulation of GLMs, the

distribution of Yi was a member of an exponential family, such as the Gaussian,

binomial, Poisson, gamma, or inverse-Gaussian families of distributions.

2. A linear predictor—that is a linear function of regressors,

ηi = α + β1Xi1 + β2Xi2 + · · · + βkXik

3. A smooth and invertible linearizing link function g(·), which transforms the expec-

tation of the response variable, µi = E(Yi), to the linear predictor:

g(µi) = ηi = α + β1Xi1 + β2Xi2 + · · · + βkXik

A convenient property of distributions in the exponential families is that the conditional variance

of Yi is a function of its mean µi [say, v(µi)] and, possibly, a dispersion parameter φ. The variance

functions for the commonly used exponential families appear in Table 15.2. The conditional

variance of the response in the Gaussian family is a constant, φ, which is simply alternative

notation for what we previously termed the error variance, σ 2
ε . In the binomial and Poisson

families, the dispersion parameter is set to the fixed value φ = 1.

Table 15.2 also shows the range of variation of the response variable in each family, and the

so-called canonical (or “natural”) link function associated with each family. The canonical link
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Table 15.2 Canonical Link, Response Range, and Conditional

Variance Function for Exponential Families

Family Canonical Link Range of Yi V(Yi|ηi)

Gaussian Identity (−∞, +∞) φ

Binomial Logit
0,1,...,ni

ni

µi(1 − µi)

ni
Poisson Log 0,1,2,... µi

Gamma Inverse (0,∞) φµ2
i

Inverse-Gaussian Inverse-square (0,∞) φµ3
i

NOTE: φ is the dispersion parameter, ηi is the linear predictor, and µi

is the expectation of Y i (the response). In the binomial family, ni is the

number of trials.

simplifies the GLM,3 but other link functions may be used as well. Indeed, one of the strengths of

the GLM paradigm—in contrast to transformations of the response variable in linear regression—

is that the choice of linearizing transformation is partly separated from the distribution of the

response, and the same transformation does not have to both normalize the distribution of Y

and make its regression on the Xs linear.4 The specific links that may be used vary from one

family to another and also—to a certain extent—from one software implementation of GLMs to

another. For example, it would not be promising to use the identity, log, inverse, inverse-square,

or square-root links with binomial data, nor would it be sensible to use the logit, probit, log-log,

or complementary log-log link with nonbinomial data.

I assume that the reader is generally familiar with the Gaussian and binomial families and

simply give their distributions here for reference. The Poisson, gamma, and inverse-Gaussian

distributions are perhaps less familiar, and so I provide some more detail:5

• The Gaussian distribution with mean µ and variance σ 2 has density function

p(y) =
1

σ
√

2π
exp

[
(y − µ)2

2σ 2

]
(15.1)

• The binomial distribution for the proportion Y of successes in n independent binary trials

with probability of success µ has probability function

p(y) =
(

n

ny

)
µny(1 − µ)n(1−y) (15.2)

3This point is pursued in Section 15.3.
4There is also this more subtle difference: When we transform Y and regress the transformed response on the Xs, we

are modeling the expectation of the transformed response,

E[g(Yi )] = α + β1xi1 + β2xi2 + · · · + βkxik

In a GLM, in contrast, we model the transformed expectation of the response,

g[E(Yi )] = α + β1xi1 + β2xi2 + · · · + βkxik

While similar in spirit, this is not quite the same thing when (as is true except for the identity link) the link function g(·)
is nonlinear.

5The various distributions used in this chapter are described in a general context in Appendix D on probability and

estimation.
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Here, ny is the observed number of successes in the n trials, and n(1 − y) is the number of

failures; and
(

n

ny

)
=

n!

(ny)![n(1 − y)]!

is the binomial coefficient.

• The Poisson distributions are a discrete family with probability function indexed by the rate

parameter µ > 0:

p(y) = µy ×
e−µ

y!
for y = 0, 1, 2, . . .

The expectation and variance of a Poisson random variable are both equal to µ. Poisson

distributions for several values of the parameter µ are graphed in Figure 15.2. As we will see

in Section 15.2, the Poisson distribution is useful for modeling count data. As µ increases,

the Poisson distribution grows more symmetric and is eventually well approximated by a

normal distribution.

• The gamma distributions are a continuous family with probability-density function indexed

by the scale parameter ω > 0 and shape parameter ψ > 0:

p(y) =
( y

ω

)ψ−1

×
exp

(
−y

ω

)

ωŴ(ψ)
for y > 0 (15.3)

where Ŵ(·) is the gamma function.6 The expectation and variance of the gamma distri-

bution are, respectively, E(Y ) = ωψ and V (Y ) = ω2ψ . In the context of a generalized

linear model, where, for the gamma family, V (Y ) = φµ2 (recall Table 15.2 on page 382),

the dispersion parameter is simply the inverse of the shape parameter, φ = 1/ψ . As the

names of the parameters suggest, the scale parameter in the gamma family influences the

spread (and, incidentally, the location) but not the shape of the distribution, while the shape

parameter controls the skewness of the distribution. Figure 15.3 shows gamma distributions

for scale ω = 1 and several values of the shape parameter ψ . (Altering the scale param-

eter would change only the labelling of the horizontal axis in the graph.) As the shape

parameter gets larger, the distribution grows more symmetric. The gamma distribution is

useful for modeling a positive continuous response variable, where the conditional variance

of the response grows with its mean but where the coefficient of variation of the response,

SD(Y )/µ, is constant.

• The inverse-Gaussian distributions are another continuous family indexed by two

parameters, µ and λ, with density function

p(y) =

√
λ

2πy3
exp

[
−

λ(y − µ)2

2yµ2

]
for y > 0

The expectation and variance of Y are E(Y ) = µ and V (Y ) = µ3/λ. In the context of

a GLM, where, for the inverse-Gaussian family, V (Y ) = φµ3 (as recorded in Table 15.2

6* The gamma function is defined as

Ŵ(x) =
∫ ∞

0
e−zzx−1dz

and may be thought of as a continuous generalization of the factorial function in that when x is a non-negative integer,

x! = Ŵ(x + 1).
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Figure 15.2 Poisson distributions for various values of the rate parameter µ.
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Figure 15.3 Several gamma distributions for scale ω =1 and various values of the shape

parameter ψ .

on page 382), λ is the inverse of the dispersion parameter φ. Like the gamma distribution,

therefore, the variance of the inverse-Gaussian distribution increases with its mean, but

at a more rapid rate. Skewness also increases with the value of µ and decreases with λ.

Figure 15.4 shows several inverse-Gaussian distributions.

A convenient property of distributions in the exponential families is that the conditional

variance of Yi is a function of its mean µi and, possibly, a dispersion parameter φ. In addi-

tion to the familiar Gaussian and binomial families (the latter for proportions), the Poisson

family is useful for modeling count data, and the gamma and inverse-Gaussian families

for modeling positive continuous data, where the conditional variance of Y increases with

its expectation.

15.1.1 Estimating and Testing GLMs

GLMs are fit to data by the method of maximum likelihood, providing not only estimates of

the regression coefficients but also estimated asymptotic (i.e., large-sample) standard errors of

the coefficients.7 To test the null hypothesis H0: βj = β
(0)
j we can compute the Wald statistic

Z0 =
(
Bj − β

(0)
j

)
/SE(Bj ), where SE(Bj ) is the asymptotic standard error of the estimated

coefficient Bj . Under the null hypothesis, Z0 follows a standard normal distribution.8

As explained, some of the exponential families on which GLMs are based include an unknown

dispersion parameter φ. Although this parameter can, in principle, be estimated by maximum

likelihood as well, it is more common to use a “method of moments” estimator, which I will

denote φ̃.9

7Details are provided in Section 15.3.2. The method of maximum likelihood is introduced in Appendix D on probability

and estimation.
8Wald tests and F -tests of more general linear hypotheses are described in Section 15.3.3.
9Again, see Section 15.3.2.
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Figure 15.4 Inverse-Gaussian distributions for several combinations of values of the mean µ and

inverse-dispersion λ.

As is familiar from the preceding chapter on logit and probit models, the ANOVA for linear

models has a close analog in the analysis of deviance for GLMs. In the current more general

context, the residual deviance for a GLM is

Dm ≡ 2(loge Ls − loge Lm)

where Lm is the maximized likelihood under the model in question and Ls is the maximized

likelihood under a saturated model, which dedicates one parameter to each observation and

consequently fits the data as closely as possible. The residual deviance is analogous to (and,

indeed, is a generalization of) the residual sum of squares for a linear model.

In GLMs for which the dispersion parameter is fixed to 1 (i.e., binomial and Poisson GLMs), the

likelihood-ratio test statistic is simply the difference in the residual deviances for nested models.

Suppose that Model 0, with k0 + 1 coefficients, is nested within Model 1, with k1 + 1 coefficients

(where, then, k0 < k1); most commonly, Model 0 would simply omit some of the regressors in

model 1. We test the null hypothesis that the restrictions on Model 1 represented by Model 0 are

correct by computing the likelihood-ratio test statistic

G2
0 = D0 − D1

Under the hypothesis, G2
0 is asymptotically distributed as chi-square with k1 − k0 degrees of

freedom.

Likelihood-ratio tests can be turned around to provide confidence intervals for coefficients;

as mentioned in Section 14.1.4 in connection with logit and probit models, tests and intervals

based on the likelihood-ratio statistic tend to be more reliable than those based on the Wald

statistic. For example, the 95% confidence interval for βj includes all values β ′
j for which the

hypothesis H0: βj = β ′
j is acceptable at the .05 level—that is, all values of β ′

j for which

2(loge L1 − loge L0) ≤ χ2
.05,1 = 3.84, where loge L1 is the maximized log likelihood for the

full model, and loge L0 is the maximized log likelihood for a model in which βj is constrained

to the value β ′
j . This procedure is computationally intensive because it required “profiling” the

likelihood—refitting the model for various fixed values β ′
j of βj .
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For GLMs in which there is a dispersion parameter to estimate (Gaussian, gamma, and inverse-

Gaussian GLMs), we can instead compare nested models by an F -test,

F0 =

D0 − D1

k1 − k0

φ̃

where the estimated dispersion φ̃, analogous to the estimated error variance for a linear model, is

taken from the largest model fit to the data (which is not necessarily Model 1). If the largest model

has k + 1 coefficients, then, under the hypothesis that the restrictions on Model 1 represented by

Model 0 are correct, F0 follows an F -distribution with k1 − k0 and n− k − 1 degrees of freedom.

Applied to a Gaussian GLM, this is simply the familiar incremental F -test. The residual deviance

divided by the estimated dispersion, D∗ ≡ D/φ̃, is called the scaled deviance.10

As we did for logit and probit models,11 we can base a GLM analog of the squared multiple

correlation on the residual deviance: Let D0 be the residual deviance for the model including

only the regression constant α—termed the null deviance—and D1 the residual deviance for the

model in question. Then,

R2 ≡ 1 −
D1

D0

represents the proportion of the null deviance accounted for by the model.

GLMs are fit to data by the method of maximum likelihood, providing not only estimates of

the regression coefficients but also estimated asymptotic standard errors of the coefficients.

The ANOVA for linear models has an analog in the analysis of deviance for GLMs. The

residual deviance for a GLM is Dm = 2(loge Ls − loge Lm), where Lm is the maximized

likelihood under the model in question and Ls is the maximized likelihood under a

saturated model. The residual deviance is analogous to the residual sum of squares for a

linear model.

In GLMs for which the dispersion parameter is fixed to 1 (binomial and Poisson GLMs), the

likelihood-ratio test statistic is the difference in the residual deviances for nested models.

For GLMs in which there is a dispersion parameter to estimate (Gaussian, gamma, and

inverse-Gaussian GLMs), we can instead compare nested models by an incremental F -test.

15.2 Generalized Linear Models for Counts

The basic GLM for count data is the Poisson model with log link. Consider, by way of example,

Michael Ornstein’s data on interlocking directorates among 248 dominant Canadian firms, previ-

ously discussed in Chapters 3 and 4. The number of interlocks for each firm is the number of ties

10Usage is not entirely uniform here, and either of the residual deviance or the scaled deviance is often simply termed

“the deviance.”
11See Section 14.1.4.
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Figure 15.5 The distribution of number of interlocks among 248 dominant Canadian

corporations.

that a firm maintained by virtue of its board members and top executives also serving as board

members or executives of other firms in the data set. Ornstein was interested in the regression

of number of interlocks on other characteristics of the firms—specifically, on their assets (mea-

sured in billions of dollars), nation of control (Canada, the United States, the United Kingdom,

or another country), and the principal sector of operation of the firm (10 categories, including

banking, other financial institutions, heavy manufacturing, etc.).

Examining the distribution of number of interlocks (Figure 15.5) reveals that the variable

is highly positively skewed, and that there are many zero counts. Although the conditional

distribution of interlocks given the explanatory variables could differ from its marginal dis-

tribution, the extent to which the marginal distribution of interlocks departs from symme-

try bodes ill for least-squares regression. Moreover, no transformation will spread out the

zeroes.12

The results of the Poisson regression of number of interlocks on assets, nation of control, and

sector are summarized in Table 15.3. I set the United States as the baseline category for nation of

control, and Construction as the baseline category for sector—these are the categories with the

smallest fitted numbers of interlocks controlling for the other variables in the regression, and the

dummy-regressor coefficients are therefore all positive.

The residual deviance for this model is D(Assets, Nation, Sector) = 1887.402 on n− k −1 =
248 − 13 − 1 = 234 degrees of freedom. Deleting each explanatory variable in turn from the

model produces the following residual deviances and degrees of freedom:

Explanatory Variables Residual Deviance df

Nation, Sector 2278.298 235

Assets, Sector 2216.345 237

Assets, Nation 2248.861 243

12Ornstein (1976) in fact performed a linear least-squares regression for these data, though one with a slightly different

specification from that given here. He cannot be faulted for having done so, however, inasmuch as Poisson regression

models—and, with the exception of loglinear models for contingency tables, other specialized models for counts—were

not typically in sociologists’ statistical toolkit at the time.
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Table 15.3 Estimated Coefficients for the Poisson Regression of Number

of Interlocks on Assets, Nation of Control, and Sector, for

Ornstein’s Canadian Interlocking-Directorate Data

Coefficient Estimate Standard Error

Constant 0.8791 0.2101
Assets 0.02085 0.00120
Nation of Control (baseline: United States)
Canada 0.8259 0.0490
Other 0.6627 0.0755
United Kingdom 0.2488 0.0919
Sector (Baseline: Construction)
Wood and paper 1.331 0.213
Transport 1.297 0.214
Other financial 1.297 0.211
Mining, metals 1.241 0.209
Holding companies 0.8280 0.2329
Merchandising 0.7973 0.2182
Heavy manufacturing 0.6722 0.2133
Agriculture, food, light industry 0.6196 0.2120
Banking 0.2104 0.2537

Taking differences between these deviances and the residual deviance for the full model yields

the following analysis-of-deviance table:

Source G2
0 df p

Assets 390.90 1 ≪.0001

Nation 328.94 3 ≪.0001

Sector 361.46 9 ≪.0001

All the terms in the model are therefore highly statistically significant.

Because the model uses the log link, we can interpret the exponentiated coefficients (i.e., the

eBj ) as multiplicative effects on the expected number of interlocks. Thus, for example, holding

nation of control and sector constant, increasing assets by 1 billion dollars (the unit of the assets

variable) multiplies the estimated expected number of interlocks by e0.02085 = 1.021—that is,

an increase of just over 2%. Similarly, the estimated expected number of interlocks is e0.8259 =
2.283 times as high in a Canadian-controlled firm as in a comparable U.S.-controlled firm.

As mentioned, the residual deviance for the full model fit to Ornstein’s data is D1 = 1887.402;

the deviance for a model fitting only the constant (i.e., the null deviance) is D0 = 3737.010.

Consequently, R2 = 1 − 1887.402/3737.010 = .495, revealing that the model accounts for

nearly half the deviance in number of interlocks.

The Poisson-regression model is a nonlinear model for the expected response, and I therefore

find it generally simpler to interpret the model graphically using effect displays than to examine

the estimated coefficients directly. The principles of construction of effect displays for GLMs are

essentially the same as for linear models and for logit and probit models:13 We usually construct

one display for each high-order term in the model, allowing the explanatory variables in that

13See Section 15.3.4 for details.
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Figure 15.6 Effect displays for (a) assets, (b) nation of control, and (c) sector in the Poisson

regression for Ornstein’s interlocking-directorate data. The broken lines and error

bars give 95% confidence intervals around the fitted effects (computed using the

quasi-Poisson model described below). A “rug-plot” at the bottom of panel (a) shows

the distribution of assets.

term to range over their values, while holding other explanatory variables in the model to typical

values. In a GLM, it is advantageous to plot effects on the scale of the estimated linear predictor,

η̂, a procedure that preserves the linear structure of the model. In a Poisson model with the log

link, the linear predictor is on the log-count scale. We can, however, make the display easier to

interpret by relabeling the vertical axis in the scale of the expected response, µ̂, most informatively

by providing a second vertical axis on the right-hand side of the plot. For a Poisson model, the

expected response is a count.

Effect displays for the terms in Ornstein’s Poisson regression are shown in Figure 15.6. This

model has an especially simple structure because each high-order term is a main effect—there are

no interactions in the model. The effect display for assets shows a one-dimensional scatterplot

(a “rug-plot”) for this variable at the bottom of the graph, revealing that the distribution of assets
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is highly skewed to the right. Skewness produces some high-leverage observations and suggests

the possibility of a nonlinear effect for assets, points that I pursue later in the chapter.14

15.2.1 Models for Overdispersed Count Data

The residual deviance for the Poisson regression model fit to the interlocking-directorate data,

D = 1887.4, is much larger than the 234 residual degrees of freedom for the model. If the Poisson

model fits the data reasonably, we would expect the residual deviance to be roughly equal to the

residual degrees of freedom.15 That the residual deviance is so large suggests that the conditional

variation of the expected number of interlocks exceeds the variation of a Poisson-distributed

variable, for which the variance equals the mean. This common occurrence in the analysis of

count data is termed overdispersion.16 Indeed, overdispersion is so common in regression models

for count data, and its consequences are potentially so severe, that models such as the quasi-

Poisson and negative-binomial GLMs discussed in this section should be employed as a matter

of course.

The Quasi-Poisson Model

A simple remedy for overdispersed count data is to introduce a dispersion parameter into the

Poisson model, so that the conditional variance of the response is now V (Yi |ηi) = φµi . If φ > 1,

therefore, the conditional variance of Y increases more rapidly than its mean. There is no expo-

nential family corresponding to this specification, and the resulting GLM does not imply a specific

probability distribution for the response variable. Rather, the model specifies the conditional mean

and variance of Yi directly. Because the model does not give a probability distribution for Yi , it

cannot be estimated by maximum likelihood. Nevertheless, the usual procedure for maximum-

likelihood estimation of a GLM yields the so-called quasi-likelihood estimators of the regression

coefficients, which share many of the properties of maximum-likelihood estimators.17

As it turns out, the quasi-likelihood estimates of the regression coefficients are identical to the

ML estimates for the Poisson model. The estimated coefficient standard errors differ, however:

If φ̃ is the estimated dispersion for the model, then the coefficient standard errors for the quasi-

Poisson model are φ̃1/2 times those for the Poisson model. In the event of overdispersion, therefore,

where φ̃ > 1, the effect of introducing a dispersion parameter and obtaining quasi-likelihood esti-

mates is (realistically) to inflate the coefficient standard errors. Likewise, F -tests for terms in the

model will reflect the estimated dispersion parameter, producing smaller test statistics and larger

p-values.

As explained in the following section, we use a method-of-moments estimator for the dispersion

parameter. In the quasi-Poisson model, the dispersion estimator takes the form

φ̃ =
1

n − k − 1

∑ (Yi − µ̂i)
2

µ̂i

14See Section 15.4 on diagnostics for GLMs.
15That is, the ratio of the residual deviance to degrees of freedom can be taken as an estimate of the dispersion parameter

φ, which, in a Poisson model, is fixed to 1. It should be noted, however, that this deviance-based estimator of the dispersion

can perform poorly. A generally preferable “method of moments” estimator is given in Section 15.3.
16Although it is much less common, it is also possible for count data to be underdispersed—that is, for the conditional

variation of the response to be less than the mean. The remedy for underdispsered count data is the same as for overdispersed

data; for example, we can fit a quasi-Poisson model with a dispersion parameter, as described immediately below.
17See Section 15.3.2.
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where µ̂i = g−1(̂ηi) is the fitted expectation of Yi . Applied to Ornstein’s interlocking-directorate

regression, for example, we get φ̃ = 7.9435, and, therefore, the standard errors of the regression

coefficients for the Poisson model in Table 15.3 are each multiplied by
√

7.9435 = 2.818.

I note in passing that there is a similar quasi-binomial model for over-dispersed proportions,

replacing the fixed dispersion parameter of 1 in the binomial distribution with a dispersion param-

eter φ to be estimated from the data. Overdispersed binomial data can arise, for example, when

different individuals who share the same values of the explanatory variables nevertheless differ

in their probability µ of success, a situation that is termed unmodelled heterogeneity. Similarly,

overdispersion can occur when binomial observations are not independent, as required by the

binomial distribution—for example, when each binomial observation is for related individuals,

such as members of a family.

The Negative-Binomial Model

There are several routes to models for counts based on the negative-binomial distribution (see,

e.g., Long, 1997, sect. 8.3; McCullagh & Nelder, 1989, sect. 6.2.3). One approach (following

McCullagh & Nelder, 1989, p. 233) is to adopt a Poisson model for the count Yi but to suppose

that the expected count µ∗
i is itself an unobservable random variable that is gamma-distributed

with mean µi and constant scale parameter ω (implying that the the gamma shape parameter is

ψi = µi/ω
18). Then the observed count Yi follows a negative-binomial distribution,19

p(yi) =
Ŵ(yi + ω)

y!Ŵ(ω)
×

µ
yi

i ωω

(µi + ω)µi+ω
(15.4)

with expected value E (Yi) = µi and variance V (Yi) = µi + µ2
i /ω. Unless the parameter ω

is large, therefore, the variance of Y increases more rapidly with the mean than the variance of

a Poisson variable. Making the expected value of Yi a random variable incorporates additional

variation among observed counts for observations that share the same values of the explanatory

variables and consequently have the same linear predictor ηi .

With the gamma scale parameter ω fixed to a known value, the negative-binomial distribution

is an exponential family (in the sense of Equation 15.15 in Section 15.3.1), and a GLM based on

this distribution can be fit by iterated weighted least squares (as developed in the next section). If

instead—and is typically the case—the value of ω is unknown, and must therefore be estimated

from the data, standard methods for GLMs based on exponential families do not apply. We can,

however, obtain estimates of both the regression coefficients and ω by the method of maximum

likelihood. Applied to Ornstein’s interlocking-directorate regression, and using the log link, the

negative-binomial GLM produces results very similar to those of the quasi-Poisson model (as

the reader may wish to verify). The estimated scale parameter for the negative-binomial model

is ω̂ = 1.312, with standard error SE(ω̂) = 0.143; we have, therefore, strong evidence that the

conditional variance of the number of interlocks increases more rapidly than its expected value.20

Zero-Inflated Poisson Regression

A particular kind of overdispersion obtains when there are more zeroes in the data than is

consistent with a Poisson (or negative-binomial) distribution, a situation that can arise when only

certain members of the population are “at risk” of a nonzero count. Imagine, for example, that

18See Equation 15.3 on page 383.
19A simpler form of the negative-binomial distribution is given in Appendix D on probability and estimation.
20See Exercise 15.1 for a test of overdispersion based on the negative-binomial GLM.
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we are interested in modeling the number of children born to a woman. We might expect that

this number is a partial function of such explanatory variables as marital status, age, ethnicity,

religion, and contraceptive use. It is also likely, however, that some women (or their partners)

are infertile and are distinct from fertile women who, though at risk for bearing children, happen

to have none. If we knew which women are infertile, we could simply exclude them from the

analysis, but let us suppose that this is not the case. To reiterate, there are two sources of zeroes in

the data that cannot be perfectly distinguished: women who cannot bear children and those who

can but have none.

Several statistical models have been proposed for count data with an excess of zeroes, including

the zero-inflated Poisson regression (or ZIP) model, due to Lambert (1992). The ZIP model consists

of two components: (1) A binary logistic-regression model for membership in the latent class of

individuals for whom the response variable is necessarily 0 (e.g., infertile individuals)21 and (2) a

Poisson-regression model for the latent class of individuals for whom the response may be 0 or a

positive count (e.g., fertile women).22

Let πi represent the probability that the response Yi for the ith individual is necessarily 0.

Then

loge

πi

1 − πi

= γ0 + γ1zi1 + γ2zi2 + · · · + γpzip (15.5)

where the zij are regressors for predicting membership in the first latent class; and

loge µi = α + β1xi1 + β2xi2 + · · · + βkxik (15.6)

p (yi |x1, . . . , xk) =
µ

yi

i e−µi

yi!
for yi = 0, 1, 2, . . .

where µi ≡ E(Yi) is the expected count for an individual in the second latent class, and the xij are

regressors for the Poisson submodel. In applications, the two sets of regressors—the Xs and the

Zs—are often the same, but this is not necessarily the case. Indeed, a particularly simple special

case arises when the logistic submodel is loge πi/(1 − πi) = γ0, a constant, implying that the

probability of membership in the first latent class is identical for all observations.

The probability of observing a 0 count is

p(0) ≡ Pr(Yi = 0) = πi + (1 − πi)e
−µi

and the probability of observing any particular nonzero count yi is

p(yi) = (1 − πi) ×
µ

yi

i e−µi

yi!

The conditional expectation and variance of Yi are

E(Yi) = (1 − πi)µi

V (Yi) = (1 − πi)µi(1 + πiµi)

with V (Yi) > E(Yi) for πi > 0 [unlike a pure Poisson distribution, for which V (Yi) = E(Yi) =
µi].

23

21See Section 14.1 for a discussion of logistic regression.
22Although this form of the zero-inflated count model is the most common, Lambert (1992) also suggested the use of

other binary GLMs for membership in the zero latent class (i.e., probit, log-log, and complementary log-log models) and

the alternative use of the negative-binomial distribution for the count submodel (see Exercise 15.2).
23See Exercise 15.2.
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∗Estimation of the ZIP model would be simple if we knew to which latent class each observation

belongs, but, as I have pointed out, that is not true. Instead, we must maximize the somewhat

more complex combined log likelihood for the two components of the ZIP model:24

loge L(β, γ) =
∑

yi=0

loge

{
exp

(
z′
iγ
)
+ exp

[
− exp(x′

iβ)
]}

+
∑

yi>0

[
yix

′
iβ − exp(x′

iβ)
]

(15.7)

−
n∑

i=1

loge

[
1 + exp(z′

iγ)
]
−
∑

yi>0

loge(yi!)

where z′
i ≡ [1, zi1, . . . , zip], x′

i ≡ [1, xi1, . . . , xik], γ ≡ [γ0, γ1, . . . , γp]′, and β ≡
[α, β1, . . . , βk]′.

The basic GLM for count data is the Poisson model with log link. Frequently, however,

when the response variable is a count, its conditional variance increases more rapidly

than its mean, producing a condition termed overdispersion, and invalidating the use of

the Poisson distribution. The quasi-Poisson GLM adds a dispersion parameter to handle

overdispersed count data; this model can be estimated by the method of quasi-likelihood.

A similar model is based on the negative-binomial distribution, which is not an exponential

family. Negative-binomial GLMs can nevertheless be estimated by maximum likelihood.

The zero-inflated Poisson regression model may be appropriate when there are more zeroes

in the data than is consistent with a Poisson distribution.

15.2.2 Loglinear Models for Contingency Tables

The joint distribution of several categorical variables defines a contingency table. As discussed

in the preceding chapter,25 if one of the variables in a contingency table is treated as the response

variable, we can fit a logit or probit model (that is, for a dichotomous response, a binomial GLM)

to the table. Loglinear models, in contrast, which are models for the associations among the

variables in a contingency table, treat the variables symmetrically—they do not distinguish one

variable as the response. There is, however, a relationship between loglinear models and logit

models that I will develop later in this section. As we will see as well, loglinear models have the

formal structure of two-way and higher-way ANOVA models26 and can be fit to data by Poisson

regression.

Loglinear models for contingency tables have many specialized applications in the social

sciences—for example to “square” tables, such as mobility tables, where the variables in the table

have the same categories. The treatment of loglinear models in this section merely scratches the

surface.27

24See Exercise 15.2.
25See Section 14.3.
26See Sections 8.2 and 8.3.
27More extensive accounts are available in many sources, including Agresti (2002), Fienberg (1980), and Powers and Xie

(2000).
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Table 15.4 Voter Turnout by Intensity of Partisan Preference,

for the 1956 U.S. Presidential Election

Voter Turnout

Intensity of Preference Voted Did Not Vote Total

Weak 305 126 431

Medium 405 125 530

Strong 265 49 314

Total 975 300 1275

Table 15.5 General Two-Way Frequency Table

Variable C

Variable R 1 2 · · · c Total

1 Y11 Y12 · · · Y1c Y1+
2 Y21 Y22 · · · Y2c Y2+
...

...
...

...
...

r Yr1 Yr2 · · · Yrc Yr+

Total Y+1 Y+2 · · · Y+c n

Two-Way Tables

I will examine contingency tables for two variables in some detail, for this is the simplest case,

and the key results that I establish here extend straightforwardly to tables of higher dimension.

Consider the illustrative two-way table shown in Table 15.4, constructed from data reported in

the American Voter (Campbell, Converse, Miller, & Stokes, 1960), introduced in the previous

chapter.28 The table relates intensity of partisan preference to voting turnout in the 1956 U.S.

presidential election. To anticipate my analysis, the data indicate that voting turnout is positively

associated with intensity of partisan preference.

More generally, two categorical variables with r and c categories, respectively, define an r × c

contingency table, as shown in Table 15.5, where Yij is the observed frequency count in the i, j th

cell of the table. I use a “+” to represent summation over a subscript; thus Yi+ ≡
∑c

j=1 Yij is the

marginal frequency in the ith row; Y+j ≡
∑r

i=1 Yij is the marginal frequency in the j th column;

and n = Y++ ≡
∑r

i=1

∑c
j=1 Yij is the number of observations in the sample.

I assume that the n observations in Table 15.5 are independently sampled from a population with

proportion πij in cell i, j , and therefore that the probability of sampling an individual observation

in this cell is πij . Marginal probability distributions πi+ and π+j may be defined as above; note

that π++ = 1. If the row and column variables are statistically independent in the population, then

the joint probability πij is the product of the marginal probabilities for all i and j : πij = πi+π+j .

Because the observed frequencies Yij result from drawing a random sample, they are random

variables that generally take on different values in different samples. The expected frequency in

28Table 14.9 (page 371) examined the relationship of voter turnout to intensity of partisan preference and perceived

closeness of the election. The current example collapses the table for these three variables over the categories of perceived

closeness to examine the marginal table for turnout and preference. I return below to the analysis of the full three-way

table.
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cell i, j is µij ≡ E(Yij ) = nπij . If the variables are independent, then we have µij = nπi+π+j .

Moreover, because µi+ =
∑c

j=1 nπij = nπi+ and µ+j =
∑r

i=1 nπij = nπ+j , we may write

µij = µi+µ+j/n. Taking the log of both sides of this last equation produces

ηij ≡ loge µij = loge µi+ + loge µ+j − loge n (15.8)

That is, under independence, the log expected frequencies ηij depend additively on the logs of the

row marginal expected frequencies, the column marginal expected frequencies, and the sample

size. As Fienberg (1980, pp. 13–14) points out, Equation 15.8 is reminiscent of a main-effects

two-way ANOVA model, where − loge n plays the role of the constant, loge µi+ and loge µ+j are

analogous to “main-effect” parameters, and ηij appears in place of the response-variable mean.

If we impose ANOVA-like sigma constraints on the model, we may reparametrize Equation 15.8

as follows:

ηij = µ + αi + βj (15.9)

where α+ ≡
∑

αi = 0 and β+ ≡
∑

βj = 0. Equation 15.9 is the loglinear model for indepen-

dence in the two-way table. Solving for the parameters of the model, we obtain

µ =
η++
rc

(15.10)

αi =
ηi+
c

− µ

βj =
η+j

r
− µ

It is important to stress that although the loglinear model is formally similar to an ANOVA

model, the meaning of the two models differs importantly: In analysis of variance, the αi and

βj are main-effect parameters, specifying the partial relationship of the (quantitative) response

variable to each explanatory variable. The loglinear model in Equation 15.9, in contrast, does not

distinguish a response variable, and, because it is a model for independence, specifies that the row

and column variables in the contingency table are unrelated; for this model, the αi and βj merely

express the relationship of the log expected cell frequencies to the row and column marginals.

The model for independence describes rc expected frequencies in terms of

1 + (r − 1) + (c − 1) = r + c − 1

independent parameters.

By analogy to the two-way ANOVA model, we can add parameters to extend the loglinear

model to data for which the row and column classifications are not independent in the population

but rather are related in an arbitrary manner:

ηij = µ + αi + βj + γij (15.11)

where α+ = β+ = γi+ = γ+j = 0 for all i and j . As before, we may write the parameters of the

model in terms of the log expected counts ηij . Indeed, the solution for µ, αi , and βj are the same

as in Equation 15.10, and

γij = ηij − µ − αi − βj

By analogy to the ANOVA model, the γij in the loglinear model are often called “interactions,”

but this usage is potentially confusing. I will therefore instead refer to the γij as association

parameters because they represent deviations from independence.
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Under the model in Equation 15.11, called the saturated model for the two-way table, the

number of independent parameters is equal to the number of cells in the table,

1 + (r − 1) + (c − 1) + (r − 1)(c − 1) = rc

The model is therefore capable of capturing any pattern of association in a two-way table.

Remarkably, maximum-likelihood estimates for the parameters of a loglinear model (that is,

in the present case, either the model for independence in Equation 15.9 or the saturated model in

Equation 15.11) may be obtained by treating the observed cell counts Yij as the response variable

in a Poisson GLM; the log expected counts ηij are then just the linear predictor for the GLM, as

the notation suggests.29

The constraint that all γij = 0 imposed by the model of independence can be tested by a

likelihood-ratio test, contrasting the model of independence (Equation 15.9) with the more gen-

eral model (Equation 15.11). Because the latter is a saturated model, its residual deviance is

necessarily 0, and the likelihood-ratio statistic for the hypothesis of independence H0: γij = 0

is simply the residual deviance for the independence model, which has (r − 1)(c − 1) residual

degrees of freedom. Applied to the illustrative two-way table for the American Voter data, we get

G2
0 = 19.428 with (3 − 1)(2 − 1) = 2 degrees of freedom, for which p < .0001, suggesting that

there is strong evidence that intensity of preference and turnout are related.30

Maximum-likelihood estimates of the parameters of the saturated loglinear model are shown in

Table 15.6. It is clear from the estimated association parameters γ̂ij that turning out to vote, j = 1,

increases with partisan preference (and, of course, that not turning out to vote, j = 2, decreases

with preference).

Three-Way Tables

The saturated loglinear model for a three-way (a × b × c) table for variables A, B, and C is

defined in analogy to the three-way ANOVA model, although, as in the case of two-way tables,

the meaning of the parameters is different:

ηijk = µ + αA(i) + αB(j) + αC(k) + αAB(ij) + αAC(ik) + αBC(jk) + αABC(ijk) (15.12)

29* The reason that this result is remarkable is that a direct route to a likelihood function for the loglinear model leads to

the multinomial distribution (discussed in Appendix D on probability and estimation), not to the Poisson distribution. That

is, selecting n independent observations from a population characterized by cell probabilities πij results in cell counts

following the multinomial distribution,

p(y11, . . . , yrc) =
n!

r∏

i=1

c∏

j=1

yij !

r∏

i=1

c∏

j=1

π
nij

ij

=
n!

r∏

i=1

c∏

j=1

yij !

r∏

i=1

c∏

j=1

(µij

n

)nij

Noting that the expected counts µij are functions of the parameters of the loglinear model leads to the multinomial

likelihood function for the model. It turns out that maximizing this multinomial likelihood is equivalent to maximizing

the likelihood for the Poisson GLM described in the text (see, e.g., Fienberg, 1980, app. II).
30This test is very similar to the usual Pearson chi-square test for independence in a two-way table. See Exercise 15.3

for details, and for an alternative formula for calculating the likelihood-ratio test statistic G2
0

directly from the observed

frequencies, Yij , and estimated expected frequencies under independence, µ̂ij .
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Table 15.6 Estimated Parameters for the Saturated

Loglinear Model Fit in Table 15.4

γ̂ ij

i j = 1 j = 2 α̂i

1 −0.183 0.183 0.135
2 −0.037 0.037 0.273
3 0.219 −0.219 −0.408

β̂ j 0.625 −0.625 µ̂ = 5.143

with sigma constraints specifying that each set of parameters sums to zero over each subscript;

for example α1(+) = α12(i+) = α123(ij+) = 0. Given these constraints, we may solve for the

parameters in terms of the log expected counts, with the solution following the usual ANOVA

pattern; for example,

µ =
η+++
abc

αA(i) =
ηi++
bc

− µ

αAB(ij) =
ηij+
c

− µ − αA(i) − αB(j)

αABC(ijk) = ηijk − µ − αA(i) − αB(j) − αC(k) − αAB(ij) − αAC(ik) − αBC(jk)

The presence of the three-way term αABC in the model implies that the relationship between any

pair of variables (say, A and B) depends on the category of the third variable (say, C).31

Other loglinear models are defined by suppressing certain terms in the saturated model, that

is, by setting parameters to zero. In specifying a restricted loglinear model, we will be guided by

the principle of marginality:32 Whenever a high-order term is included in the model, its lower-

order relatives are included as well. Loglinear models of this type are often called hierarchical.

Nonhierarchical loglinear models may be suitable for special applications, but they are not sensible

in general (see Fienberg, 1980). According to the principle of marginality, for example, if αAB

appears in the model, so do αA and αB .

• If we set all of αABC, αAB , αAC, and αBC to zero, we produce the model of mutual

independence, implying that the variables in the three-way table are completely unrelated:

ηijk = µ + αA(i) + αB(j) + αC(k)

• Setting αABC, αAC, and αBC to zero yields the model

ηijk = µ + αA(i) + αB(j) + αC(k) + αAB(ij)

which specifies (1) that variables A and B are related, controlling for (i.e., within categories

of) variable C; (2) that this partial relationship is constant across the categories of variable C;

and (3) that variable C is independent of variables A and B taken jointly—that is, if we form

the two-way table with rows given by combinations of categories of A and B, and columns

given by C, the two variables in this table are independent. Note that there are two other

models of this sort: one in which αAC is nonzero and another in which αBC is nonzero.

31Here and below I use the shorthand notation αABC to represent the whole set of αABC(ijk), and similarly for the other

terms in the model.
32See Section 7.3.2.
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Table 15.7 Voter Turnout by Perceived Closeness of the Election and Intensity

of Partisan Preference, for the 1956 U.S. Presidential Election

(C) Turnout

(A) Perceived Closeness (B) Intensity of Preference Voted Did Not Vote

One-sided Weak 91 39
Medium 121 49
Strong 64 24

Close Weak 214 87
Medium 284 76
Strong 201 25

• A third type of model has two nonzero two-way terms; for example, setting αABC and

αBC to zero, we obtain

ηijk = µ + αA(i) + αB(j) + αC(k) + αAB(ij) + αAC(ik)

This model implies that (1) variables A and B have a constant partial relationship across the

categories of variable C; (2) variables A and C have a constant partial relationship across

the categories of variable B; and (3) variables B and C are independent within categories

of variable A. Again, there are two other models of this type.

• Finally, consider the model that sets only the three-way term αABC to zero:

ηijk = µ + αA(i) + αB(j) + αC(k) + αAB(ij) + αAC(ik) + αBC(jk)

This model specifies that each pair of variables (e.g., A and B) has a constant partial

association across the categories of the remaining variable (e.g., C).

These descriptions are relatively complicated because the loglinear models are models of

association among variables. As we will see presently, however, if one of the variables in a table

is taken as the response variable, then the loglinear model is equivalent to a logit model with a

simpler interpretation.

Table 15.7 shows a three-way table cross-classifying voter turnout by perceived closeness of

the election and intensity of partisan preference, elaborating the two-way table for the American

Voter data presented earlier in Table 15.4.33 I have fit all hierarchical loglinear models to this

three-way table, displaying the results in Table 15.8. Here I employ a compact notation for the

high-order terms in each fitted model: For example, AB represents the two-way term αAB and

implies that the lower-order relatives of this term—µ, αA, and αB—are also in the model. As

in the loglinear model for a two-way table, the saturated model has a residual deviance of 0, and

consequently the likelihood-ratio statistic to test any model against the saturated model (within

which all of the other models are nested, and which is the last model shown) is simply the residual

deviance for the unsaturated model.

The first model in Table 15.8 is the model of complete independence, and it fits the data

very poorly. At the other end, the model with high-order terms AB, AC, and BC, which may

be used to test the hypothesis of no three-way association, H0: all αABC(ijk) = 0, also has a

statistically significant likelihood-ratio test statistic (though not overwhelmingly so), suggesting

that the association between any pair of variables in the contingency tables varies over the levels

of the remaining variable.

33This table was also discussed in Chapter 14 (see Table 14.9 on page 371).
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Table 15.8 Hierarchical Loglinear Models Fit to Table 15.7

Residual Degrees of Freedom
High-Order
Terms General Table 15.7 G2

0 p

A,B,C (a−1)(b−1)+(a−1)(c−1)(b−1)(c−1) 7 36.39 ≪.0001
+(a−1)(b−1)(c−1)

AB,C (a−1)(c−1)+(b−1)(c−1)+(a−1)(b−1)(c−1) 5 34.83 ≪.0001
AC,B (a−1)(b−1)+(b−1)(c−1)+(a−1)(b−1)(c−1) 5 16.96 .0046
A,BC (a−1)(b−1)+(a−1)(c−1)+(a−1)(b−1)(c−1) 6 27.78 .0001
AB,AC (b−1)(c−1)+(a−1)(b−1)(c−1) 3 15.40 .0015
AB,BC (a−1)(c−1)+(a−1)(b−1)(c−1) 4 26.22 <.0001
AC,BC (a−1)(b−1)+(a−1)(b−1)(c−1) 4 8.35 .079
AB,AC,BC (a−1)(b−1)(c−1) 2 7.12 .028
ABC 0 0 0.0 —

NOTE: The column labeled G2
0 is the likelihood-ratio statistic for testing each model against the saturated model.

This approach generalizes to contingency tables of any dimension, although the interpretation

of high-order association terms can become complicated.

Loglinear Models and Logit Models

As I explained, the loglinear model for a contingency table is a model for association among

the variables in the table; the variables are treated symmetrically, and none is distinguished as the

response variable. When one of the variables in a contingency table is regarded as the response,

however, the loglinear model for the table implies a logit model (identical to the logit model for a

contingency table developed in Chapter 14), the parameters of which bear a simple relationship

to the parameters of the loglinear model for the table.

For example, it is natural to regard voter turnout in Table 15.7 as a dichotomous response

variable, potentially affected by perceived closeness of the election and by intensity of partisan

preference. Indeed, this is precisely what we did previously when we analyzed this table using a

logit model.34 With this example in mind, let us return to the saturated loglinear model for the

three-way table (repeating Equation 15.12):

ηijk = µ + αA(i) + αB(j) + αC(k) + αAB(ij) + αAC(ik) + αBC(jk) + αABC(ijk)

For convenience, I suppose that the response variable is variable C, as in the illustration. Let

�ij symbolize the response-variable logit within categories i, j of the two explanatory variables;

that is,

�ij = loge

πij1

πij2
= loge

nπij1

nπij2
= loge

µij1

µij2

= ηij1 − ηij2

Then, from the saturated loglinear model for ηijk ,

�ij =
[
αC(1) − αC(2)

]
+
[
αAC(i1) − αAC(i2)

]

+
[
αBC(j1) − αBC(j2)

]
+
[
αABC(ij1) − αABC(ij2)

]
(15.13)

34See Section 14.3.
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Noting that the first bracketed term in Equation 15.13 does not depend on the explanatory variables,

that the second depends only upon variable A, and so forth, let us rewrite this equation in the

following manner:

�ij = ω + ωA(i) + ωB(j) + ωAB(ij) (15.14)

where, because of the sigma constraints on the αs,

ω ≡ αC(1) − αC(2) = 2αC(1)

ωA(i) ≡ αAC(i1) − αAC(i2) = 2αAC(i1)

ωB(j) ≡ αBC(j1) − αBC(j2) = 2αBC(j1)

ωAB(ij) ≡ αABC(ij1) − αABC(ij2) = 2αABC(ij1)

Furthermore, because they are defined as twice the αs, the ωs are also constrained to sum to zero

over any subscript:

ωA(+) = ωB(+) = ωAB(i+) = ωAB(+j) = 0, for all i and j

Note that the loglinear-model parameters for the association of the explanatory variables A and

B do not appear in Equation 15.13. This equation (or, equivalently, Equation 15.14), the saturated

logit model for the table, therefore shows how the response-variable log-odds depend on the

explanatory variables and their interactions. In light of the constraints that they satisfy, the ωs

are interpretable as ANOVA-like effect parameters, and indeed we have returned to the binomial

logit model for a contingency table introduced in the previous chapter: Note, for example, that

the likelihood-ratio test for the three-way term in the loglinear model for the American Voter

data (given in the penultimate line of Table 15.8) is identical to the likelihood-ratio test for the

interaction between closeness and preference in the logit model fit to these data (see Table 14.11

on page 373).

A similar argument may also be pursued with respect to any unsaturated loglinear model for

the three-way table: Each such model implies a model for the response-variable logits. Because,

however, our purpose is to examine the effects of the explanatory variables on the response, and

not to explore the association between the explanatory variables, we generally include αAB and

its lower-order relatives in any model that we fit, thereby treating the association (if any) between

variables A and B as given. Furthermore, a similar argument to the one developed here can be

applied to a table of any dimension that has a response variable, and to a response variable with

more than two categories. In the latter event, the loglinear model is equivalent to a multinomial

logit model for the table, and in any event, we would generally include in the loglinear model a

term of dimension one less than the table corresponding to all associations among the explanatory

variables.

Loglinear models for contingency tables bear a formal resemblance to analysis-of-variance

models and can be fit to data as Poisson generalized linear models with a log link.

The loglinear model for a contingency table, however, treats the variables in the table

symmetrically—none of the variables is distinguished as a response variable—and con-

sequently the parameters of the model represent the associations among the variables,

not the effects of explanatory variables on a response. When one of the variables is con-

strued as the response, the loglinear model reduces to a binomial or multinomial logit

model.
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15.3 Statistical Theory for
Generalized Linear Models*

In this section, I revisit with greater rigor and more detail many of the points raised in the preceding

sections.35

15.3.1 Exponential Families

As much else in modern statistics, the insight that many of the most important distributions

in statistics could be expressed in the following common “linear-exponential” form was due to

R. A. Fisher:

p(y; θ, φ) = exp

[
yθ − b(θ)

a(φ)
+ c(y, φ)

]
(15.15)

where

• p(y; θ, φ) is the probability function for the discrete random variable Y , or the probability-

density function for continuous Y .

• a(·), b(·), and c(·) are known functions that vary from one exponential family to another

(see below for examples).

• θ = gc(µ), the canonical parameter for the exponential family in question, is a function

of the expectation µ ≡ E(Y ) of Y ; moreover, the canonical link function gc(·) does not

depend on φ.

• φ > 0 is a dispersion parameter, which, in some families, takes on a fixed, known value,

while in other families it is an unknown parameter to be estimated from the data along with θ .

Consider, for example, the normal or Gaussian distribution with mean µ and variance σ 2, the

density function for which is given in Equation 15.1 (on page 382). To put the normal distribution in

the form of Equation 15.15 requires some heroic algebraic manipulation, eventually producing36

p(y; θ, φ) = exp

{
yθ − θ2/2

φ
− 1

2

[
y2

φ
+ loge(2πφ)

]}

with θ = gc(µ) = µ; φ = σ 2 ; a(φ) = φ; b(θ) = θ2/2; and c(y, φ) = − 1
2

[
y2/φ + loge(2πφ)

]
.

Now consider the binomial distribution in Equation 15.2 (page 382), where Y is the proportion

of “successes” in n independent binary trials, and µ is the probability of success on an individual

trial. Written after more algebraic gymnastics as an exponential family,37

p(y; θ, φ) = exp

[
yθ − loge(1 + eθ )

1/n
+ loge

(
n

ny

)]

with θ = gc(µ) = loge[µ/(1 − µ)]; φ = 1; a(φ) = 1/n; b(θ) = loge(1 + eθ ); and c(y, φ) =
loge

(
n
ny

)
.

Similarly, the Poisson, gamma, and inverse-Gaussian families can all be put into the form of

Equation 15.15, using the results given in Table 15.9.38

35The exposition here owes a debt to Chapter 2 of McCullagh and Nelder (1989), which has become the standard source

on GLMs, and to the remarkly lucid and insightful briefer treatment of the topic by Firth (1991).
36See Exercise 15.4.
37See Exercise 15.5.
38See Exercise 15.6.
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Table 15.9 Functions a(·), b(·), and c(·) for Constructing the Exponential Families

Family a(φ) b(θ) c(y, φ)

Gaussian φ θ2/2 −1
2

[
y2/φ + loge(2πφ)

]

Binomial 1/n loge(1+eθ ) loge
( n
ny

)

Poisson 1 eθ −logey!

Gamma φ −loge(−θ) φ−2loge(y/φ)−log ey−logeŴ(φ−1)

Inverse-Gaussian φ −
√

−2θ −1
2

[
loge(πφy3) + 1/(φy)

]

NOTE: In this table, n is the number of binomial observations, and Ŵ(·) is the gamma function.

The advantage of expressing diverse families of distributions in the common exponential form

is that general properties of exponential families can then be applied to the individual cases. For

example, it is true in general that

b′(θ) ≡
db(θ)

dθ
= µ

and that

V (Y ) = a(φ)b′′(θ) = a(φ)
d2b(θ)

dθ2
= a(φ)v(µ)

leading to the results in Table 15.2 (on page 382).39 Note that b′(·) is the inverse of the canonical

link function. For example, for the normal distribution,

b′(θ) =
d(θ2/2)

dθ
= θ = µ

a(φ)b′′(θ) = φ × 1 = σ 2

v(µ) = 1

and for the binomial distribution,

b′(θ) =
d[loge(1 + eθ )]

dθ
=

eθ

1 + eθ
=

1

1 + e−θ
= µ

a(φ)b′′(θ) =
1

n
×

[
eθ

1 + eθ
−
(

eθ

1 + eθ

)2
]

=
µ(1 − µ)

n

v(µ) = µ(1 − µ)

The Gaussian, binomial, Poisson, gamma, and inverse-Gaussian distributions can all be

written in the common linear-exponential form:

p(y; θ, φ) = exp

[
yθ − b(θ)

a(φ)
+ c(y, φ)

]

(Continued)

39See Exercise 15.7.
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(Continued)

where a(·), b(·), and c(·) are known functions that vary from one exponential family to

another; θ = gc(µ) is the canonical parameter for the exponential family in question; gc(·)
is the canonical link function; and φ > 0 is a dispersion parameter, which takes on a fixed,

known value in some families. It is generally the case that µ = E(Y ) = b′(θ) and that

V (Y ) = a(φ)b′′(θ).

15.3.2 Maximum-Likelihood
Estimation of Generalized Linear Models

The log likelihood for an individual observation Yi follows directly from Equation 15.15

(page 402):

loge L(θi, φ; Yi) =
yiθi − b(θi)

ai(φ)
+ c(Yi, φ)

For n independent observations, we have

loge L(θ, φ; y) =
n∑

i=1

Yiθi − b(θi)

ai(φ)
+ c(Yi, φ) (15.16)

where θ ≡ {θi} and y ≡ {Yi}.
Suppose that a GLM uses the link function g(·), so that40

g(µi) = ηi = β0 + β1Xi1 + β2Xi2 + · · · + βkXik

The model therefore expresses the expected values of the n observations in terms of a much smaller

number of regression parameters. To get estimating equations for the regression parameters, we

have to differentiate the log likelihood with respect to each coefficient in turn. Let li represent the

ith component of the log likelihood. Then, by the chain rule,

∂li

∂βj

=
∂li

∂θi

×
dθi

dµi

×
dµi

dηi

×
∂ηi

∂βj

for j = 0, 1, . . . , k (15.17)

After some work, we can rewrite Equation 15.17 as41

∂li

∂βj

=
yi − µi

ai(φ)v(µi)
×

dµi

dηi

× xij

Summing over observations, and setting the sum to zero, produces the maximum-likelihood

estimating equations for the GLM,

n∑

i=1

Yi − µi

aiv(µi)
×

dµi

dηi

× xij = 0, for j = 0, 1, . . . , k (15.18)

where ai ≡ ai(φ)/φ does not depend upon the dispersion parameter, which is constant across

observations. For example, in a Gaussian GLM, ai = 1, while in a binomial GLM, ai = 1/ni .

40It is notationally convenient here to write β0 for the regression constant α.
41See Exercise 15.8.
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Further simplification can be achieved when g(·) is the canonical link. In this case, the

maximum-likelihood estimating equations become

n∑

i=1

Yixij

ai

=
n∑

i=1

µixij

ai

setting the “observed sum” on the left of the equation to the “expected sum” on the right. We noted

this pattern in the estimating equations for logistic-regression models in the previous chapter.42

Nevertheless, even here the estimating equations are (except in the case of the Gaussian family

paired with the identify link) nonlinear functions of the regression parameters and generally

require iterative methods for their solution.

Iterative Weighted Least Squares

Let

Zi ≡ ηi + (Yi − µi)
dηi

dµi

= ηi + (Yi − µi)g
′(µi)

Then

E(Zi) = ηi = β0 + β1Xi1 + β2Xi2 + · · · + βkXik

and

V (Zi) =
[
g′(µi)

]2
aiv(µi)

If, therefore, we could compute the Zi , we would be able to fit the model by weighted least-squares

regression of Z on the Xs, using the inverses of the V (Zi) as weights.43 Of course, this is not the

case because we do not know the values of the µi and ηi , which, indeed, depend on the regression

coefficients that we wish to estimate—that is, the argument is essentially circular. This observation

suggested to Nelder and Wedderburn (1972) the possibility of estimating GLMs by iterative

weighted least-squares (IWLS), cleverly turning the circularity into an iterative procedure:

1. Start with initial estimates of the µ̂i and the η̂i = g(µ̂i), denoted µ̂
(0)
i and η̂

(0)
i . A simple

choice is to set µ̂
(0)
i = Yi .

44

2. At each iteration l, compute the working response variable Z using the values of µ̂ and η̂

from the preceding iteration,

Z
(l−1)
i = η

(l−1)
i +

(
Yi − µ

(l−1)
i

)
g′
(
µ

(l−1)
i

)

42See Sections 14.1.5 and 14.2.1.
43See Section 12.2.2 for a general discussion of weighted least squares.
44In certain settings, starting with µ̂

(0)
i

= Yi can cause computational difficulties. For example, in a binomial GLM, some

of the observed proportions may be 0 or 1—indeed, for binary data, this will be true for all the observations—requiring

us to divide by 0 or to take the log of 0. The solution is to adjust the starting values, which are in any event not critical, to

protect against this possibility. For a binomial GLM, where Yi = 0, we can take µ̂
(0)
i

= 0.5/ni , and where Yi = 1, we

can take µ̂
(0)
i

= (ni − 0.5)/ni . For binary data, then, all the µ̂
(0)
i

are 0.5.
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along with weights

W
(l−1)
i =

1
[
g′
(
µ

(l−1)
i

)]2
aiv

(
µ

(l−1)
i

)

3. Fit a weighted least-squares regression of Z(l−1) on the Xs, using the W (l−1) as weights.

That is, compute

b(l) =
(

X′W(l−1)X
)−1

X′W(l−1)z(l−1)

where b(l)

(k+1×1)
is the vector of regression coefficients at the current iteration; X

(n×k+1)
is

(as usual) the model matrix; W(l−1)

(n×n)
≡ diag

{
W

(l−1)
i

}
is the diagonal weight matrix; and

z(l−1)

(n×1)
≡
{
Z

(l−1)
i

}
is the working-response vector.

4. Repeat Steps 2 and 3 until the regression coefficients stabilize, at which point b converges

to the maximum-likelihood estimates of the βs.

Applied to the canonical link, IWLS is equivalent to the Newton-Raphson method (as we

discovered for a logit model in the previous chapter); more generally, IWLS implements Fisher’s

“method of scoring.”

Estimating the Dispersion Parameter

Note that we do not require an estimate of the dispersion parameter to estimate the regression

coefficients in a GLM. Although it is in principle possible to estimate φ by maximum likelihood

as well, this is rarely done. Instead, recall that V (Yi) = φaiv(µi). Solving for the dispersion

parameter, we get φ = V (Yi)/aiv(µi), suggesting the method of moments estimator

φ̃ =
1

n − k − 1

∑ (Yi − µ̂i)
2

aiv(µ̂i)
(15.19)

The estimated asymptotic covariance matrix of the coefficients is then obtained from the last

IWLS iteration as

V̂(b) = φ̃
(
X′WX

)−1

Because the maximum-likelihood estimator b is asymptotically normally distributed, V̂(b) may

be used as the basis for Wald tests of the regression parameters.

The maximum-likelihood estimating equations for generalized linear models take the com-

mon form

n∑

i=1

Yi − µi

aiv(µi)
×

dµi

dηi

× xij = 0, for j = 0, 1, . . . , k
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These equations are generally nonlinear and therefore have no general closed-form solu-

tion, but they can be solved by iterated weighted least squares (IWLS). The estimating

equations for the coefficients do not involve the dispersion parameter, which (for models

in which the dispersion is not fixed) then can be estimated as

φ̃ =
1

n − k − 1

∑ (Yi − µ̂i)
2

aiv(µ̂i)

The estimated asymptotic covariance matrix of the coefficients is

V̂(b) = φ̃
(
X′WX

)−1

where b is the vector of estimated coefficients and W is a diagonal matrix of weights from

the last IWLS iteration.

Quasi-Likelihood Estimation

The argument leading to IWLS estimation rests only on the linearity of the relationship

between η = g(µ) and the Xs, and on the assumption that V (Y ) depends in a particular

manner on a dispersion parameter and µ. As long as we can express the transformed mean

of Y as a linear function of the Xs, and can write down a variance function for Y (expressing

the conditional variance of Y as a function of its mean and a dispersion parameter), we can

apply the “maximum-likelihood” estimating equations (Equation 15.18 on page 404) and obtain

estimates by IWLS—even without committing ourselves to a particular conditional distribution

for Y .

This is the method of quasi-likelihood estimation, introduced by Wedderburn (1974), and it

has been shown to retain many of the properties of maximum-likelihood estimation: Although

the quasi-likelihood estimator may not be maximally asymptotically efficient, it is consistent

and has the same asymptotic distribution as the maximum-likelihood estimator of a GLM in an

exponential family.45 We can think of quasi-likelihood estimation of GLMs as analogous to least-

squares estimation of linear regression models with potentially non-normal errors: Recall that as

long as the relationship between Y and the Xs is linear, the error variance is constant, and the

observations are independently sampled, the theory underlying OLS estimation applies—although

the OLS estimator may no longer be maximally efficient.46

The maximum-likelihood estimating equations, and IWLS estimation, can be applied

whenever we can express the transformed mean of Y as a linear function of the Xs, and

can write the conditional variance of Y as a function of its mean and (possibly) a dispersion

parameter—even when we do not specify a particular conditional distribution for Y . The

resulting quasi-likelihood estimator shares many of the properties of maximum-likelihood

estimators.

45See, for example, McCullagh and Nelder (1989, chap. 9) and McCullagh (1991).
46See Chapter 9.
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15.3.3 Hypothesis Tests

Analysis of Deviance

Originally (in Equation 15.16 on page 404), I wrote the log likelihood for a GLM as a function

loge L(θ, φ; y) of the canonical parameters θ for the observations. Because µi = g−1
c (θi), for the

canonical link gc(·), we can equally well think of the log likelihood as a function of the expected

response, and therefore can write the maximized log likelihood as loge L(µ̂, φ; y). If we then

dedicate a parameter to each observation, so that µ̂i = Yi (e.g., by removing the constant from

the regression model and defining a dummy regressor for each observation), the log likelihood

becomes loge L(y, φ; y). The residual deviance under the initial model is twice the difference in

these log likelihoods:

D(y; µ̂) ≡ 2[loge L(y, φ; y) − loge L(µ̂, φ; y)] (15.20)

= 2

n∑

i=1

[loge L(Yi, φ; Yi) − loge L(µ̂i, φ; Yi)]

= 2

n∑

i=1

Yi [g(Yi) − g(µ̂i)] − b [g(Yi)] + b [g(µ̂i)]

ai

Dividing the residual deviance by the estimated dispersion parameter produces the scaled

deviance, D∗(y; µ̂) ≡ D(y; µ̂)/φ̃. As explained in Section 15.1.1, deviances are the building

blocks of likelihood-ratio and F -tests for GLMs.

Applying Equation 15.20 to the Gaussian distribution, where gc(·) is the identity link, ai = 1,

and b(θ) = θ2/2, produces (after some simplification)

D(y; µ̂) =
∑

(Yi − µ̂)2

that is, the residual sum of squares for the model. Similarly, applying Equation 15.20 to the

binomial distribution, where gc(·) is the logit link, ai = ni , and b(θ) = loge(1 + eθ ), we get

(after quite a bit of simplification)47

D(y; µ̂) = 2
∑

ni

[
Yi loge

Yi

µ̂i

+ (1 − Yi) loge

1 − Yi

1 − µ̂i

]

The residual deviance for a model is twice the difference in the log likelihoods for the

saturated model, which dedicates one parameter to each observation, and the model in

question:

D(y; µ̂) ≡ 2[loge L(y, φ; y) − loge L(µ̂, φ; y)]

= 2

n∑

i=1

Yi [g(Yi) − g(µ̂i)] − b [g(Yi)] + b [g(µ̂i)]

ai

Dividing the residual deviance by the estimated dispersion parameter produces the scaled

deviance, D∗(y; µ̂) ≡ D(y; µ̂)/φ̃.

47See Exercise 15.9, which also develops formulas for the deviance in Poisson, gamma, and inverse-Gaussian models.
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Testing General Linear Hypotheses

As was the case for linear models,48 we can formulate a test for the general linear hypothesis

H0: L
(q×k+1)

β
(k+1×1)

= c
(q×1)

where the hypothesis matrix L and right-hand-side vector c contain pre-specified constants; usu-

ally, c = 0. For a GLM, the Wald statistic

Z2
0 = (Lb − c)′ [LV̂(b)L′]−1 (Lb − c)

follows an asymptotic chi-square distribution with q degrees of freedom under the hypothesis.

The simplest application of this result is to the Wald statistic Z0 = Bj/SE(Bj ), testing that an

individual regression coefficient is zero. Here, Z0 follows a standard-normal distribution under

H0: βj = 0 (or, equivalently, Z2
0 follows a chi-square distribution with one degree of freedom).

Alternatively, when the dispersion parameter is estimated from the data, we can calculate the

test statistic

F0 =
(Lb − c)′ [LV̂(b)L′]−1 (Lb − c)

q

which is distributed as Fq,n−k−1 under H0. Applied to an individual coefficient, t0 = ±
√

F0 =
Bj/SE(Bj ) produces a t-test on n − k − 1 degrees of freedom.

To test the general linear hypothesis H0: Lβ = c, where the hypothesis matrix L has

q rows, we can compute the Wald chi-square test statistic Z2
0 = (Lb − c)′ [LV̂(b)L′]−1

(Lb − c), with q degrees of freedom. Alternatively, if the dispersion parameter is esti-

mated from the data, we can compute the F -test statistic F0 = (Lb − c)′ [LV̂(b)L′]−1

(Lb − c) /q on q and n − k − 1 degrees of freedom.

Testing Nonlinear Hypotheses

It is occasionally of interest to test a hypothesis or construct a confidence interval for a nonlinear

function of the parameters of a linear or generalized linear model. If the nonlinear function in

question is a differentiable function of the regression coefficients, then an approximate asymptotic

standard error may be obtained by the delta method.49

Suppose that we are interested in the function

γ ≡ f (β) = f (β0, β1, . . . , βk)

where, for notational convenience, I have used β0 to denote the regression constant. The

function f (β) need not use all the regression coefficients (see the example below). The

48See Section 9.4.4.
49The delta method (Rao, 1973) is described in Appendix D on probability and estimation. The method employs a first-

order (i.e., linear) Taylor-series approximation to the nonlinear function. The delta method is appropriate here because the

maximum-likelihood (or quasi-likelihood) estimates of the coefficients of a GLM are asymptotically normally distributed.

Indeed, the procedure described in this section is applicable whenever the parameters of a regression model are normally

distributed and can therefore be applied in a wide variety of contexts—such as to the nonlinear regression models described

in Chapter 17. In small samples, however, the delta-method approximation to the standard error may not be adequate, and

the bootstrapping procedures described in Chapter 21 will usually provide more reliable results.
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maximum-likelihood estimator of γ is simply γ̂ = f (β̂) (which, as an MLE, is also asymp-

totically normal), and the approximate sampling variance of γ̂ is then

V̂(γ̂ ) ≈
k∑

j=0

k∑

j ′=0

vjj ′ ×
∂γ̂

∂β̂j

×
∂γ̂

∂β̂j ′

where vjj ′ is the j, j ′th element of the estimated asymptotic covariance matrix of the coefficients,

V̂(β̂).

To illustrate the application of this result, imagine that we are interested in determining the max-

imum or minimum value of a quadratic partial regression.50 Focusing on the partial relationship

between the response variable and a particular X, we have an equation of the form

E(Y ) = · · · + β1X + β2X
2 + · · ·

Differentiating this equation with respect to X, we get

dE(Y )

dX
= β1 + 2β2X

Setting the derivative to 0 and solving for X produces the value at which the function reseaches

a minimum (if β2 is positive) or a maximum (if β2 is negative),

X = −
β1

2β2

which is a nonlinear function of the regression coefficients β1 and β2.

For example, in Section 12.3.1, using data from the Canadian Survey of Labour and Income

Dynamics (the “SLID”), I fit a least-squares regression of log wage rate on a quadratic in age,

a dummy regressor for sex, and the square of education, obtaining (repeating, and slightly rear-

ranging, Equation 12.7 on page 280):

̂log2 Wages = 0.5725 + 0.1198 × Age − 0.001230 × Age2

(0.0834) (0.0046) (0.000059)

+ 0.3195 × Male + 0.002605 × Education2

(0.0180) (0.000113)

R2 = .3892

Imagine that we are interested in the age γ ≡ −β1/(2β2) at which wages are at a maximum,

holding sex and education constant. The necessary derivatives are

∂γ̂

∂B1
= −

1

2B2
= −

1

2(−0.001230)
= 406.5

∂γ̂

∂B2
=

B1

2B2
2

=
0.1198

2(−0.001230)2
= 39,593

Our point estimate of γ is

γ̂ = −
B1

2B2
= −

0.1198

2 × 0.001230
= 48.70 years

50See Section 17.1 for a discussion of polynomial regression. The application of the delta method to finding the minimum

or maximum of a quadratic curve is suggested by Weisberg (2005, sect. 6.1.2).
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The estimated sampling variance of the age coefficient is V̂ (B1) = 2.115 × 10−5, and of the

coefficient of age-squared, V̂ (B2) = 3.502 × 10−9; the estimated sampling covariance for the

two coefficients is Ĉ(B1, B2) = −2.685×10−7. The approximate estimated variance of γ̂ is then

V̂(γ̂ ) ≈
(

2.115 × 10−5
)

× 406.52 −
(
2.685 × 10−7

)
× 406.5 × 39, 593

−
(
2.685 × 10−7

)
× 406.5 × 39, 593 +

(
3.502 × 10−9

)
× 39, 5932

= 0.3419

Consequently, the approximate standard error of γ̂ is SE(γ̂ ) ≈
√

0.3419 = 0.5847, and an

approximate 95% confidence interval for the age at which income is highest on average is γ =
48.70 ± 1.96(0.5847) = (47.55, 49.85).

The delta method may be used to approximate the standard error of a nonlinear function

of regression coefficients in a GLM. If γ ≡ f (β0, β1, . . . , βk), then

V̂(γ̂ ) ≈
k∑

j=0

k∑

j ′=0

vjj ′
∂γ̂

∂β̂j

∂γ̂

∂β̂j ′

15.3.4 Effect Displays

Let us write the GLM in matrix form, with linear predictor

η
(n×1)

= X
(n×k+1)

β
(k+1×1)

and link function g(µ) = η, where µ is the expectation of the response vector y. As described in

Section 15.3.2, we compute the maximum-likelihood estimate b of β, along with the estimated

asymptotic covariance matrix V̂(b) of b.

Let the rows of X∗ include regressors corresponding to all combinations of values of explana-

tory variables appearing in a high-order term of the model (or, for a continuous explanatory

variable, values spanning the range of the variable), along with typical values of the remaining

regressors. The structure of X∗ with respect to interactions, for example, is the same as that of the

model matrix X. Then the fitted values η̂∗ = X∗b represent the high-order term in question, and

a table or graph of these values—or, alternatively, of the fitted values transformed to the scale of

the response variable, g−1(̂η∗)—is an effect display. The standard errors of η̂∗, available as the

square-root diagonal entries of X∗V̂(b)X∗′, may be used to compute pointwise confidence intervals

for the effects, the end-points of which may then also be transformed to the scale of the response.

For example, for the Poisson regression model fit to Ornstein interlocking-directorate data, the

effect display for assets in Figure 15.6(a) (page 390) is constructed by letting assets range between

its minimum value of 0.062 and maximum of 147.670 billion dollars, fixing the dummy variables

for nation of control and sector to their sample means—that is, to the observed proportions of the

data in each of the corresponding categories of nation and sector. As noted previously, this is an

especially simple example, because the model includes no interactions. The model was fit with

the log link, and so the estimated effects, which in general are on the scale of the linear predictor,

are on the log-count scale; the right-hand axis of the graph shows the corresponding count scale,

which is the scale of the response variable.
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Effect displays for GLMs are based on the fitted values η̂∗ = X∗b, representing a high-

order term in the model; that is, X∗ has the same general structure as the model matrix

X, with the explanatory variables in the high-term order ranging over their values in the

data while other explanatory variables are set to typical values. The standard errors of η̂∗,

given by the square-root diagonal entries of X∗V̂(b)X∗′, may be used to compute pointwise

confidence intervals for the effects.

15.4 Diagnostics for Generalized Linear Models

Most of the diagnostics for linear models presented in Chapters 11 and 12 extend relatively

straightforwardly to GLMs. These extensions typically take advantage of the computation of

maximum-likelihood and quasi-likelihood estimates for GLMs by iterated weighted least squares,

as described in Section 15.3.2. The final weighted-least-squares fit linearizes the model and pro-

vides a quadratic approximation to the log likelihood. Approximate diagnostics are then either

based directly on the WLS solution or are derived from statistics easily calculated from this

solution. Seminal work on the extension of linear least-squares diagnostics to GLMs was done

by Pregibon (1981), Landwehr, Pregibon, and Shoemaker (1984), Wang (1985, 1987), and

Williams (1987). In my experience, and with the possible exception of added-variable plots

for non-Gaussian GLMs, these extended diagnostics typically work reasonably well.

15.4.1 Outlier, Leverage, and Influence Diagnostics

Hat-Values

Hat-values, hi , for a GLM can be taken directly from the final iteration of the IWLS procedure

for fitting the model,51 and have the usual interpretation—except that, unlike in a linear model,

the hat-values in a GLM depend on the response variable Y as well as on the configuration of

the Xs.

Residuals

Several kinds of residuals can be defined for GLMs:

• Most straightforwardly (but least usefully), response residuals are simply the differences

between the observed response and its estimated expected value: Yi − µ̂i , where

µ̂i = g−1(̂ηi) = g−1(A + B1Xi1 + B2Xi2 + · · · + BkXik)

• Working residuals are the residuals from the final WLS fit. These may be used to define

partial residuals for component-plus-residual plots (see below).

51* The hat-matrix is

H = W1/2X(X′WX)−1X′W1/2

where W is the weight matrix from the final IWLS iteration.
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• Pearson residuals are casewise components of the Pearson goodness-of-fit statistic for the

model:52

φ̃1/2(Yi − µ̂i)√
V̂ (Yi |ηi)

where φ̃ is the estimated dispersion parameter for the model (Equation 15.19 on page 406)

and V (yi |ηi) is the conditional variance of the response (given in Table 15.2 on page 382).

• Standardized Pearson residuals correct for the conditional response variation and for the

differential leverage of the observations:

RP i ≡
Yi − µ̂i√

V̂ (Yi |ηi)(1 − hi)

• Deviance residuals, Gi , are the square-roots of the casewise components of the residual

deviance (Equation 15.20 on page 408), attaching the sign of the corresponding response

residual.

• Standardized deviance residuals are

RGi ≡
Gi√

φ̃(1 − hi)

• Several different approximations to studentized residuals have been proposed. To calcu-

late exact studentized residuals would require literally refitting the model deleting each

observation in turn and noting the decline in the deviance; this procedure, of course, is

computationally unattractive. Williams suggests the approximation

E∗
i ≡

√
(1 − hi)R

2
Gi + hiR

2
P i

where, once again, the sign is taken from the response residual. A Bonferroni outlier test

using the standard normal distribution may be based on the largest absolute studentized

residual.

Influence Measures

An approximation to Cook’s distance influence measure is

Di ≡
R2

P i

φ̃(k + 1)
×

hi

1 − hi

This is essentially Williams’s definition, except that I divide by the estimated dispersion φ̃ to scale

Di as an F -statistic rather than as a chi-square statistic.

Approximate values of influence measures for individual coefficients, DFBETAij and

DFBETASij , may be obtained directly from the final iteration of the IWLS procedure.

Wang (1985) suggests an extension of added-variable plots to GLMs that works as follows:

Suppose that the focal regressor is Xj . Refit the model with Xj removed, extracting the working

residuals from this fit. Then regress Xj on the other Xs by WLS, using the weights from the

last IWLS step, obtaining residuals. Finally, plot the working residuals from the first regression

against the residuals for Xj from the second regression.

52The Pearson statistic, an alternative to the deviance for measuring the fit of the model to the data, is the sum of squared

Pearson residuals.
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Figure 15.7 Hat-values, studentized residuals, and Cook’s distances from the quasi-Poisson

regression for Ornstein’s interlocking-directorate data. The areas of the circles are

proportional to the Cook’s distances for the observations. Horizontal lines are drawn

at −2, 0, and 2 on the studentized-residual scale, vertical lines at twice and three

times the average hat-value.
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Figure 15.8 Index plot of DFBETA for the assets coefficient. The horizontal lines are drawn at 0

and ±SE(BAssets).

Figure 15.7 shows hat-values, studentized residuals, and Cook’s distances for the quasi-Poisson

model fit to Ornstein’s interlocking directorate data. One observation—Number 1, the corporation

with the largest assets—stands out by combining a very large hat-value with the biggest absolute

studentized residual.53 This point is not a statistically significant outlier, however (indeed, the

Bonferroni p-value for the largest studentized residual exceeds 1). As shown in the DFBETA plot

in Figure 15.8, Observation 1 makes the coefficient of assets substantially smaller than it would

otherwise be (recall that the coefficient for assets is 0.02085). 54 In this case, the approximate

DFBETA is quite accurate: If Observation 1 is deleted, the assets coefficient increases to 0.02602.

53Unfortunately, the data source does not include the names of the firms, but Observation 1 is the largest of the Canadian

banks, which, in the 1970s, was (I believe) the Royal Bank of Canada.
54I invite the reader to plot the DFBETA values for the other coefficients in the model.
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Figure 15.9 Component-plus-residual plot for assets in the interlocking-directorate quasi-Poisson

regression. The broken line shows the least-squares fit to the partial residuals; the

solid line is for a nonrobust lowess smooth with a span of 0.9.

Before concluding that Observation 1 requires special treatment, however, consider the check for

nonlinearity in the next section.

15.4.2 Nonlinearity Diagnostics

Component-plus-residual and CERES plots also extend straightforwardly to GLMs. Nonpara-

metric smoothing of the resulting scatterplots can be important to interpretation, especially in

models for binary response variables, where the discreteness of the response makes the plots dif-

ficult to examine. Similar (if typically less extreme) effects can occur for binomial and count data.

Component-plus-residualandCERESplotsusethelinearizedmodelfromthelaststepoftheIWLS

fit.Forexample, thepartial residual forXj adds theworkingresidual toBjXij ; thecomponent-plus-

residual plot then graphs the partial residual against Xj . In smoothing a component-plus-residual

plot for a non-Gaussian GLM, it is generally preferable to use a nonrobust smoother.

A component-plus-residual plot for assets in the quasi-Poisson regression for the interlocking-

directorate data is shown in Figure 15.9. Assets is so highly positively skewed that the plot is

different to examine, but it is nevertheless apparent that the partial relationship between number

of interlocks and assets is nonlinear, with a much steeper slope at the left than at the right. Because

the bulge points to the left, we can try to straighten this relationship by transforming assets down

the ladder of power and roots. Trial and error suggests the log transformation of assets, after which

a component-plus-residual plot for the modified model (Figure 15.10) is unremarkable.

Box-Tidwell constructed-variable plots55 also extend straightforwardly to GLMs: When con-

sidering the transformation of Xj , simply add the constructed variable Xj loge Xj to the model

and examine the added-variable plot for the constructed variable. Applied to assets in Ornstein’s

quasi-Poisson regression, this procedure produces the constructed-variable plot in Figure 15.11,

which suggests that evidence for the transformation is spread throughout the data. The coefficient

for assets × logeassets in the constructed-variable regression is −0.02177 with a standard error

of 0.00371; the Wald-test statistic Z0 = −0.02177/0.00371 = −5.874 therefore indicates strong

evidence for the transformation of assets. By comparing the coefficient of assets in the original

55See Section 12.5.2.
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Figure 15.10 Component-plus-residual plot following the log-transformation of assets. The lowess

fit is for a span of 0.6.
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Figure 15.11 Constructed variable plot for the transformation of assets in the

interlocking-directorate quasi-Poisson regression.

quasi-Poisson regression (0.02085) with the coefficient of the constructed variable, we get the

suggested power transformation

λ̃ = 1 +
−0.02177

0.02085
= −0.044

that is, essentially the log-transformation, λ = 0.

Finally, it is worth noting the relationship between the problems of influence and nonlinearity

in this example: Observation 1 was influential in the original regression because its very large

assets gave it high leverage and because unmodelled nonlinearity put the observation below the

erroneously linear fit for assets, pulling the regression surface towards it. Log-transforming assets

fixes both these problems.

Alternative effect displays for assets in the transformed model are shown in Figure 15.12. Panel

(a) in this figure graphs assets on its “natural” scale; on this scale, of course, the fitted partial

relationship between log-interlocks and assets is nonlinear. Panel (b) uses a log scale for assets,

rendering the partial relationship linear.
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Figure 15.12 Effect displays for assets in the quasi-Poisson regression model in which assets has

been log-transformed. Panel (a) plots assets on its “natural” scale, while panel (b) uses

a log scale for assets. Rug plots for assets appear at the bottom of the graphs. The

broken lines give pointwise 95% confidence intervals around the estimated effect.

Most of the standard diagnostics for linear models extend relatively straightforwardly

to GLMs. These extensions typically take advantage of the computation of maximum-

likelihood and quasi-likelihood estimates for GLMs by iterated weighted least squares.

Such diagnostics include studentized residuals, hat-values, Cook’s distances, DFBETA

and DFBETAS, added-variable plots, component-plus-residual plots, and the constructed-

variable plot for transforming an explanatory variable.

Exercises

Exercise 15.1. Testing overdisperison: Let δ ≡ 1/ω represent the inverse of the scale parameter

for the negative-binomial regression model (see Equation 15.4 on page 392). When δ = 0, the

negative-binomial model reduces to the Poisson regression model (why?), and consequently a test

of H0: δ = 0 against the one-sided alternative hypothesis Ha : δ > 0 is a test of overdispersion. A

Wald test of this hypothesis is straightforward, simply dividing δ̂ by its standard error. We can also

compute a likelihood-ratio test contrasting the deviance under the more specific Poisson regression

model with that under the more general negative-binomial model. Because the negative-binomial

model has one additional parameter, we refer the likelihood-ratio test statistic to a chi-square

distribution with one degree of freedom; as Cameron and Trivedi (1998, p. 78) explain, however,

the usual right-tailed p-value obtained from the chi-square distribution must be halved. Apply

this likelihood-ratio test for overdispersion to Ornstein’s interlocking-directorate regression.

Exercise 15.2. *Zero-inflated count regression models:

(a) Show that the mean and variance of the response variable Yi in the zero-inflated Poisson

(ZIP) regression model, given in Equations 15.5 and 15.6 on page 393, are
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E(Yi) = (1 − πi)µi

V (Yi) = (1 − πi)µi(1 + πiµi)

(Hint: Recall that there are two sources of zeroes: observations in the first latent class,

whose value of Yi is necessarily 0, and observations in the second latent class, whose value

may be zero. Probability of membership in the first class is πi , and in the second 1 − πi .)

Show that V (Yi) > E(Yi) when πi > 0.

(b) Derive the log likelihood for the ZIP model, given in Equation 15.7 (page 394).

(c) The zero-inflated negative-binomial (ZINB) regression model substitutes a negative-

binomial GLM for the Poisson-regression submodel of Equation 15.6 on page 393:

loge µi = α + β1xi1 + β2xi2 + · · · + βkxik

p (yi |x1, . . . , xk) =
Ŵ(yi + ω)

y!Ŵ(ω)
×

µ
yi

i ωω

(µi + ω)µi+ω

Show that E(Yi) = (1 − πi)µi (as in the ZIP model) and that

V (Yi) = (1 − πi)µi[1 + µi(πi + 1/ω)]

When πi > 0, the conditional variance is greater in the ZINB model than in the standard

negative-binomial GLM, V (Yi) = µi +µ2
i /ω; why? Derive the log likelihood for the ZINB

model. [Hint: Simply substitute the negative-binomial GLM for the Poisson-regression

submodel in Equation 15.7 (page 394)].

Exercise 15.3. The usual Pearson chi-square statistic for testing for independence in a two-way

contingency table is

X2
0 =

r∑

i=1

c∑

j=1

(
Yij − µ̂ij

)2

µ̂ij

where the Yij are the observed frequencies in the table, and the µ̂ij are the estimated expected

frequencies under independence. The estimated expected frequencies can be computed from the

maximum-likelihood estimates for the loglinear model of independence, or they can be computed

directly as µ̂ij = Yi+Y+j/n. The likelihood-ratio statistic for testing for independence can also

be computed from the estimated expected counts as

G2
0 = 2

r∑

i=1

c∑

j=1

Yij loge

Yij

µ̂ij

Both test statistics have (r − 1)(c − 1) degrees of freedom. The two tests are asymptotically

equivalent, and usually produce similar results. Applying these formulas to the two-way table

for voter turnout and intensity of partisan preference in Table 15.4 (page 395), compute both test

statistics, verifying that the direct formula for G2
0 produces the same result as given in the text.

Exercise 15.4. *Show that the normal distribution can be written in exponential form as

p(y; θ, φ) = exp

{
yθ − θ2/2

φ
− 1

2

[
y2

φ
+ loge(2πφ)

]}

where θ = gc(µ) = µ; φ = σ 2 ; a(φ) = φ; b(θ) = θ2/2; and c(y, φ) = − 1
2

[
y2/φ + loge

(2πφ)
]
.
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Exercise 15.5. *Show that the binomial distribution can be written in exponential form as

p(y; θ, φ) = exp

[
yθ − loge(1 + eθ )

1/n
+ loge

(
n

ny

)]

where θ = gc(µ) = loge[µ/(1 − µ)]; φ = 1; a(φ) = 1/n; b(θ) = loge(1 + eθ ); and c(y, φ) =
loge

(
n
ny

)
.

Exercise 15.6. *Using the results given in Table 15.9 (on page 403), verify that the Poisson,

gamma, and inverse-Gaussian families can all be written in the common exponential form

p(y; θ, φ) = exp

[
yθ − b(θ)

a(φ)
+ c(y, φ)

]

Exercise 15.7. *Using the general result that the conditional variance of a distribution in an

exponential family is

V (Y ) = a(φ)
d2b(θ)

dθ2

and the values of a(·) and b(·) given in Table 15.9 (on page 403), verify that the variances of

the Gaussian, binomial, Poisson, gamma, and inverse-Gaussian families are, consecutively, φ,

µ(1 − µ)/n, µ, φµ2, and φµ3.

Exercise 15.8. *Show that the derivative of the log likelihood for an individual observation with

respect to the regression coefficients in a GLM can be written as

∂li

∂βj

=
yi − µi

ai(φ)v(µi)
×

dµi

dηi

× xij , for j = 0, 1, . . . , k

(See Equation 15.17 on page 404.)

Exercise 15.9. *Using the general expression for the residual deviance,

D(y; µ̂) = 2

n∑

i=1

Yi [g(Yi) − g(µ̂i)] − b [g(Yi)] + b [g(µ̂i)]

ai

show that the deviances for the several exponential families can be written in the following forms:

Family Residual Deviance

Gaussian
∑

(Yi − µ̂i)
2

Binomial 2
∑[

niYiloge
Yi

µ̂i
+ ni(1 − Yi)loge

1 − Yi

1 − µ̂i

]

Poisson 2
∑[

Yiloge
Yi

µ̂i
− (Yi − µ̂i)

]

Gamma 2
∑[

−loge
Yi

µ̂i
+

Yi − µ̂i

µ̂i

]

Inverse-Gaussian
∑ (Yi − µ̂i)

2

Yiµ̂
2
i
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Exercise 15.10. *Using the SLID data, Table 12.1 in Section 12.3.2 (on page 283) reports the

results of a regression of log wages on sex, the square of education, a quadratic in age, and

interactions between sex and education-squared, and between sex and the quadratic for age.

(a) Estimate the age γ1 at which women attain on average their highest level of wages, con-

trolling for education. Use the delta method to estimate the standard error of γ̂1. Note: You

will need to refit the model to obtain the covariance matrix for the estimated regression

coefficients.

(b) Estimate the age γ2 at which men attain on average their highest level of wages, controlling

for education. Use the delta method to estimate the standard error of γ̂2.

(c) Let γ3 ≡ γ1 − γ2, the difference between the ages at which men and women attain their

highest wage levels. Compute γ̂3. Use the delta method to find the standard error of γ̂3 and

then test the null hypothesis H0: γ3 = 0.

Exercise 15.11. Coefficient quasi-variances: Coefficient quasi-variances for dummy-variable

regressors were introduced in Section 7.2.1. Recall that the object is to approximate the standard

errors for pairwise differences between categories,

SE(Cj − Cj ′) =
√

V̂ (Cj ) + V̂ (Cj ′) − 2 × Ĉ(Cj , Cj ′)

where Cj and Cj ′ are two dummy-variable coefficients for an m-category polytomous explana-

tory variable; V̂ (Cj ) is the estimated sampling variance of Cj ; and Ĉ(Cj , Cj ′) is the estimated

sampling covariance of Cj and Cj ′ . By convention, we take Cm (the coefficient of the baseline

category) and its standard error, SE(Cm), to be 0. We seek coefficient quasi-variances Ṽ (Cj ), so

that

SE(Cj − Cj ′) ≈
√

Ṽ (Cj ) + Ṽ (Cj ′)

for all pairs of coefficients Cj and Cj ′ , by minimizing the total log relative error of approximation,∑
j<j ′

[
log(REjj ′)

]2
, where

REjj ′ ≡
Ṽ (Cj − Cj ′)

V̂ (Cj − Cj ′)
=

Ṽ (Cj ) + Ṽ (Cj ′)

V̂ (Cj ) + V̂ (Cj ) − 2 × Ĉ(Cj , Cj ′)

Firth (2003) cleverly suggests implementing this criterion by fitting a GLM in which the response

variable is Yjj ′ ≡ loge[V̂ (Cj −Cj ′)] for all unique pairs of categories j and j ′; the linear predictor

is ηjj ′ ≡ βj + βj ′ ; the link function is the exponential link, g(µ) = exp(µ) (which is, note, not

one of the common links in Table 15.1); and the variance function is constant, V (Y |η) = φ.

The quasi-likelihood estimates of the coefficients βj are the quasi-variances Ṽ (Cj ). For example,

for the Canadian occupational prestige regression described in Section 7.2.1, where the dummy

variables pertain to type of occupation (professional and managerial, white collar, or blue collar),

we have

Pair (j,j′) Yjj′ = loge [̂V(Cj − Cj′)]

Professional, White Collar loge(2.7712)=2.038

Professional, Blue Collar loge(3.8672)=2.705

White Collar, Blue Collar loge(2.5142)=1.844
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and model matrix

X =

⎡
⎢⎢⎣

(β1) (β2) (β3)

1 1 0

1 0 1

0 1 1

⎤
⎥⎥⎦

With three unique pairs and three coefficients, we should get a perfect fit: As I mentioned in

Section 7.2.1, when there are only three categories, the quasi-variances perfectly recover the

estimated variances for pairwise differences in coefficients. Demonstrate that this is the case by

fitting the GLM. Some additional comments:

• The computation outlined here is the basis of Firth’s qvcalc package (described in Firth,

2003) for the R statistical programming environment.

• The computation of quasi-variances applies not only to dummy regressors in linear models

but to all models with a linear predictor for which coefficients and their estimated covariance

matrix are available—for example, the GLMs described in this chapter.

• Quasi-variances may be used to approximate the standard error for any linear combination

of dummy-variable coefficients, not just for pairwise differences.

• Having found the quasi-variance approximations to a set of standard errors, we can then

compute and report the (typically small) maximum relative error of these approximations.

Firth and De Menezes (2004) give more general results for the maximum relative error for

any contrast of coefficients.

Summary

• A generalized linear model (or GLM) consists of three components:

1. A random component, specifying the conditional distribution of the response variable, Yi

(for the ith of n independently sampled observations), given the values of the explanatory

variables in the model. In the initial formulation of GLMs, the distribution of Yi was

a member of an exponential family, such as the Gaussian (normal), binomial, Poisson,

gamma, or inverse-Gaussian families of distributions.

2. A linear predictor—that is a linear function of regressors,

ηi = α + β1Xi1 + β2Xi2 + · · · + βikXk

3. A smooth and invertible linearizing link function g(·), which transforms the expectation

of the response variable, µi ≡ E(Yi), to the linear predictor:

g(µi) = ηi = α + β1Xi1 + β2Xi2 + · · · + βikXk

• A convenient property of distributions in the exponential families is that the conditional

variance of Yi is a function of its mean µi and, possibly, a dispersion parameter φ. In addition

to the familiar Gaussian and binomial families (the latter for proportions), the Poisson family

is useful for modeling count data, and the gamma and inverse-Gaussian families for modeling

positive continuous data, where the conditional variance of Y increases with its expectation.

• GLMs are fit to data by the method of maximum likelihood, providing not only estimates of

the regression coefficients but also estimated asymptotic standard errors of the coefficients.
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• The ANOVA for linear models has an analog in the analysis of deviance for GLMs. The

residual deviance for a GLM is Dm ≡ 2(loge Ls − loge Lm), where Lm is the maximized

likelihood under the model in question, and Ls is the maximized likelihood under a saturated

model. The residual deviance is analogous to the residual sum of squares for a linear model.

• In GLMs for which the dispersion parameter is fixed to 1 (binomial and Poisson GLMs), the

likelihood-ratio test statistic is the difference in the residual deviances for nested models.

For GLMs in which there is a dispersion parameter to estimate (Gaussian, gamma, and

inverse-Gaussian GLMs), we can instead compare nested models by an incremental F -test.

• The basic GLM for count data is the Poisson model with log link. Frequently, however,

when the response variable is a count, its conditional variance increases more rapidly than

its mean, producing a condition termed overdispersion and invalidating the use of the Poisson

distribution. The quasi-Poisson GLM adds a dispersion parameter to handle overdispersed

count data; this model can be estimated by the method of quasi-likelihood. A similar model

is based on the negative-binomial distribution, which is not an exponential family. Negative-

binomial GLMs can nevertheless be estimated by maximum likelihood. The zero-inflated

Poisson regression model may be appropriate when there are more zeroes in the data than

is consistent with a Poisson distribution.

• Loglinear models for contingency tables bear a formal resemblance to ANOVA models and

can be fit to data as Poisson GLMs with a log link. The loglinear model for a contingency

table, however, treats the variables in the table symmetrically—none of the variables is dis-

tinguished as a response variable—and consequently the parameters of the model represent

the associations among the variables, not the effects of explanatory variables on a response.

When one of the variables is construed as the response, the loglinear model reduces to a

binomial or multinomial logit model.

• The Gaussian, binomial, Poisson, gamma, and inverse-Gaussian distributions can all be

written in the common linear-exponential form:

p(y; θ, φ) = exp

[
yθ − b(θ)

a(φ)
+ c(y, φ)

]

where a(·), b(·), and c(·) are known functions that vary from one exponential family to

another; θ = gc(µ) is the canonical parameter for the exponential family in question; gc(·)
is the canonical link function; and φ > 0 is a dispersion parameter, which takes on a fixed,

known value in some families. It is generally the case that µ = E(Y ) = b′(θ) and that

V (Y ) = a(φ)b′′(θ).

• The maximum-likelihood estimating equations for generalized linear models take the com-

mon form

n∑

i=1

Yi − µi

aiv(µi)
×

dµi

dηi

× xij = 0, for j = 0, 1, . . . , k

These equations are generally nonlinear and therefore have no general closed-form solution,

but they can be solved by iterated weighted least squares (IWLS). The estimating equations

for the coefficients do not involve the dispersion parameter, which (for models in which the

dispersion is not fixed) then can be estimated as

φ̃ =
1

n − k − 1

∑ (Yi − µ̂i)
2

aiv(µ̂i)

The estimated asymptotic covariance matrix of the coefficients is

V̂(b) = φ̃
(
X′WX

)−1
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where b is the vector of estimated coefficients and W is a diagonal matrix of weights from

the last IWLS iteration.

• The maximum-likelihood estimating equations, and IWLS estimation, can be applied when-

ever we can express the transformed mean of Y as a linear function of the Xs and can

write the conditional variance of Y as a function of its mean and (possibly) a dispersion

parameter—even when we do not specify a particular conditional distribution for Y . The

resulting quasi-likelihood estimator shares many of the properties of maximum-likelihood

estimators.

• The residual deviance for a model is twice the difference in the log likelihoods for the

saturated model, which dedicates one parameter to each observation, and the model in

question:

D(y; µ̂) ≡ 2[loge L(y, φ; y) − loge L(µ̂, φ; y)]

= 2

n∑

i=1

Yi [g(Yi) − g(µ̂i)] − b [g(Yi)] + b [g(µ̂i)]

ai

Dividing the residual deviance by the estimated dispersion parameter produces the scaled

deviance, D∗(y; µ̂) ≡ D(y; µ̂)/φ̃.

• To test the general linear hypothesis H0: Lβ = c, where the hypothesis matrix L has q

rows, we can compute the Wald chi-square test statistic

Z2
0 = (Lb − c)′ [LV̂(b) L′]−1 (Lb − c)

with q degrees of freedom. Alternatively, if the dispersion parameter is estimated from the

data, we can compute the F -test statistic

F0 =
(Lb − c)′ [LV̂(b) L′]−1 (Lb − c)

q

on q and n − k − 1 degrees of freedom.

• The delta method may be used to approximate the standard error of a nonlinear function of

regression coefficients in a GLM. If γ ≡ f (β0, β1, . . . , βk), then

V̂(γ̂ ) ≈
k∑

j=0

k∑

j ′=0

vjj ′ ×
∂γ̂

∂β̂j

×
∂γ̂

∂β̂j ′

• Effect displays for GLMs are based on the fitted values η̂∗ = X∗b, representing a high-order

term in the model; that is, X∗ has the same general structure as the model matrix X, with

the explanatory variables in the high-term order ranging over their values in the data, while

other explanatory variables are set to typical values. The standard errors of η̂∗, given by the

square-root diagonal entries of X∗V̂(b)X∗′, may be used to compute pointwise confidence

intervals for the effects.

• Most of the standard diagnostics for linear models extend relatively straightforwardly

to GLMs. These extensions typically take advantage of the computation of maximum-

likelihood and quasi-likelihood estimates for GLMs by iterated weighted least squares.

Such diagnostics include studentized residuals, hat-values, Cook’s distances, DFBETA

and DFBETAS, added-variable plots, component-plus-residual plots, and the constructed-

variable plot for transforming an explanatory variable.
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Recommended Reading

• McCullagh and Nelder (1989), the “bible” of GLMs, is a rich and interesting—if generally

difficult—text.

• Dobson (2001) presents a much briefer overview of generalized linear models at a more

moderate level of statistical sophistication.

• Aitkin, Francis, and Hinde’s (2005) text, geared to the statistical computer package GLIM

for fitting GLMs, is still more accessible.

• A chapter by Firth (1991) is the best brief treatment of generalized linear models that I have

read.

• Long (1997) includes an excellent presentation of regression models for count data (though

not from the point of view of GLMs); an even more extensive treatment may be found in

Cameron and Trivedi (1998).


