2Knots User’s Guide (C++ version)

Jacob Towber Glenn Lancaster
DePaul University DePaul University

December 03, 2004

Contents

1

2

Overview

Major C++ Classes

21 FEvent. e
2.2 Still ...
2.3 ET - Elementary Transitions
24 Flicker e
2.5 Movie e e e

Movie Moves

Input Movie Format

4.1 ExampleInput,
Programs

5.1 ProgramA
9.2 ProgramB o o
5.3 ProgramCo

Executing the Programs

Examples

7.1 Sample input file for programB 0000 L.
7.2 Sample execution - programBo 0oL
7.3 Sample input file for programC

7.4 Sample execution - programCo

1 Overview

A set of C++ classes is provided to support computation of certain isotopy
invariants related to subsets of the Carter-Rieger-Saito movie moves in the
theory of smoothly knotted surfaces. These knots are described in J. Scott
Carter and Masahico Saito, Knotted Surfaces and Their Diagrams American
Mathematical Society, Providence, 1998.

The isotopy invariants are described more fully in [LLT].

We first describe in Section 2 the major C++ classes used to represent knots
as mowvies. In the Section 4 we specify the input format of movies required
by the application programs. A brief description of these application pro-
grams and how to run follows in Section 6. Finally, some example outputs
are given in Section 7.

2 Major C++ Classes

Smoothly knotted surfaces and more general 2-tangles are represented by
movies. C++ classes are provided to implement the components of such
movies. The Carter-Rieger-Saito movie moves are then expressed in terms
of relations between these movies.

The major classes used to describe a movie are described here.

2.1 FEvent

The FEvent class represents a framed event. An event is one of {Cap,Cup,NE,NW},
which are represented pictorially in figure 1, where the arrow gives an ori-
entation.

IRV/AVe
Cup Cap NE NW

Figure 1: The 4 Elementary Events

A framed event consists of either a ordered triple of the form [m, E, n| where
m and n are natural numbers and E is an elementary event, or a symbol of

the form 1,, where n is a natural number. An example of the first kind of
framed event is shown in figure 2 and is represented textually as [3,Cap,1]
and figure 3 shows an example of the second kind.

()

Figure 2: The Framed Event [3,Cap,1]

il

Figure 3: The Framed Event 13

2.2 Still

The Still class represents a still. A still is a sequence of framed events
with the property that the number of strings coming out of each framed
event matches the number of strings going in to the next framed event.
Figure 4 shows the still which is denoted by the sequence of 3 framed events:
[2,NW,0][1,Cap,1][0,NE,0]. Note that in our conventions, this notation read
from left to right corresponds to reading the diagram from bottom to top.

\

Bl

Figure 4: The still [2,NW,0][1,Cap,1][0,NE,0]

2.3 ET - Elementary Transitions

The class ET represents a general elemntary transition. In [CRS] these are
referred to as fundamental elementary string interactions. Each elementary
transition £ is an ordered pair of stills, of which the first is called the source
of £, and the second the target of £. An elementary transition £ is uniquely
determined by its source S and target T, in which case we shall write

E=[S=T]. (1)

o OV [
o WU m=
e O = () = <o
i]
= (J=\N =[ln=nl)

Figure 5: Elementary Transitions

ET3:

S

The elementary transitions fall into 9 types, samples of which are pic-
tured in Fig. 5.

2.4 Flicker

The C++ Flicker class represents a flicker.

A flicker is obtained from an elementary transition £ : U = V upon en-
hancing £ by a ‘bottom still’ B below, m vertical strings to the left of £ and
n to the right, and then a ‘top still’ T above. A flicker can be represented
by a pair of stills augmented to show the elmentary transition components,
U and V.

An example flicker shown in Figure 6 is given textually by
1_3s[2,Cup,1]1s[2,Cap,1]1[1,NW,0] => 1_3f[2,Cup,1][2,NE,1]1f[2,Cap,1[1,NW,0]

The sf notation augments the stills to indicate the source and target of the
elementary transition. The still enclosed in the s’s denotes the source still
of the enhanced elementary transition, while the still enclosed by the f’s
denotes the target. The bottom and top are common to both stills.

The flicker source is defined to be the bottom still and flicker target is defined
as the top still. In this example, the bottom still is 13 and the top still is
(2, Cup, 1][2, NE, 1]f[2, Cap, 1[1, NW, 0].

Note that in this textual notation, reading from left to right corresponds to
following the diagram from the bottom to the top.

S

Figure 6: Example Flicker

2.5 Movie

A Carter-Rieger-Saito movie) is a finite non-empty sequence of flickers such
that the target of each flicker in the sequence is equal to the target of the
next flicker. The C++ Movie class represents such a movie.

Here is an example movie:

[0,Cup,0]ss[0,Cap,0] =>0
[0,Cup,0]sf1_2fs[0,Cap,0] =>7
[0,Cup,0]£[0,Cap,0] [0,Cup,0]£f[0,Cap,0]

3 Movie Moves

Each of the Carter-Rieger-Saito movie-moves is associated with a positive
integer which we shall call its type, which ranges from 1 to 31. For any
subset U of {1,2,...,31}, [LLT] defines the notion of two movies being (U)-
regularly isotopic. We say M and M’ are U-regularly isotopic if it is
possible to go from M to M’ by a sequence of movie-moves NOT in U.
The C++ application programs we provide calculate U-regularly isotopy
invariants for the two cases, Y = {31} and U = .

4 Input Movie Format

The application program that computes U-balanced isotopy invariants for
movies expects the input movies to be described in an input file. The input
file should contain a list of 1 or more movie descriptions.

The input is free format; that is, input lines can be split into several lines
or combined and extra blanks or tabs are ignored. Newlines only affect
comment lines as they terminate a comment.

Here is a grammar describing the format. {z} means x can occur 0 or more
times. [z] means x is optional, and 'x” means the literal x should occur. An
italicized item description represents an arbitrary value of the kind described
by item description. Alternate values for a category are listed on separate
lines.

MovieList ::= MovieDescription { MovieDescription }
MovieDescription ::= [MovieName | Movie ’#°
MovieName = 'name’ ;" a movie name 'y’
Movie = Still { '=>" [natural number | Still }
Still = LblEvent { LblEvent }
LblFEvent = FEvent

’S’

’f’
FEvent 2= "1_natural number’

I’ natural number ’]’

I’ natural number ’, Event)" natural_number ’|’
Event := Cap

Cup

NE

NW

This grammar does not capture additional requirements for the ’s” and 'f’
labels.

1. The first still in a movie does not have any ’f’ labels.
2. The last still in a movie does not have any ’s’ labels.

3. Any still in a movie other than the first or last has exactly 2 ’s’ labels
and 2 ’f’ labels.

Comments can be also inserted anywhere in the input file. Every thing from
a % to the end of the line is ignored.

4.1 Example Input

Here is an example input file containing two movies.

The line numbers are not part of the file.

© 00 NO O WN -

e e e el
DOk W NN~ O

% This file contains three movies.

% second movie omits the optional movie name line.
name: a simple 2-unknot;

% This comment line is ignored

ss % This end of line comment is also ignored
=>

sf [0,Cup,0] [0,Cap,0]sf

=>

ff

#

ss =>

£[0,Cup,0]ss[0,Cap,0]f =>
[0,Cup,0]1fs[0,Cap,0] [0,Cup,0]fs[0,Cap,0] =>
s[0,Cup,0]ff[0,Cap,0]s =>

ff

#

Lines 1, 2, and 4 are comment lines and line 5 contains a comment after
initial movie fragment.

Line 3 is optional. The name provided here will be used to label the output.
If the name line is omitted, as it is for the second movie, the label will simply
be "Movie n’ for the n** movie in the file.

Lines 10 and 16 each mark the end of a movie.

5 Programs

Included with the 2Knots C++ classes are three application programs:

e ProgramA
e ProgramB and programB0

e ProgramC and programC0

5.1 ProgramA

Our U-balanced isotopy invariants are obtained by defining amplitudes of
movies which depend on assignment of values from Q[g, ¢ !]to 102 normal
coordinates’. In order that such an assignment respect all the movie-moves
not in U, a set of linear equations determine by these movie-moves must be
satisfied. ProgramA reads a file of movie-moves and generates this set of
equations. A separate computer algebra system is then used to solve these
equations.

5.2 ProgramB

ProgramB computes the U/-balanced isotopy invariants of each movie in an
input file formatted as in Section 4.

Two choices of U are available, Y = {31} and U = 0.

ProgramB computes the {31}-balanced isotopy invariants for any movie rep-
resenting a 2-knot. There are 5 such invariants. ProgramB0 computes the
(-balanced isotopy invariants for 2-knots.

There are are just 2 (-balanced isotopy invariants. Although these are in-
variant under all the movie-moves, it appears that they are uninteresting.
The initial example movies we have computed suggest a conjecture that
both the invariants computed in this case are just a multiple of the number
of connected components of a 2-tangle. So in particular for a 2-knot, these
invariants always appear to be equal to 1 as computed by programB0.

5.3 ProgramC

ProgramC accepts a pair of movie descriptions of 2-tangles and determines
whether each of the 5 {31}-balanced isotopy invariants give the same value
for the two 2-tangles. ProgramCO0 accepts the same input as programC and
performs the same computation, but for the 2 ()-balanced isotopy invariants.
The input format for programC (and programC0) is the same as for
programB except that exactly two movies should be input for programC.

6 Executing the Programs

After downloading the zip files containing the binary or the source versions
of the 2Knots classes and programs. If installation has been done (see the
installation instructions), the programs can be executed from a command
prompt.

For example, to run programB you will need to have first prepared an input
file of 1 or more movies formated as in Section 4. If the name of such an
input file is moviesl.txt, then you can run programB either like this:

programB moviesl.txt
or simply

programB
Enter name of file containing a movie:

(In the secon case the program prompts for the input file.)

The output of the program goes to standard output and also to a file whose
name is the same as the input file, but with ’.1og’ appended. In the example
above, the output be written to the file moviesl.txt.log.

7 Examples

7.1 Sample input file for programB

Here is an example input file:

% This is file example.txt:

#

name: Klein bottle;

ss =>

£[0,Cup,0]ss[0,Cap,0]f =>
[0,Cup,0]ssf[0,Cup,2];[1,Cap,1]1£[0,Cap,0] =>
[0,Cup,0]f[1,Cup,1]1s[0,Cap,2]1f[0,Cup,2]s[1,Cap,1][0,Cap,0] =>
[0,Cup,0][1,Cup,1]lsfsf[1,Cap,1]1[0,Cap,0] =>
[0,Cup,0]s[1,Cup,1]1£[2,NE,0]s[2,NW,0]1£[1,Cap,1] [0,Cap,0] =>
[0,Cup,0]f[2,Cup,0] [1,NW,1]1fs[2,NW,0][1,Cap,1]1s[0,Cap,0] =
[0,Cup,0] [2,Cup,0]s[1,NW,11£[1,NE,1]s[2,Cap,01£[0,Cap,0]

LU
vV Vv

10

[0,Cup,0][2,Cup,0]sfsf[2,Cap,0][0,Cap,0] =>
[0,Cup,0]s[2,Cup,0]f[1,Cap,1]1s[1,Cup,1]1£[2,Cap,0] [0,Cap,0] =>
[0,Cup,0]ffs[1,Cup,1][2,Cap,0]s[0,Cap,0] =>
s[0,Cup,0]ff[0,Cap,0]s =>

ff

#

name: simple torus;

ss =>

£[0,cup,0]ss[0,cap,0]f =>
[0,cup,0]fs[0,cap,0] [0,cup,0]fs[0,cap,0] =>
s[0,cup,0]ff[0,cap,0]s =>

ff

#

7.2 Sample execution - programB

Here is the sample execution of programB and the output. The output is
sent to standard output and also to the output log file, example.txt.log.
(In this sample, $ is the command prompt.) The name of the file can
alternatively be entered on the command line, in which case the program
does not prompt for the file name.

$ programB
Enter name of file containing a movie: example.txt

Movie 1: Klein bottle

Invariant 0: 1xq"-4+ 2xq~0+ 1xq~4
Invariant 1: 1*q~-4+ 2xq~0+ 1xq~4
Invariant 2: 1xq"-4+ 2xq~0+ 1xq~4
Invariant 3: 1*q~0
Invariant 4: 1*q~0

Movie 2: simple torus

Invariant 0: 1xq~-4+ 2xq~0+ 1xq~4
Invariant 1: 1*q~-4+ 2xq~0+ 1xq~4
Invariant 2: 1xq™-4+ 2xq~0+ 1xq~4

11

Invariant 3: 1*q~0
Invariant 4: 1%q~0

7.3 Sample input file for programC

Input for programC should be in the same format as for programB, but
should contain only 2 movies which will be compared. However, these movies
are not restricted to representations of 2-nots and may represent more gen-
eral 2-tangles. Here is a sample input file.

name: another movie move 1;
s[0,Cap,1]s =>
f£[0,NW,1][0,Cap,1]1f

#

s[0,NE,1]1[1,Cap,0]s =>
£[1,NW,0] [0,Cap,1]£

#

7.4 Sample execution - programC

Here is the execution and output of running programC on the sample input
file. Since the second movie did not have a 'name’ line, it is simply reported
as 'Movie2’. Both these movies have 3 input strings and so the amplitudes
act on 3 dimensional ’bit vectors’. The two tangles in the sample file differ
on the indicated bit vector.

$ programC tanglel.txt

Movie : another movie move 1
Movie : Movie2

Movies differ on input [0,0,1] for invariant O!

