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DYNAMICS NEAR MANIFOLDS OF EQUILIBRIA OF

CODIMENSION ONE AND BIFURCATION WITHOUT

PARAMETERS

STEFAN LIEBSCHER

Abstract. We investigate the breakdown of normal hyperbolicity of a mani-
fold of equilibria of a flow. In contrast to classical bifurcation theory we assume
the absence of any flow-invariant foliation at the singularity transverse to the
manifold of equilibria. We call this setting bifurcation without parameters.
We provide a description of general systems with a manifold of equilibria of
codimension one as a first step towards a classification of bifurcations with-
out parameters. This is done by relating the problem to singularity theory of
maps.

1. Introduction

We study dynamical systems with manifolds of equilibria near points at which
normal hyperbolicity of these manifolds is violated. Manifolds of equilibria appear
frequently in classical bifurcation theory by continuation of a trivial equilibrium.
Here, however, we are interested in manifolds of equilibria which are not caused
by additional parameters. In fact we require the absence of any flow-invariant
foliation transverse to the manifold of equilibria at the singularity. We therefore
call the emerging theory bifurcation without parameters.

Albeit the apparent degeneracy of our setting (of infinite codimension in the
space of all smooth vectorfields) there is a surprisingly rich and diverse set of ap-
plications ranging from networks of coupled oscillators [17], viscous and inviscid
profiles of stiff hyperbolic balance laws [15], standing waves in fluids [1, 2], binary
oscillations in numerical discretizations [11], population dynamics [7], cosmological
models [21], and many more. The present paper is a first step towards a classifica-
tion of bifurcations without parameters.

Consider a vector field
ẋ = f(x, y) in R

n,

ẏ = g(x, y) in R
m (1.1)
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with a manifold of equilibria {(0, y) : y ∈ R
m}; i.e.,

f(0, y) ≡ 0, g(0, y) ≡ 0. (1.2)

As long as the manifold remains normally hyperbolic; i.e., the linearization of f on
the manifold has no purely imaginary eigenvalues,

spec ∂xf(0, y) ∩ iR = ∅, (1.3)

there exists a local flow-invariant foliation with leaves homeomorphic to a stan-
dard saddle, for example by the theorem of Shoshitaishvili [19]. Bifurcations are
characterized by a non-hyperbolic block A of the linearization

(

A(y) 0
B(y) 0

)

=

(

∂xf ∂yf
∂xg ∂yg

)

(0, y), (1.4)

say at the origin; i.e., the spectrum of A(0) intersects the imaginary axis,

spec A(0) ∩ iR 6= ∅. (1.5)

Restricting to a center manifold we can assume

spec A(0) ⊂ iR. (1.6)

We will always assume that the vector field is smooth enough to allow suitable
expansions.

Note the analogy to classical bifurcation theory where y would be a param-
eter; i.e., g ≡ 0. For references on classical bifurcation theory see for example
[4, 14, 16, 20] and the references there. In the classical case, g ≡ 0, however, the
flow invariant transverse foliation {y = const.} is also present in a neighborhood of
the bifurcation point. This is no longer true in the general case (1.1), (1.2) without
parameters. Indeed, generic functions g of the form (1.2) yield a drift in the “pa-
rameter” direction y which excludes any flow-invariant foliation transverse to the
manifold of equilibria near a singularity (1.5). Thus, the resulting nonlinear local
dynamics differ considerably from classical bifurcation scenarios.

A rigorous analysis of bifurcations without parameters (1.1), (1.2), (1.6) has been
carried out for the following cases:

(i) A simple eigenvalue zero of A (transcritical point), n = m = 1, with lin-
earization at the bifurcation point:

(

0 0
1 0

)

,

see [17].
(ii) A pair of purely imaginary nonzero eigenvalues of A (Andronov-Hopf point),

n = 2, m = 1, with linearization at the bifurcation point:




0 1 0
−1 0 0
0 0 0



 ,

see [10]. A partial description can also be found in [7].
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(iii) An algebraically double and geometrically simple eigenvalue zero of A
(Bogdanov-Takens point), n = m = 2, with linearization at the bifurca-
tion point:









0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0









,

see [8]. With additional symmetries, this case is also studied in [1, 2]

Note the nonzero blocks B at transcritical and Bogdanov-Takens points yield-
ing a drift in y-direction and excluding any flow-invariant transverse foliation.
At Andronov-Hopf points this drift is induced by a generic second-order term

Πy∆x

(

f
g

)

(0) 6= 0 which is the leading order term of the drift in y-direction aver-

aged over the periodic motion of the linearization.
Bifurcations without parameters can also appear combined with additional pa-

rameters, for example g(y) = g(y1, y2) = (g1(y1, y2), 0). For Bogdanov-Takens
points the case of a generic vector field with two-dimensional equilibrium manifold
turns out to be equivalent to the case of a generic one-parameter family of vector
fields with one-dimensional equilibrium manifolds, at least up to leading order of
the suitably rescaled normal form; see [8]. Both viewpoints are closely related in
this case. In the example of a transcritical point with drift singularity, studied in
section 2, however, both settings lead to drastically different dynamical systems,
see Remark 2.2.

In the present paper we analyze the case x ∈ R, y ∈ R
m of dynamical systems

with a codimension-one manifold of equilibria. As it turns out, the dynamics near
bifurcation points of codimension m on these manifolds can be related to singu-
larities of smooth maps h : R

m+1 → R; the Theorem 3.1. This correspondence
permits the application of singularity theory and most notably of the classification
of singularities to bifurcations without parameters. It might serve as a first step
towards a classification of general bifurcations without parameters.

In section 2 we will start with an example to illustrate the general theorem
formulated and proved in section 3. In section 4 we conclude with a discussion of
further questions, possibilities and problems.

2. Transcritical points with drift singularity

Let us first discuss the cases m = 1, 2 of bifurcations along one- and two-
dimensional equilibrium manifolds as an example to illustrate the general theorem
in section 3.

2.1. Transcritical point. The case m = 1 of a line of equilibria in a 2-dimensional
center manifold has already been studied in [17], see also [9]. In classical bifurcation
theory, the only robust bifurcation of

ẋ = f(x, λ) in R, f(0, λ) ≡ 0,

λ̇ = 0 in R
(2.1)

is the transcritical bifurcation with normal form

ẋ = x(x − λ) + high order terms (2.2)
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Figure 1. Transcritical bifurcation point: classical (a) and with-
out parameters (b).

see Figure 1(a). It is caused by the nontrivial eigenvalue of the linearization at
the equilibrium x = 0 crossing zero with nonvanishing speed as the parameter λ
increases. Together with the non-degeneracy condition ∂2

xf(0, 0) 6= 0, this implies
the above normal form (2.2).

Without parameters,

ẋ = f(x, y) in R, f(0, y) ≡ 0,

ẏ = g(x, y) in R, g(0, y) ≡ 0,
(2.3)

the nontrivial eigenvalue ∂xf(0, y) can change sign along lines of equilibria {y = 0}.
The generic normal form reads

ẋ = xy + high order terms,

ẏ = x,
(2.4)

see Figure 1(b). It requires the same transversality condition of the nontrivial
eigenvalue as the classical transcritical bifurcation. The non-degeneracy condition,
however, is replaced by ∂xg(0, 0) 6= 0 and yields the two-dimensional Jordan block
of the linearization at the transcritical point. Trajectories form parabolas with
tangency to the line of equilibria at the transcritical point. The flow direction is
reversed on opposite sides of the equilibrium line.

2.2. Parameter dependent transcritical point with drift singularity. Along
two-dimensional equilibrium manifolds we expect transcritical points to form one-
dimensional curves, by the implicit function theorem. At isolated points one of the
non-degeneracy conditions may fail and codimension-two singularities appear. We
will discuss the case of failing drift condition, first in a one-parameter family of
lines of equilibria and then along a two-dimensional equilibrium surface.

With one parameter, the setting is as follows. We consider a system
(

ẋ
ẏ

)

= F (x, y, λ) =

(

f(x, y, λ)
g(x, y, λ)

)

x, y, λ ∈ R,

λ̇ = 0,

(2.5)



EJDE-2011/63 DYNAMICS NEAR MANIFOLDS OF EQUILIBRIA 5

with the following properties:

(i) For all parameter values, there exists a line of equilibria, F (0, y, λ) ≡ 0,
forming a plane of equilibria in the extended phase space.

(ii) For all parameter values, the origin is a transcritical point; i.e., the origin
has an eigenvalue zero in transverse direction to the equilibrium plane,
∂xf(0, 0, λ) ≡ 0.

(iii) For all parameter values, this nontrivial eigenvalue crosses zero with non-
vanishing speed as y increases, ∂y∂xf(0, 0, 0) > 0.

(iv) At λ = 0 the drift non-degeneracy condition fails, ∂xg(0, 0, 0) = 0.
(v) This drift degeneracy is transverse; i.e., the drift changes direction with

nonvanishing speed, as λ increases, ∂λ∂xg(0, 0, 0) > 0.

The first condition is our structural assumption, (iii), (v) are non-degeneracy as-
sumptions fulfilled generically, and (ii), (iv) describe our bifurcation point. This
setup is robust; i.e., under small perturbations of F respecting (i) there is a point
near the origin satisfying (ii)–(v) for the perturbed system. From the viewpoint of
singularity theory, (ii,iv) define a singularity of codimension two that is unfolded
versally by the coordinate y along the line of trivial equilibria and the parameter
λ.

Condition (i) allows us to factor out x,

F (x, y, λ) = xF̃ (x, y, λ), (2.6)

with smooth F̃ . Conditions (ii-v) yield an expansion

F̃ (x, y, λ) =

(

ax + by
cx + dy + σλ

)

+ O((|x| + |y| + |λ|)2), (2.7)

with coefficients a, b, c, d, σ ∈ R, b > 0, σ > 0. We assume an additional non-
degeneracy condition

(vi) The matrix

∂(x,y)

( 1

x
F

)

(0, 0, 0) =

(

a b
c d

)

is hyperbolic; i.e., has no purely imaginary eigenvalues.

Setting

δ := ad − bc, τ := a + d, (2.8)

for determinant and trace, we therefore have δ 6= 0, and τ 6= 0 if δ > 0.
Applying the multiplier x−1 to system (2.6) preserves trajectories for x 6= 0 but

reverses their direction for x < 0. After the coordinate transformation x̃ = x,
ỹ = ax + by, λ̃ = bσλ, we obtain

(

x̃′

ỹ′

)

=

(

ỹ

−δx̃ + τ ỹ + λ̃

)

+ O((|x| + |y| + |λ|)2). (2.9)

This yields a bifurcating equilibrium at (x̃, ỹ) ≈ (λ̃/δ, 0). Transversality of the
branch of equilibria with respect to the trivial line of equilibria as well as the hy-
perbolicity of the nontrivial equilibria is ensured by condition (vi). Therefore, terms
of higher order in (2.9) will preserve this structure. See Figure 2 for phase por-
traits in various cases. Note the appearance of the generic transcritical bifurcation
without parameters, Figure 1, for λ 6= 0.
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Figure 2. Drift singularity along a one-parameter family of tran-
scritical points.

2.3. Transcritical point with drift singularity without parameters. Re-
placing the parameter λ discussed above by an additional direction of a plane of
equilibria, the drift along this manifold of equilibria is now a two-dimensional vec-
tor. If will not vanish along generic one-dimensional curves. The drift singularity
along curves of transcritical points is therefore not characterized by a vanishing
drift but rather by a drift direction orthogonal to the curve of transcritical points.
(A drift in λ-direction was not possible before.)
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The correct setup is given by a system

(

ẋ
ẏ

)

= F (x, y) =

(

f(x, y)
g(x, y)

)

, x ∈ R, y ∈ R
2, (2.10)

y = (y1, y2), g = (g1, g2), with the following properties:

(i) The y-plane consists of equilibria, F (0, y) ≡ 0.
(ii) There is a transcritical point at the origin; i.e., the y-plane loses normal

hyperbolicity at this point, ∂xf(0, 0, 0) = 0.
(iii) This loss of normal hyperbolicity is caused by the transverse eigenvalue

crossing zero transversally, ∇y∂xf(0, 0, 0) 6= 0. Without loss of generality,
the gradient points in y1-direction; i.e., ∂y1

∂xf(0, 0, 0) > 0, ∂y2
∂xf(0, 0, 0) =

0. By implicit function theorem, this gives rise to a curve of transcritical
points tangential to the y2-axis.

(iv) At the origin, the drift non-degeneracy transverse to the curve of transcrit-
ical points fails, ∂xg1(0, 0, 0) = 0.

(v) This drift degeneracy is transverse; i.e., the drift direction crosses the tan-
gent to the curve of transcritical points with nonvanishing speed along the
curve of transcritical points,

∂y1
∂xf(0, 0, 0)∂y2

∂xg1(0, 0, 0) + ∂2
y2

∂xf(0, 0, 0)∂xg2(0, 0, 0) 6= 0.

(vi) The drift does not vanish at the origin; i.e., there is a component tangential
to the curve of transcritical points, ∂xg2(0, 0, 0) > 0.

Note that conditions (i)–(v) correspond to the conditions of the previous section.
Again, the degeneracies (ii,iv) are robust under perturbations satisfying (i), pro-
vided the non-degeneracy conditions (iii), (v), (vi) hold. The signs of ∂y1

∂xf(0, 0, 0)
and ∂xg(0, 0, 0) in (iii), (v) can be inverted by reflecting y1 7→ −y1 and y2 7→ −y2,
respectively.

The non-degeneracy condition (vi) indeed yields

d

d y2
〈∇(y1,y2)∂xf, ∂xg〉(0, ϑ(y2), y2)

∣

∣

y2=0
6= 0, (2.11)

where (x, y1, y2) = (0, ϑ(y2), y2), ϑ(0) = 0, ϑ′(0) = 0, is the curve γ of transcritical
points. Locally, we could reparametrize y to achieve ϑ ≡ 0. Conditions (ii), (iii),
(vi) would then read: ∂xf(0, 0, y2) ≡ 0, ∂y1

∂xf(0, 0, y2) > 0, ∂y2
∂xg1(0, 0, 0) 6= 0.

But let us continue with the general setup.
As in the parameter-dependent case (2.6), we can factor out x due to condition

(i),

F (x, y) = xF̃ (x, y) = x

(

f̃(x, y)
g̃(x, y)

)

. (2.12)

However, this time, due to non-degeneracy (vi) no equilibrium remains,

F̃ (0, 0, 0) = (0, 0, ∂xg2(0, 0, 0)) 6= 0. (2.13)

Applying the flow-box theorem, there exists a local smooth diffeomorphism

h(z0, z1, z2) = Φ̃z2
(z0, z1, 0), (2.14)
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where Φ̃t denotes the flow generated by the vector field F̃ . This diffeomorphism
fixes the origin and transforms F̃ into the constant vectorfield,

[Dh(z0, z1, z2)]
−1F̃ (h(z0, z1, z2)) =





0
0
1



 . (2.15)

Applying the same transformation to the original vector field F , we obtain

[Dh(z)]−1F (h(z)) = [Dh(z)]−1h0(z)F̃ (h(z)) =





0
0

h0(z)



 , (2.16)

where h = (h0, h1, h2).
In a suitable neighborhood of the origin, the vectorfield F is flow-equivalent to

a vectorfield

ż2 = h0(z0, z1, z2) (2.17)

on the real line depending on two (classical) parameters (z0, z1). Expansion of h0

using (2.14) and conditions (ii)-(vi) yields

ż2 = az3
2 +(c0z0+c1z1)z

2
2 +(bz1+c2z0+c3z

2
0 +c4z0z1+c5z

2
1)z2+z0+O(|z|4) (2.18)

with

a =
(

∂y1
∂xf(0)∂y2

∂xg1(0) + ∂2
y2

∂xf(0)∂xg2(0)
)

∂xg2(0) 6= 0,

b = ∂y1
∂xf(0) 6= 0.

(2.19)

In particular h0(0, 0, z2) = az3
2+O(|z2|

4). This is a cusp singularity. See [12, 13, 5, 3,
18] for a background on singularity theory and its connection to dynamical systems.
In fact, non-degeneracies (2.19) allow to diffeomorphically transform (2.18) into the
normal form

ż2 = ±z3
2 + z1z2 + z0 + O(zN

2 ), (2.20)

for arbitrary normal-form order N , see for example [6], proposition 6.10. This is a
minimal versal unfolding of the cusp singularity. See Figure 3.

Reverting the flow-box transformation, the cusp singularity yields a description
of the local dynamics near a transcritical point with drift singularity on a two-
dimensional manifold of equilibria. Note in particular the cusp-shaped fold line

γ : z3
1 = ∓

27

4
z2
0 + O(z

N/3
0 ), z3

2 = ±
1

2
z0 + O(z

N/3
0 )

of the manifold of equilibria that is connected by heteroclinic orbits to the curve

σ : z3
1 = ∓

27

4
z2
0 + O(z

N/3
0 ), z3

2 = ∓4z0 + O(z
N/3
0 ).

Proposition 2.1. Under condition (i)-(vi) the vector field (2.10) in a local neigh-
borhood U of the origin is flow-equivalent to the cusp singularity (2.20). Depending
on the sign of the cubic term, that is the sign of a = sign(∂y1

∂xf(0)∂y2
∂xg1(0) +

∂2
y2

∂xf(0)∂xg2(0)), all trajectories in U converge to an equilibrium (0, y) in forward
time (a = −1) or backward time (a = +1).

In U , the transcritical points on the manifold of equilibria form a curve γ through
the origin. The unstable (for a = −1) and stable (for a = +1) sets, respectively,
of the two components γ1, γ2 of γ \ {0} form manifolds of heteroclinic orbits on
opposite sides of the manifold of equilibria. Their targets in forward time (a = −1)
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Figure 3. Cusp singularity ż2 = az3
2 + z1z2 + z0 with a = −1.

Reverse direction of trajectories and signs of z0, z1 for a = +1.
The fold line γ is connected by heteroclinic orbits to the curve σ,
both curves have a common tangent at the origin.

equ
ilib

ria
γ

σ

equilibria

γ
σ

Figure 4. Transcritical point with drift singularity on a plane of
equilibria. Stable set of the line γ of transcritical points in green,
unstable set in red, selected trajectories in blue. Two different
views for a = −1. Reverse direction of trajectories and switch
colors of manifolds for a = +1.

or backward time (a = +1) again form curves σ1,2 on the manifold of equilibria
with σ1 ∪ {0} ∪ σ2 being a tangential curve to γ. See Figure 4.

Remark 2.2. In contrast to the parameter-dependent drift singularity no equilib-
ria bifurcate. In fact, the drift non-degeneracy excludes any kind of recurrent or
stationary orbits except the primary manifold of equilibria.
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3. General Bifurcation at codimension-one manifolds

We consider the general case of a manifold of equilibria of codimension one,
(

ẋ
ẏ

)

= F (x, y) =

(

f(x, y)
g(x, y)

)

, x ∈ R, y ∈ R
m. (3.1)

Typically, such a system will arise as a reduced system on a center manifold of
finite smoothness. Following the discussion in the previous section we obtain the
following theorem.

Theorem 3.1. The exists a generic subset of the class of all smooth vector fields
(3.1) with an equilibrium manifold {x = 0} of codimension one. For every vector
field in that class the following holds true:

At every point (x = 0, y) the vector field is locally flow equivalent to a m-
parameter family

żm = ±zℓ+1
m +

ℓ−1
∑

k=0

zkzk
m + O(zN

m), (3.2)

0 ≤ ℓ ≤ m, of vector fields on the real line. Here N is the arbitrary but finite normal-
form order bounded by the smoothness of the initial vector field (3.1), f, g ∈ CM ,
N ≤ M , N < ∞. This is a versal unfolding of the singularity żm = ±zℓ+1

m at the
origin.

In particular, near bifurcation points of codimension m, that appear robustly at
isolated points on the equilibrium manifold, the vector field is locally flow equivalent
to

żm = ±zm+1
m +

m−1
∑

k=0

zkzk
m + O(zN

m); (3.3)

i.e., a universal unfolding of the singularity żm = ±zm+1
m at the origin.

Proof. The equilibrium condition f(0, y) = g(0, y) = 0 for all y ∈ R
m allows us to

factor out x.

F (x, y) = xF̃ (x, y) = x

(

f̃(x, y)
g̃(x, y)

)

. (3.4)

The resulting vector field F̃ : R
m+1 → R

m+1 does not vanish on the m-dimensional
submanifold {x = 0}, for generic F . Without loss of generality, consider a neigh-
borhood U ⊂ R

m+1 of the origin.
We can apply the flow-box theorem to F̃ : Take a local smooth section

Σ : R
m ⊃ V −→ U, (3.5)

through the origin, Σ(0) = 0, transverse to the vector field F̃ in U . Let Φ̃t be the

flow generated by F̃ . Then the flow-box transformation

h(z0, . . . , zm) = Φ̃zm
(Σ(z0, . . . , zm−1)) (3.6)

transforms F̃ into the constant vector field [Dh]−1(F̃ ◦ h) = (0, . . . , 0, 1). Again,

Φ̃t denotes the flow to the vector field F̃ . Applying the transformation h to the
vector field F |U , we obtain a m-parameter family [Dh]−1(F ◦ h) = (0, . . . , 0, πxh)
of vector fields on the real line in a neighborhood V of the origin.

Classification of germs of vector fields and their versal unfoldings is the topic of
singularity or catastrophe theory.
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Singularities on the real line have the form żm = ±zℓ+1
m . In generic m-parameter

families at most m+1 leading coefficients of the Tailor expansion vanish; i.e., ℓ ≤ m
and

żm = ±zℓ+1
m +

ℓ−1
∑

k=0

ζk(z0, . . . , zm−1)z
k
m + O(zℓ+2

m ).

The coefficient ζℓ vanishes by linear transformation of zm and the map

(z0, . . . , zm−1) 7→ (ζ0, . . . , ζℓ−1)

has full rank, generically. Remainder terms, O(zℓ+2
m ), can be pushed to any finite

normal-form order, by a suitable coordinate change. This yields system (3.2). See
also [6, Chapter 6].

Genericity conditions amount to algebraic conditions of the coefficients of the
Taylor expansion at the origin. These conditions translate via (3.6) to generic
conditions on F .

The versal unfolding (3.2), one the other hand, is a system of the form (3.1).
Therefore, it represents the versal unfolding of a generic singularity along m-
dimensional manifolds of equilibria in (m + 1)-dimensional phase space. �

4. Discussion

The present result is a first step towards a more systematic treatment of bifur-
cations without parameters than done by case studies in [10, 8, 1].

The removal of the manifold of equilibria by a scalar, albeit singular, multiplier
greatly facilitates the analysis but restricts it to the case of manifolds of codimension
one in the phase space, see (2.12) and (3.4). Hopf points and Bogdanov-Takens
points require manifolds of equilibria of at least codimension two. Their analysis in
[10, 8] uses a blow-up or rescaling procedure reminiscent of the scalar multiplier used
here. It seems worthwile to closer connect these bifurcations without parameters to
singularity theory. This might provide a suitable setting to also include singularities
of the set of equilibria and generalize the manifold to varieties.

Contrary to classical bifurcation theory, no recurrent dynamics has been found
so far near bifurcation points without parameters. For the codimension-one man-
ifolds of equilibria discussed here, the drift nondegeneracy yielding the flow-box
transformation prevents any recurrent dynamics. Similar drift conditions hold true
at generic Hopf and Bogdanov-Takens points. In fact this is the drift which distin-
guishes bifurcations without parameters from classical bifurcations by preventing
any flow-invariant transverse foliation. Recurrent dynamics should be possible at
bifurcations points of higher codimension as the drift condition gets less restrictive.
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