Minutes of the meeting 06.05.2014: analysis of time-like form factor measurements at PANDA

[1] Presence:

Alaa Dbeyssi, Dmitry Khaneft, Frank Maas, Maria Carmen Mora Espi, Egle Tomasi-Gustafsson and Manuel Zambrana.

- [2] Dmitry presented slides showing:
 - a) the acceptance of the sub-detectors of PANDA at the three values of the momentum transfer squared: s = 5.4, 8.21 and 13.8 $[\text{GeV/c}]^2$;
 - b) the ratio of the differential cross sections pions $(\bar{p}p \to \pi^+\pi^-)$ to electrons $(\bar{p}p \to e^+e^-)$ at the same values of the energy s.
- [3] Discussion on future results: Alaa prepares the table of the total cross sections and the expected counts for the processes $\bar{p}p \to \pi^+\pi^-$ and $\bar{p}p \to e^+e^-$, with the kinematical conditions. Note that, it is very important to keep in mind that the luminosity has decreased by a factor $3 \to 10$. The table is prepared for:
 - a) luminosity : 2 fb $^{-1}$ and 0.2 fb $^{-1}$.
 - b) the cross section of the $\bar{p}p \to e^+e^-$ is calculated using the following parametrization for the proton from factors:

$$|G_M| = \frac{22.5}{1+s \ [GeV^2]/3.6} G_D^2, \ G_D = (1+s \ [GeV^2]/0.71)^{-1}.$$
 (1)

and $|G_E| = |G_M|$.

- c) The s-values are chosen with the following criteria:
 - * the first three points are the "standard" values where the background is generated.
 - * the last four points correspond to the upper measurable limit of the total cross section of the signal (the range follows the possible different normalization of FFs).
 - * the total cross section in integrated in the range $|\cos \theta| \leq 0.8$.

$s [{\rm GeV/c}]^2$	$p [\mathrm{GeV/c}]$	R	$\sigma(e^+e^-)$ [pb]	$N(e^+e^-)$	$\sigma(\pi^+\pi^-) [\mu b]$	$N(\pi^+\pi^-)$	$\sigma(\pi^+\pi^-)/\sigma(e^+e^-)$
5.4	1.7	1	417.39	83.48 10 ⁴	101.06	$202.12 \ 10^9$	$0.24 \ 10^6$
				$83.48 \ 10^3$		$202.12 \ 10^8$	
8.2	3.306	1	24.61	$49.21 \ 10^3$	2.95	$5.9 \ 10^9$	$0.12 \ 10^6$
				$49.21 \ 10^2$		$5.9 \ 10^8$	
13.8	6.347	1	0.77	1538.16	0.16	$3.18 \ 10^8$	$0.21 \ 10^6$
				153.82		$3.18 \ 10^7$	
16.7	7.906	1	$21.35 \ 10^{-2}$	426.93	0.05	$10.05 \ 10^7$	$0.24 \ 10^6$
				42.69		$10.05 \ 10^6$	
22.3	10.905	1	$30.22 \ 10^{-3}$	60.43	0.01	$2.05 \ 10^7$	$0.34 \ 10^6$
				6.04		$2.05 \ 10^6$	
24.35	12.	1	$16.63 \ 10^{-3}$	33.25	$0.67 \ 10^{-2}$	$1.33 \ 10^7$	$0.4 \ 10^6$
				3.33		$1.33 \ 10^6$	
27.9	13.898	1	$65.81 \ 10^{-4}$	13.16			
				1.32			

TABLE I: Total cross section integrated in the range $|\cos\theta| \le 0.8$ and number of counts, for $\overline{p} + p \to e^+ + e^-$, $\overline{p} + p \to \pi^+ + \pi^-$, corresponding to an integrated luminosity $\mathcal{L} = 2$ fb⁻¹ and $\mathcal{L} = 0.2$ fb⁻¹.

^[4] Alaa showed simulation results for the signal with different versions of PANDARoot.