Math 240
Dr. Putnam

Memorization $2 F$
Spring 2014

Trigonometry
Pierce College

1. $[9+4$ points $]$

For each point (a, b) draw a standard position angle (+ or - as indicated) with terminal side through (a, b).

Then give that angle's Cosine, Sine and Tangent.

The unit circle is shown.

$\pm \angle$	(a, b)	$\operatorname{Cos}(\angle)$	$\operatorname{Sin}(\angle)$	$\operatorname{Tan}(\angle)$
-	$(-2.5,0)$			
-	$(-1,3 / 4)$			
+	$(1 / 2,-1 / 2)$			

2. $[3+3+2+2+1$ points $] \quad$ Write the specified identity with the given variable.

Pythagorean Identitity with Tangent and θ	Periodic Identitity with Cosine and β
Pythagorean Identitity with Tangent and α (Yet another form)	Pythagorean Identitity with Tangent and ϕ (Another form)

3. $[4+4+4$ points $]$ Triangle labeling and the Cosine Law

Label the sides and angles of the General Triangle at left with letters.

Make β the smallest angle.

b	$=\sqrt{ }(\ldots)$
β	$=\operatorname{ArcCos}($

4. $[4+2+2+2+4+6+4+6$ points $]$ Rectangle diagram. Complete everything as done in class.

Draw all four angles in standard position on the diagram above.

5. $[7+4+9+2+2+14+8$ points $] \quad$ Graph one waveform of the curve $y=+6 \operatorname{Sin}(2 t / 3)$.

Show period computation: \qquad .

t			0		
y					

Complete this table of 5 distinct points at the big tic marks above (quadrantal angles).

Show computation for y at the first + small tic:

Show computation for y at the second + small tic:

Complete this table of 8 distinct points at the small tic marks above (two in each quadrant).

t								
y					$\pi / 4$	$\pi / 4$		

Use your graphs to find two solutions to each equation.

6. $[3+2+3$ points $] \quad \beta=+9 \pi / 3$

The angles θ and ϕ are coterminal with β.

$$
\begin{aligned}
& 0<\theta<2 \pi, \theta= \\
& -2 \pi<\phi<0, \phi=
\end{aligned}
$$

Sketch β, θ, ϕ in standard position.

$\operatorname{Cos}(\theta)=$
$\operatorname{Sin}(\phi)=$
$\operatorname{Tan}(\beta)=$

7. [12 points] Memorization Sentences (Fil	
Remember to include the \qquad symbol on your angle answers when not in	The point where the terminal side of an angle in standard position intersects the \qquad circle has coordinates $(x, y)=($ \qquad \qquad).
The \qquad solution to an equation contains \qquad values of the \qquad that make the equation true.	A nonidentity has a \qquad of its \qquad for which \qquad

\qquad

