Electric Charges

1. The fundamental rule of all electrical phenomena is:

Like charges \qquad , opposite charges \qquad
2. Thomson's cathode ray experiment proved that:
3. Millikan's oil drop experiment proved that:
4. The SI unit of charge is \qquad , symbol \qquad
5. The charge of an electron is \qquad

The charge of a proton is \qquad

The charge of a neutron is \qquad
6. 1 C is the charge of \qquad electrons

Charging an Object

7. There are three ways to charge an object:
1) Electrons are being transferred when one material rubs against another
2) Electrons can be transferred from one material to another by simply touching
3) A charged object can be used to charge another object without contact is called:
8. Three identical metal balls A, B, and C. Ball A has 4 C, and both ball B and C are neutral. If ball A contacts ball B momentarily, and then ball B contacts ball C momentarily, what will be the charge on all three balls afterward?

9. Write down the Law of conservation of charge.
10. When a charged rod touched an insulator at B, where can you find the highest density of charges? Insulator

11. When a charged rod touched a metal at B, where can you find the highest density of charges?

12. Approach a negatively charged rod to a neutral metal ball and touch the other side of the ball momentarily with your finger, what will happen to the ball?
13. The reason a charged balloon will stick to a wall is that
a) electrons transfer back and forth between the wall and the balloon.
b) induced opposite charges in the wall are closer than other wall charges.
c) the rubber of the balloon simply sticks to walls.
d) the charge is slightly sticky and acts like glue.
e) none of the above
14. When a charged cloud passes overhead, the ground below is charged by
15. Many molecules are electrically polarized in their normal states. The distribution of electric charge is not perfectly even. Such molecules are called
16. An electroscope is charged negatively, as shown by foil leaves that stand apart. As a positively charged rod is brought close to the electroscope, the leaves
a) spread farther apart.
b) do not move.
c) move closer together.
d) spread farther apart first, and then move closer together.
e) can not be determined.
f) none of the above.

Types of Materials

17. Which of the following statement is true?
a) The semiconductor becomes conductive when doped with impurities.
b) In a good insulator, electrons are usually free to move around.
c) A conductor has more electrons than protons.
d) Superconductor becomes a perfect conductor when the temperature is high enough.
e) Water is a good conductor since it ${ }^{\text {t }} \mathrm{s}$ an electric dipole.
f) None of the above.

Electrostatic Force - The Coulomb's Law

18. Coulomb's torsion balance experiment concluded that:
19. Coulomb's Law formula:
$F_{e}=$
$k=$ \qquad
20. Proportional \& Inverse Square relations of Coulomb's Law:

Charge 1	Charge 2	Distance	Electric Force
\boldsymbol{q}_{1}	\boldsymbol{q}_{2}	\boldsymbol{d}	$\boldsymbol{F}_{\boldsymbol{e}}$
$2 q_{1}$	$3 q_{2}$	d	
$2 q_{1}$	$1 / 2 q_{2}$	d	
$2 q_{1}$	q_{2}	$2 d$	
q_{1}	$3 q_{2}$	$2 d$	
$2 q_{1}$	$2 q_{2}$	$2 d$	
$2 q_{1}$	q_{2}	$1 / 2 d$	
$1 / 2 q_{1}$	q_{2}	$1 / 2 d$	
$2 q_{1}$	$1 / 2 q_{2}$	$2 d$	
$1 / 2 q_{1}$	$1 / 2 q_{2}$	$1 / 2 d$	

Application of Coulomb's Law

21. A 3-C charge and a 2 -C charge attract each other with 5 N of force. How much will a $4-\mathrm{C}$ charge and a $6-\mathrm{C}$ charge attract each other when placed the same distance apart?
a. 5 N
b. $\quad 12 \mathrm{~N}$
c. $\quad 10 \mathrm{~N}$
d. 20 N
e. 40 N
f. none of the above.
22. Two charges separated a distance of 1.0 meter exert a $6.0-\mathrm{N}$ force on each other. If the charges are pushed to a separation of 2.0 meter, the force on each charge will be
a. $\quad 0.75 \mathrm{~N}$.
b. $\quad 1.5 \mathrm{~N}$.
c. $\quad 3.0 \mathrm{~N}$.
d. $\quad 6.0 \mathrm{~N}$.
e. $\quad 12.0 \mathrm{~N}$.
f. $\quad 24.0 \mathrm{~N}$.
23. Two charged particles held close to each other are released. As they move, the force on each particle increases. Therefore, the particles have
a. opposite signs.
b. the same sign.
c. charges that cannot be determined
24. Determine the electrical force of attraction between two balloons with separate charges of $2.5 \times 10^{-8} \mathrm{C}$ and $-3.2 \times$ $10^{-8} \mathrm{C}$ when separated a distance of 1.2 m .
25. Each of the two identical hot-air balloons acquires a charge of $2.4 \times 10^{-3} \mathrm{C}$ on its surface as it travels through the air. How far apart are the balloons if the electrostatic force between them is $2.3 \times 10^{4} \mathrm{~N}$?
26. The hydrogen atom consists of a single electron (mass $9.1 \times 10^{-31} \mathrm{~kg}$) and a proton (mass $1.7 \times 10^{-27} \mathrm{~kg}$) at an average separation distance of $5.3 \times 10^{-11} \mathrm{~m}$. Compare the electrical and gravitational force between the proton and the electron in a hydrogen atom.
27. If a positive test charge is located between two charged spheres, A and B. Sphere A has a charge of $+4 q$ and is located 0.2 meter from the test charge. Sphere B has a charge of -2 q and is located 0.1 meter from the test charge. If the magnitude of the force on the test charge due to sphere A is F, what is the magnitude of the force on the test charge due to sphere B ?

Electric Fields-

28. Write the definition and formula of the electric field.

$\mathrm{E}=$	$=$
E:	_unit:
F_{e} :	___unit:
$k:$	___unit:
$Q:$	_ unit:
$q:$	___unit:
$r:$	_ unit:

29. What is the magnitude of the electric field strength when an electron experiences a 1.5 N force?
30. What are the magnitude and direction of the electric field 0.2 m away from a negative charge of $2.4 \times 10^{-9} \mathrm{C}$?
31. There is a negative charged particle of 0.25 C in the free space. (a) What are the magnitude and direction of the electric field 1.2 m away from the particle? (b) What are the magnitude and direction of the electric force when an electron is placed 2.0 m away from this particle?
32. Draw the vector representation for a positive source charge.
33. Sketch the line-of-force representation for a pair of opposite charges.
34. Sketch the line-of-force representation for a pair of like charges.

35. What is special about the electric field between the charged parallel plates?
36. The electric field around an isolated electron has a certain strength 1 cm from the electron. The electric field strength 2 cm from the electron is
a) half as much.
b) the same.
c) twice as much.
d) four times as much.
e) none of the above
37. Sketch the electric field for oppositely charged parallel plates using line-of-force representation?
$+4++++++++++++++++++++++++++$

38. A charged droplet of mass $5.87 \times 10^{-10} \mathrm{~kg}$ is hovering motionless between two parallel plates. The parallel plates have an electric field of $1.2 \times 10^{7} \mathrm{~N} / \mathrm{C}$ and are 2.00 mm apart. (a) What is the charge on the particle? (b) By how many electrons is the particle deficient?

Electric Potential Energy-

39. What is Electric Potential Energy?

Electric Potential
40. Write the definition and formula of electric potential.

Formula:

V: \qquad unit: \qquad
$W_{e}:$ \qquad unit: \qquad
q \qquad unit: \qquad
48. Draw the Electric Field Lines and Equipotential lines for charged parallel plates:

+4++4++++++4+++++4+4+++++4

49. Draw the Electric Field Lines and Equipotential lines for a charged pair:

50. A charged droplet of mass $5.87 \times 10^{-10} \mathrm{~kg}$ is hovering motionless between two parallel plates. The parallel plates have a potential difference of 24000 V and are 2.00 mm apart. What is the charge on the particle?
