Electric Charges

- 1. The *fundamental rule* of all electrical phenomena is:
- Like charges _____, opposite charges _____
- 2. *Thomson's cathode ray experiment* proved that:
- 3. *Millikan's oil drop experiment* proved that:
- 4. The SI unit of *charge* is _____, symbol _____
- 5. The charge of an *electron* is _____

The charge of a *proton* is _____

The charge of a *neutron* is _____

6. 1 C is the charge of ______electrons

Charging an Object

7. There are three ways to charge an object:

1) Electrons are being transferred when one material rubs against another

2) Electrons can be transferred from one material to another by simply touching

3) A charged object can be used to charge another object without contact is called:

8. Three identical metal balls A, B, and C. Ball A has 4 C, and both ball B and C are neutral. If ball A contacts ball B momentarily, and then ball B contacts ball C momentarily, what will be the charge on all three balls afterward?

9. Write down the Law of conservation of charge.

10. When a charged rod touched an insulator at B, where can you find the highest density of charges? *Insulator*

11. When a charged rod touched a metal at B, where can you find the highest density of charges? *Metal*

- 12. Approach a negatively charged rod to a neutral metal ball and touch the other side of the ball momentarily with your finger, what will happen to the ball?
- 13. The reason a charged balloon will stick to a wall is thata) electrons transfer back and forth between the wall and the balloon.
 - b) induced opposite charges in the wall are closer than other wall charges.
 - c) the rubber of the balloon simply sticks to walls.
 - d) the charge is slightly sticky and acts like glue.
 - e) none of the above
- 14. When a charged cloud passes overhead, the ground below is charged by
- 15. Many molecules are electrically polarized in their normal states. The distribution of electric charge is not perfectly even. Such molecules are called
- 16. An electroscope is charged negatively, as shown by foil leaves that stand apart. As a positively charged rod is brought close to the electroscope, the leaves
 - a) spread farther apart.
 - b) do not move.
 - c) move closer together.
 - d) spread farther apart first, and then move closer together.
 - e) can not be determined.
 - f) none of the above.

Types of Materials

- 17. Which of the following statement is true?
 - a) The semiconductor becomes conductive when doped with impurities.
 - b) In a good insulator, electrons are usually free to move around.
 - c) A conductor has more electrons than protons.

- d) Superconductor becomes a perfect conductor when the temperature is high enough.
- e) Water is a good conductor since it's an electric dipole.
- f) None of the above.

Electrostatic Force — The Coulomb's Law

18. Coulomb's torsion balance experiment concluded that:

19. Coulomb's Law formula:

 $F_e =$

- k =
- 20. Proportional & Inverse Square relations of Coulomb's Law:

Charge 1	Charge 2	Distance	Electric Force
q 1	q_2	d	F _e
$2q_{1}$	<i>3q</i> ₂	d	
$2q_{1}$	$\frac{1}{2} q_2$	d	
$2q_1$	q_2	2d	
q_1	<i>3q</i> ₂	2d	
$2q_1$	$2q_2$	2d	
$2q_1$	q_2	½ d	
$\frac{1}{2} q_1$	q_2	$\frac{1}{2} d$	
$2q_1$	$1/_{2} q_{2}$	2d	
$\frac{1}{2} q_1$	$\frac{1}{2} q_2$	½ d	

Application of Coulomb's Law

- 21. A 3-C charge and a 2-C charge attract each other with 5 N of force. How much will a 4-C charge and a 6-C charge attract each other when placed the same distance apart?
 - a. 5 N
 - b. 12 N
 - c. 10 N
 - d. 20 N
 - e. 40 N
 - f. none of the above.

- 22. Two charges separated a distance of 1.0 meter exert a 6.0-N force on each other. If the charges are pushed to a separation of 2.0 meter, the force on each charge will be
 - a. 0.75 N.
 b. 1.5 N.
 c. 3.0 N.
 d. 6.0 N.
 - e. 12.0 N.
 - f. 24.0 N.
- 23. Two charged particles held close to each other are released. As they move, the force on each particle increases. Therefore, the particles have
 - a. opposite signs.
 - b. the same sign.
 - c. charges that cannot be determined
- 24. Determine the electrical force of attraction between two balloons with separate charges of 2.5 x 10^{-8} C and -3.2 x 10^{-8} C when separated a distance of 1.2 m.

25. Each of the two identical hot-air balloons acquires a charge of 2.4 x 10^{-3} C on its surface as it travels through the air. How far apart are the balloons if the electrostatic force between them is 2.3×10^{4} N?

26. The hydrogen atom consists of a single electron (mass 9.1×10^{-31} kg) and a proton (mass 1.7×10^{-27} kg) at an average separation distance of 5.3×10^{-11} m. Compare the electrical and gravitational force between the proton and the electron in a hydrogen atom.

27. If a positive test charge is located between two charged spheres, A and B. Sphere A has a charge of +4q and is located 0.2 meter from the test charge. Sphere B has a charge of -2q and is located 0.1 meter from the test charge. If the magnitude of the force on the test charge due to sphere A is F, what is the magnitude of the force on the test charge due to sphere B? Test Charge

31. There is a negative charged particle of 0.25 C in the free space. (a) What are the magnitude and direction of the electric field 1.2 m away from the particle? (b) What are the magnitude and direction of the electric force when an electron is placed 2.0 m away from this particle?

32. Draw the vector representation for a positive source

charge.

Electric Fields-

28. Write the definition and formula of the *electric field*.

- 29. What is the magnitude of the electric field strength when an electron experiences a 1.5 N force?
- 33. Sketch the line-of-force representation for a pair of opposite charges.

like charges.

30. What are the magnitude and direction of the electric field 0.2 m away from a negative charge of 2.4×10^{-9} C?

34. Sketch the line-of-force representation for a pair of

35. What is special about the electric field between the charged parallel plates?

Physics Worksheet 36. The electric field around an isolated electron has a

- certain strength 1 cm from the electron. The electric field strength 2 cm from the electron is
 - half as much. a)
 - b) the same.
 - c) twice as much.
 - four times as much. d)
 - none of the above e)
- 37. Sketch the electric field for oppositely charged parallel plates using line-of-force representation?

38. A charged droplet of mass 5.87 x 10⁻¹⁰ kg is hovering motionless between two parallel plates. The parallel plates have an electric field of 1.2×10^7 N/C and are 2.00 mm apart. (a) What is the charge on the particle? (b) By how many electrons is the particle deficient?

41. Electrical potential energy is the energy a charged object has because of its

Name:

Section:

- momentum. a)
- location. b) mass.
- c)
- motion. d)
- e) volume.
- 42. How much work is required to move 0.5 C of positive charge from the negative terminal of a 12-volt battery to the positive terminal?
- 43. If an electron loses 1.5×10^{-15} J of energy in traveling from the cathode to the screen of a computer monitor, across what potential difference must it travel?

Electric Potential: Parallel Plates

44. Electric field lines between two oppositely charged parallel metal plates will be

- straight lines, randomly spaced. a)
- b) straight lines, evenly spaced.
- curved lines grouped together in small bunches. c)
- curved lines, evenly spaced. d)
- e) curved lines, randomly spaced.
- 45. A 10-C charge is located near a positively charged sphere so that it has 100 J of electric potential energy. Its electric potential is
 - a) 2 V.
 - b) 5 V.
 - 10 V. c)
 - d) 20 V.
 - 250 V. e)

46. Write the formula describing the relation between *Electric potential* (*V*) and *Electric field* (*E*).

Formula:

Equipotential: Parallel Plates

47. Definition of Equipotential lines

Equipotential lines are perpendicular to

4

Electric Potential

Electric Potential Energy—

39. What is *Electric Potential Energy*?

40. Write the definition and formula of *electric potential*.

Formula:

V:	unit:
<i>W_e</i> :	unit:
<i>q</i> :	unit:

48. Draw the *Electric Field Lines* and *Equipotential lines* for charged parallel plates:

+++++++++++++++++++++++++++++++++++++++	++++++++

49. Draw the *Electric Field Lines* and *Equipotential lines* for a charged pair:

50. A charged droplet of mass 5.87×10^{-10} kg is hovering motionless between two parallel plates. The parallel plates have a potential difference of 24000 V and are 2.00 mm apart. What is the charge on the particle?