
Understanding and Using Functions

Frank C. DiIorio

Advanced Integrated Manufacturing Solutions, Co.

Durham NC

Introduction

Let’s start by admitting that programmers are, at heart,
rather lazy. We want procedures to do our sorting, print-
ing, and analysis. We want formats to display the number
‘5’ as ‘Well above average’. In essence, we don’t want to
code any more statements than we have to. With that in
mind, let’s look at another code and time-saving feature of
the SAS System.

This paper gives an overview of functions, a powerful set
of tools in the SAS System. Functions are a set of prede-
fined routines that come with the SAS System. They per-
form a wide range of activities, and often reduce complex
computations that would require arduous and error-prone
DATA step coding to a single, simple statement. Not even
a novice SAS programmer’s toolbox is complete without a
basic knowledge of system functions.

This paper introduces SAS novices to functions. Basic
terminology is reviewed first, followed by usage issues
common to nearly all functions. The last section of the
paper describes the purpose and syntax of some of the
more commonly used functions. Bear in mind that this pa-
per is simply an overview of a broad and sometimes com-
plex topic. The reader should consult SAS Institute docu-
mentation for the definitive, exhaustive description of the
purpose, limitations, and uses of the functions.

Fundamentals

The logic that’s common to all functions is straightfor-
ward. Two components of function syntax – the function
name and its parameters – identify what is to be per-
formed. The first component is the function name. It
identifies the action that the function performs – identify
the minimum of a list of numbers (the MIN function), lo-
cate the third word in a character variable (the SCAN
function), and so on. The name usually gives some idea of
the activities performed by the function.

The second function component is a list of parameters
(sometimes referred to as arguments) enclosed in paren-
theses. Notice in the above description of the function
names we said “minimum of a list” and “third word in a
character variable.” The “of” and “in” identify what the
function should operate on. Putting these two pieces to-
gether, let’s look at two complete uses of these functions:

min_year = min(fy2001q1, fy2001q2,
 fy2001q3);
file_name = scan(dir_line, 3, ‘ ‘);

The first statement creates the numeric variable
MIN_YEAR, which is the minimum of three arguments,
fy2001q1, fy2001q2, and fy2001q3. The second statement
creates a character variable, FILE_NAME, which is the

third piece of variable DIR_LINE, the pieces being delim-
ited by blanks.

The functions are said to be “called” – in the first state-
ment, we called the MIN function, in the second, we called
the SCAN function. Functions are said to “return” a value
– in the first statement, we call the MIN function and it
returns a value, stored in MIN_YEAR, that is the mini-
mum of the three arguments passed to it.

Both the idea and the syntax are simple – specify the ap-
propriate function name and give the function parameters
and results are returned. Just as procedures perform a
great deal of work with relatively few statements, so do
functions simplify potentially tedious calculations. Before
looking at what specific functions do, let’s look at some
logical and syntactical issues common to all of them.

Syntax and Usage

Before using this paper or the SAS documentation’s de-
scription of the many available functions, consider the
following points carefully:

Functions Can Be Used Pretty Much Anywhere. Func-
tions usually perform some form of calculation, and cal-
culations are usually considered in the context of the
DATA step. Keep in mind that, with some documented
exceptions, functions can be used anywhere an evaluation
of constants and/or variables can take place.

Here are some non-DATA step examples. Look at them
more for their use outside the DATA step than for the ac-
tual operation they perform:

proc print data=subset
 (where=(index(vin, ‘NR’) > 0));

proc freq data=mast01;
tables grp / missing;
where nmiss(of fy1999q1—fy2001q4) > 2;

Names Matter (Gotcha #1). There are specific names for
specific function activities. These cannot be reassigned
(changing MIN to MINIMUM, for example). What you
can do, and probably won’t want to, once you see the re-
sult, is define an array with the same name as a function.
Watch what happens:

data phase1;
set master;
array min(4); /* each group’s minimum */
do i = 1 to 4;
 min(i) = min(of group1-group4);
end;

SAS gets confused – is MIN a reference to the function or
the array? The default action is to recognize MIN as an
array, effectively disabling the MIN function. The fol-
lowing message is printed in the SAS Log:

WARNING: An array is being defined with the
same name as a SAS-supplied or user-defined
function. Parenthesized references involving
this name will be treated as array refer-
ences and not function references.

Bottom line: there are lots of words in the language. De-
fine arrays with names that don’t conflict with function
names.

Names Matter (Gotcha #2). Programmers new to SAS,
or those regularly moving back and forth between SAS and
other languages, must be careful not to assume that func-
tion x in one language does the same thing in another lan-
guage. Don’t make assumptions. Read the documentation
carefully, and be sure the functionality is identical.

If you need motivation in this regard, consider the subtle
difference in this example: the TRIM function is in
EXCEL and SAS, and performs basically the same activity
(trimming blanks from a character variable). In EXCEL,
both leading and trailing blanks are trimmed, but SAS
trims only the trailing blanks. It’s usually easier to review
documentation for the functions than it is to debug their
unadvised usage.

Look at Data Types Carefully. Some functions require
numeric arguments, others require character arguments.
Yet others require a mix of these data types. The type(s)
of the argument(s) does not influence the value returned by
the function. The LENGTH function, for example, returns
the location of the last non-blank character in a variable.
The function requires a character argument but returns a
numeric value.

The Number of Arguments Varies. The number of ar-
guments required by a function will, of course, depend on
the type of work the function performs. Even using the
same function, though, the number of arguments can vary.
MIN and other descriptive statistic functions can handle a
varying number of arguments, provided there are enough
values to perform the required task (you need at least three
arguments to calculate skewness, for example). Other
functions expect “n” arguments and will make assumptions
if they do not receive the full “n” – the third argument to
the SUBSTR function, for example, is the number of posi-
tions to extract from a character variable. If omitted from
the SUBSTR call, the default behavior is to subset to the
rightmost position in the variable.

Parameter Order May Matter. Some functions do not
care about the order in which arguments are specified. The
SUM function, for example, performs an action (addition)
that is, by nature, indifferent to order. Other functions are
not so forgiving, and assign specific meanings to argu-
ments. The first argument to the ROUND function, for
example, is a numeric value. The second argument is the
rounding unit (“round to the nearest …”). SAS is often
unable to detect misspecified parameters because they may
make syntactical sense but do not have logical validity.
Consider the following statements:

inc1 = round(income, 1000);
inc2 = round(1000, income);

INC1 is variable INCOME rounded to the nearest 1000,

while INC2 is 1000 rounded to the nearest INCOME.
Both statements are syntactically valid, but only INC1
makes sense. It’s important to realize that from SAS’ per-
spective, both statements are acceptable. It’s up to the
programmer to become familiar with parameter order and
meaning (and then, of course, follow through and write the
statement correctly!).

Watch Out for Range Restrictions. Some functions will
process any values, provided their data types are correct.
Others require one or all values to be in a range of values.
The restriction may be known prior to coding (the square
root function SQRT cannot process a negative value),
while other limits are imposed by the nature of the opera-
tion (you cannot use SUBSTR to go beyond the length of a
character variable). In all cases, if you specify one or more
invalid arguments, SAS will issue a message in the Log
and the function will return a missing value. Suppose we
specify this statement:

rounded = round(rate, rate_factor);

If RATE_FACTOR is a missing value or negative,
ROUNDED will be set to missing, and the SAS Log will
contain a message similar to:

NOTE: Argument 2 to function ROUND at line
1449 column 11 is invalid.

Missing Values Sometimes Matter. Missing values in
one or more arguments may influence the value returned
by the function. If we specify a missing value where we
should have entered the starting location of a substring,
then SAS will display an error message and the function
will return a missing value.

Other functions are not as fussy. Most descriptive statistic
functions – SUM, MEAN, RANGE, and the like – will op-
erate on any non-missing arguments. This is an important
distinction, since a simple assignment statement not using
functions will create a missing value if any of its operands
is missing. Examine the following code:

q1 = 300; q2 = 350; q3 = 250; q4 = .;
year_tot_1 = q1 + q2 + q3 + q4;
year_tot_2 = sum(of q1-q4);

The first assignment statement has a form which requires
all operands to be numeric and non-missing. Since Q4 is
missing, the result, YEAR_TOT_1, will be missing. The
second assignment uses the SUM function. Its parameters
match the operands of the previous statement, but it returns
a value because the function uses only non-missing values.
YEAR_TOT_2 is 900. The impact of missing values is
significant here and in other statistical functions.

Here, as in the points noted above, we emphasize the need
to carefully review the function’s documentation prior to
writing the program.

Specify Character Variable Lengths. If the function is
returning a character variable, specify the length of the
variable to avoid unanticipated padding. In this example,
variable QUOTED is length 200, regardless of the length
of TEXT.

data revised;
set temp2;

quoted = quote(text);
run;

Adding a LENGTH statement to the program brings
QUOTED to a more reasonable length (TEXT’s length –
assume $20 – plus two positions for quotes):

data revised;
set temp2;
length quoted $22;
quoted = quote(text);
run;

Parameter Specification Can Vary Greatly. Arguments
to most functions can be constants, variables, or expres-
sions (including other function calls). In general, the
function will accept a value as long as the specification
results in a value that is appropriate. Here are some exam-
ples. As before, look at them for style rather than exact
meaning:

small_pair = min(min(c1,c2), min(d1,d2));
piece = substr(line, 1, length(line) – 3);
tot = sub + reg + sum(ot1, ot2, ot3);

The first two statements are examples of functions being
used as arguments to other functions. This is commonly
referred to as “nesting.” The statements are concise, but
bear in mind the difficulty of debugging them. What is the
minimum of C1 and C2? Of D1 and D2? With the state-
ment written as is, you can’t tell. It may be easier in the
long run to break up the statement:

min_c = min(c1, c2);
min_d = min(d1, d2);
small_pair = min(min_c, min_d);

Finally, remember that SAS will do its best to reduce each
argument to its simplest form. This behavior is predict-
able, but can lead to unexpected results if only casually
recalled. Consider this code fragment:

v1 = 3; v2 = 4; v3 = 10; v4 = 6;
max_v = max(v1-v4);

Looking at the assignment statements, you would expect
the value of MAX_V to be 10. Instead, it is –3. Why?
Because SAS will resolve the argument before it is passed
to the function. Instead of seeing a list – “V1 through V4”
– SAS sees an arithmetic expression – “V1 minus V4.”
Thus only 3 minus 6, or –3, is passed to the MAX function
and –3, by definition, is the maximum, since no other pa-
rameters are available for evaluation. Fortunately, MAX
and other statistical functions have a way to specify V1-V4
as a list, rather than an expression. It is shown below and
also noted in the last section’s description of various func-
tions:

max_v = max(of v1-v4);

Functions Can Be Used “On the Fly.” The previous
point’s examples hinted at a powerful capability of using
functions within SAS. Rather than store a function result
in a variable, it’s possible to make it transient, available
only for purposes of evaluation and not for storage as a
variable. Here we show the ability to use functions in de-
cision-making statements.

if index(line, ‘.txt’) > 0 then do;
 code, code, and more code

select (quarter(start_date));
 when (1) do;

 code, code, and more code

CALL Routines Are Close Cousins of Functions. A
separate set of routines, called CALL routines (for obvious
reasons that we’ll soon see) are equivalent in spirit, if not
syntax, to functions. The idea is the same as functions –
create a value by passing a certain number of parameters
of a certain data type in a certain order. The principal dif-
ference is in their invocation, as shown in the examples
below:

call label(var_names(i), label_text);

if eof then call symput
 (‘count’, put(_nread, 3.));

Functions would return a transient, “on the fly” value or
have their value stored in a variable. By contrast, CALL
routines typically specify operands and results in the pa-
rameter list.

For the purposes of this paper, CALL routines and func-
tions are treated identically. Their syntactical differences
and distinctions are clearly highlighted in SAS documen-
tation.

Commonly-Used Functions

A complete list of functions, grouped by category, is found
in the Appendix. This section takes a closer look at some
of the more commonly used functions and gives examples
of their use. The order and category names correspond to
the SAS Online Doc. Yet again – refer to SAS Institute
documentation for a description of parameters and other
usage notes.

Category/Name Description and example of usage

array
dim Number of elements in an array.

do i = 1 to dim(list);
character
compbl Removes consecutive blanks from a string.

old = ‘much extra space’;
new = compbl(old);

NEW becomes ‘much extra space’
compress Removes characters from a string.

old = ‘Chapel Hill, NC – 27516’;
new1 = compress(old);
new2 = compress(old, ‘,-‘);
NEW1 becomes ‘ChapelHill,NC-27516’
NEW2 becomes ‘Chapel Hill NC 27516’

You could use COMPBL on NEW2 to remove
consecutive blanks.

index Gives the starting position of a string within a
string.

string = ‘\temp\examples1.sas’;
loc1 = index(string, ‘.sas’);
loc2 = index(string, ‘.SAS’);
loc3 = index(upcase(string), ‘.SAS’);

LOC1 equals 1, LOC2 equals 0 (not found), LOC3
equals 16

left Left-aligns a string
old = ‘ leading blanks’;
new = left(old);

NEW equals ‘leading blanks’
length Returns the length (rightmost non-blank character)

of a string.
length old $40;
old = ‘Short’;
len = length(old);

Category/Name Description and example of usage

LEN equals 5.
lowcase Lower-cases a string.

old = ‘Mixed Case’;
new = lowcase(old);

NEW equals ‘mixed case’
quote Encloses a string in double quotes.

old = ‘WUNC’; /* Length of OLD = 10 */
length new $12; /* +2 to allow for quotes */
new = quote(“WUNC”);

NEW equals “WUNC “ /* quotes are part of the
value */

repeat Repeats a string “n” times.
old = ‘dog’;
new = repeat(old, 4);

NEW equals ‘dogdogdogdogdog’ Remember to
set a length for NEW!

reverse Reverses a string.
old = ‘Looks OK’;
new = reverse(old);

NEW equals ‘KO skooL’
right Right justifies a string.

old = ‘Cats and Dogs’; /* OLD is $15 */
new = right(old);

NEW equals ‘ Cats and Dogs’
scan Scans a string for a character expression (‘word’)

using a default or user-specified word.
old = ‘temp\filexxx.dat’;
new1 = scan(old, 1);
new2 = scan(old, 2, ‘.\’);
new3 = scan(old, -1, ‘.\’);

NEW1 equals ‘temp\filexxx’
NEW2 equals ‘filexxx’
NEW3 equals ‘dat’

substr Extracts or replaces a portion of a string.
old = ‘Chapel Hill NC 27516’;
new = substr(old, length(old)-4);

NEW equals ‘27516’

old = ‘J*V87’;
if substr(old, 2, 1) = ‘*’ then do;

translate Changes all occurrences of one character in a
string to another.

old = ‘Line1*Line2*Line3’;
new = translate(old, ‘/’, ‘*’);

NEW equals ‘Line1/Line2/Line3’
tranwrd Similar to TRANSLATE, but at the word level.

Parameter order is different (from-to, rather than
to-from!)

old = ‘Mrs. Smith’;
new = tranwrd(old, ‘Mrs.’, ‘Sra.’);

NEW equals “Sra. Smith”
upcase Upper-cases a string.

old = ‘Mixed Case’;
new = upcase(old);

NEW equals ‘MIXED CASE’
date and time
date Returns the current date as a SAS date value

today = date()
TODAY is 15138 (June 12, 2001 if formatted)

datetime Returns the current date-time as a SAS datetime
value.

rightnow =datetime();
RIGHTNOW is 1307985980.7
(12JUN2001:17:26:21 if formatted)

day /
month /
year

Extract the day, month, and year numbers from a
SAS date value.

curr_day = day(today());
CURR_DAY equals 12 if today is June 12, 2001.

hour /
minute /
second

Extracts the hour, minute, and second from a SAS
time value.

curr_hr = hour(onset);
CURR_HR equals 7 if ONSET is 7:04.

Category/Name Description and example of usage

intck Returns the number of intervals between two
dates, times, or date-times.

qtr=intck('qtr','01jan2001'd,'01dec2001'd);
QTR equals 3

intnx Advances a date, time, or date-time by a specified
interval.

yr=intnx('year','15mar99'd,2);
YR equals 14976 (01JAN01 if formatted)

mdy Creates a SAS date value from user-specified
month, day, and year.

sas_date = mdy(1, 1, 2001);
SAS_DATE is 14976

time /
today

Return the current time and date. Note that these
functions do not require parameters. The paren-
theses are necessary for SAS to make the distinc-
tion between the function call to DATE and TIME
and variables of the same name.

curr_time = time();
curr_date = date();

CURR_TIME is 63666.44 (17:41 if formatted)
CURR_DATE is 15138 (June 12, 2001 if format-
ted)

descriptive statistics
all functions See Appendix A for details.

The function names correspond to statistics avail-
able in the MEANS procedure.
General form of usage is:

function_name(arg1, arg2, …)
function_name(OF base1-baseN)

For example:
tot = sum(ne, se, nw, sc, pc, mw);
tot = sum(of r1-r5);
tot = sum(of r1-r5, intl);

macro
symput CALL routine

if eof then call symput(‘goodones’, put(_n,3.));
Macro variable GOODONES contains the value of
variable _N.

symget Retrieves the value of a macro variable.
status = symget(‘stat’);

DATA step variable STATUS equals the value of
macro variable STAT.

math
abs Returns the absolute value of a numeric variable.

old = -3;
new = abs(old);

NEW equals 3
fact Returns the factorial of an integer.

fact = fact(5);
FACT equals 120

log /
log10 /
log2

Return the natural, base 10, and base 2 loga-
rithms of a positive number.

mod Returns the remainder of a division.
old = 100;
new1 = mod(old, 10);
new2 = mod(old, 8);

NEW1 equals 0 (no remainder)
NEW2 equals 4 (4 left over when 100 is divided by
8)

random number
rannor /
ranuni

As CALL routines, they return random variates
from normal and uniform distributions.

call ranuni(-1);
rannor /
ranuni

As functions, they return random variates from
normal and uniform distributions. The CALL rou-
tines greater control over seed values.

call rannor(-1);
special
system CALL routine, it submits a host operating system

command for execution.

Category/Name Description and example of usage

call system(“dir p:\qc\meas*.txt /s >
c:\temp\dir.txt”);

Creates text file c:\temp\dir.txt, which contains the
output from a directory command.

input Allows a character variable to be read using stan-
dard SAS informats. This is a way to convert
character values to numeric.

char_date = ‘2001/08/19’;
num_date = input(char_date, yymmdd10.);

NUM_DATE has a numeric data type, with a value
of 15206.

put The reverse of INPUT, it writes formatted charac-
ter or numeric variables to a target character vari-
able.

sales_c = put(sales, dollar8.) || ‘ - ‘ ||
 put(sales, salefmt.);
User-written format SALEFMT might result in a
SALES_C value such as “120,300 – Time to buy a
Lexus!”

system Issues an operating system command and cap-
tures its return code.

rc = system(‘cd t:\prod\rpts\graphs’);
state and ZIP code
FIPNAME /
FIPSTATE /

Converts FIPS codes to state names and postal
codes.

fip_state = 37;
name = fipname(fip_state);
postal = fipstate(fip_state);

NAME equals “NORTH CAROLINA”
POSTAL equals “NC”

STFIPS /
STNAME

Converts state postal codes to FIPS codes and
state names.

postal = ‘NC’;
name = stname(postal);
postal = stfips(postal);

NAME equals “NORTH CAROLINA”
POSTAL equals “NC”

ZIPFIPS /
ZIPNAME /
ZIPSTATE

Converts ZIP codes to FIPS codes, state names,
and state postal codes.

zip = ‘27516’;
name = zipname(zip);
postal = zipfips(zip);
fips = zipfips(zip);

NAME equals “NORTH CAROLINA”
POSTAL equals “NC”
FIPS = 37;

truncation
ceil Rounds up to the nearest integer.

old = 2.3;
new = ceil(old);

NEW equals 3.
floor Rounds down to the nearest integer.

old = 2.3;
new = ceil(old);

NEW equals 2.
int Returns the integer portion of a number.

old = -8.9;
new = int(old);

NEW equals –8.
round Rounds to the nearest rounding unit (default

rounding unit is 1).
old = 100.53;
new1 = round(old);
new2 = round(old, .1);

NEW1 equals 101
NEW2 equals 100.5

variable control
label CALL routine, it returns the value of a variable’s

label.
label old = “Old’s nondescript label”;
call label(old, label_value);

LABEL_VALUE equals “Old’s nondescript label”

Category/Name Description and example of usage

vname CALL routine, it returns the name of a variable.
length name $32;
array temp(*) st-block;
do i = 1 to dim(temp);
 call vname(temp(i), name);
 put name=;
end;

This code writes the name of each element in
TEMP.

Questions? Comments?

Your feedback is always welcome. Contact the author at
fcd1@mindspring.com.

Appendix A: Functions and CALL Routines

by Category

The table in this appendix is taken directly from the Ver-
sion 8.0 SAS Online Doc. It gives an idea of the power
and versatility of the functions and CALL routines that
come with the SAS System. For details, of course, refer to
the specific help file or other SAS documentation.

Array
DIM Returns the number of elements in an array
HBOUND Returns the upper bound of an array
LBOUND Returns the lower bound of an array

Bitwise Logical Operations

BAND Returns the bitwise logical AND of two arguments
BLSHIFT Returns the bitwise logical left shift of two arguments
BNOT Returns the bitwise logical NOT of an argument
BOR Returns the bitwise logical OR of two arguments
BRSHIFT Returns the bitwise logical right shift of two arguments
BXOR Returns the bitwise logical EXCLUSIVE OR of two arguments

Character String Matching
CALL RXCHANGE Changes one or more substrings that match a pattern
CALL RXFREE Frees memory allocated by other regular expression (RX) functions

and CALL routines
CALL RXSUBSTR Finds the position, length, and score of a substring that matches a

pattern
RXMATCH Finds the beginning of a substring that matches a pattern and re-

turns a value
RXPARSE Parses a pattern and returns a value

Character
BYTE Returns one character in the ASCII or the EBCDIC collating se-

quence
COLLATE Returns an ASCII or EBCDIC collating sequence character string
COMPBL Removes multiple blanks from a character string
COMPRESS Removes specific characters from a character string
DEQUOTE Removes quotation marks from a character value
INDEX Searches a character expression for a string of characters
INDEXC Searches a character expression for specific characters
INDEXW Searches a character expression for a specified string as a word
LEFT Left aligns a SAS character expression
LENGTH Returns the length of an argument
LOWCASE Converts all letters in an argument to lowercase
MISSING Returns a numeric result that indicates whether the argument con-

tains a missing value
QUOTE Adds double quotation marks to a character value
RANK Returns the position of a character in the ASCII or EBCDIC collating

sequence
REPEAT Repeats a character expression
REVERSE Reverses a character expression
RIGHT Right aligns a character expression
SCAN Selects a given word from a character expression
SOUNDEX Encodes a string to facilitate searching
SPEDIS Determines the likelihood of two words matching, expressed as the

asymmetric spelling distance between the two words
SUBSTR

(left of =)
Replaces character value contents

SUBSTR Extracts a substring from an argument

TRANSLATE Replaces specific characters in a character expression

Character
TRANWRD Replaces or removes all occurrences of a word in a character string
TRIM Removes trailing blanks from character expressions and returns one

blank if the expression is missing
TRIMN Removes trailing blanks from character expressions and returns a

null string (zero blanks) if the expression is missing
UPCASE Converts all letters in an argument to uppercase
VERIFY Returns the position of the first character that is unique to an expres-

sion

Double-Byte Character Set (DBCS)
KCOMPARE Returns the result of a comparison of character strings
KCOMPRESS Removes specific characters from a character string
KCOUNT Returns the number of double-byte characters in a string
KINDEX Searches a character expression for a string of characters
KINDEXC Searches a character expression for specific characters
KLEFT Left aligns a SAS character expression by removing unnecessary

leading DBCS blanks and SO/SI
KLENGTH Returns the length of an argument
KLOWCASE Converts all letters in an argument to lowercase
KREVERSE Reverses a character expression
KRIGHT Right aligns a character expression by trimming trailing DBCS blanks

and SO/SI
KSCAN Selects a given word from a character expression
KSTRCAT Concatenates two or more character strings
KSUBSTR Extracts a substring from an argument
KSUBSTRB Extracts a substring from an argument based on byte position
KTRANSLATE Replaces specific characters in a character expression
KTRIM Removes trailing DBCS blanks and SO/SI from character expres-

sions
KTRUNCATE Truncates a numeric value to a specified length
KUPCASE Converts all single-byte letters in an argument to uppercase
KUPDATE Inserts, deletes, and replaces character value contents
KUPDATEB Inserts, deletes, and replaces character value contents based on

byte unit
KVERIFY Returns the position of the first character that is unique to an expres-

sion

Date and Time
DATDIF Returns the number of days between two dates
DATE Returns the current date as a SAS date value
DATEJUL Converts a Julian date to a SAS date value
DATEPART Extracts the date from a SAS datetime value
DATETIME Returns the current date and time of day as a SAS datetime value
DAY Returns the day of the month from a SAS date value
DHMS Returns a SAS datetime value from date, hour, minute, and second
HMS Returns a SAS time value from hour, minute, and second values
HOUR Returns the hour from a SAS time or datetime value
INTCK Returns the integer number of time intervals in a given time span
INTNX Advances a date, time, or datetime value by a given interval, and

returns a date, time, or datetime value
JULDATE Returns the Julian date from a SAS date value
JULDATE7 Returns a seven-digit Julian date from a SAS date value
MDY Returns a SAS date value from month, day, and year values
MINUTE Returns the minute from a SAS time or datetime value
MONTH Returns the month from a SAS date value
QTR Returns the quarter of the year from a SAS date value
SECOND Returns the second from a SAS time or datetime value
TIME Returns the current time of day
TIMEPART Extracts a time value from a SAS datetime value
TODAY Returns the current date as a SAS date value
WEEKDAY Returns the day of the week from a SAS date value
YEAR Returns the year from a SAS date value
YRDIF Returns the difference in years between two dates
YYQ Returns a SAS date value from the year and quarter

Descriptive Statistics
CSS Returns the corrected sum of squares
CV Returns the coefficient of variation
KURTOSIS Returns the kurtosis
MAX Returns the largest value
MEAN Returns the arithmetic mean (average)
MIN Returns the smallest value
MISSING Returns a numeric result that indicates whether the argument con-

tains a missing value
N Returns the number of nonmissing values
NMISS Returns the number of missing values
ORDINAL Returns any specified order statistic
RANGE Returns the range of values
SKEWNESS Returns the skewness
STD Returns the standard deviation
STDERR Returns the standard error of the mean
SUM Returns the sum of the nonmissing arguments
USS Returns the uncorrected sum of squares
VAR Returns the variance

External Files
DCLOSE Closes a directory that was opened by the DOPEN function and

returns a value
DINFO Returns information about a directory

External Files
DNUM Returns the number of members in a directory
DOPEN Opens a directory and returns a directory identifier value
DOPTNAME Returns directory attribute information
DOPTNUM Returns the number of information items that are available for a

directory
DREAD Returns the name of a directory member
DROPNOTE Deletes a note marker from a SAS data set or an external file and

returns a value
FAPPEND Appends the current record to the end of an external file and returns

a value
FCLOSE Closes an external file, directory, or directory member, and returns a

value
FCOL Returns the current column position in the File Data Buffer (FDB)
FDELETE Deletes an external file or an empty directory
FEXIST Verifies the existence of an external file associated with a fileref and

returns a value
FGET Copies data from the File Data Buffer (FDB) into a variable and

returns a value
FILEEXIST Verifies the existence of an external file by its physical name and

returns a value
FILENAME Assigns or deassigns a fileref for an external file, directory, or output

device and returns a value
FILEREF Verifies that a fileref has been assigned for the current SAS session

and returns a value
FINFO Returns the value of a file information item
FNOTE Identifies the last record that was read and returns a value that

FPOINT can use
FOPEN Opens an external file and returns a file identifier value
FOPTNAME Returns the name of an item of information about a file
FOPTNUM Returns the number of information items that are available for an

external file
FPOINT Positions the read pointer on the next record to be read and returns

a value
FPOS Sets the position of the column pointer in the File Data Buffer (FDB)

and returns a value
FPUT Moves data to the File Data Buffer (FDB) of an external file, starting

at the FDB’s current column position, and returns a value
FREAD Reads a record from an external file into the File Data Buffer (FDB)

and returns a value
FREWIND Positions the file pointer to the start of the file and returns a value
FRLEN Returns the size of the last record read, or, if the file is opened for

output, returns the current record size
FSEP Sets the token delimiters for the FGET function and returns a value
FWRITE Writes a record to an external file and returns a value
MOPEN Opens a file by directory id and member name, and returns the file

identifier or a 0
PATHNAME Returns the physical name of a SAS data library or of an external

file, or returns a blank
SYSMSG Returns the text of error messages or warning messages from the

last data set or external file function execution
SYSRC Returns a system error number

External Routines
CALL MODULE Calls the external routine without any return code
CALL MODULEI Calls the external routine without any return code (in IML environ-

ment only)
MODULEC Calls an external routine and returns a character value
MODULEIC Calls an external routine and returns a character value (in IML envi-

ronment only)
MODULEIN Calls an external routine and returns a numeric value (in IML envi-

ronment only)
MODULEN Calls an external routine and returns a numeric value

Financial
COMPOUND Returns compound interest parameters
CONVX Returns the convexity for an enumerated cashflow
CONVXP Returns the convexity for a periodic cashflow stream, such as a bond
DACCDB Returns the accumulated declining balance depreciation
DACCDBSL Returns the accumulated declining balance with conversion to a

straight-line depreciation
DACCSL Returns the accumulated straight-line depreciation
DACCSYD Returns the accumulated sum-of-years-digits depreciation
DACCTAB Returns the accumulated depreciation from specified tables
DEPDB Returns the declining balance depreciation
DEPDBSL Returns the declining balance with conversion to a straight-line de-

preciation
DEPSL Returns the straight-line depreciation
DEPSYD Returns the sum-of-years-digits depreciation
DEPTAB Returns the depreciation from specified tables
DUR Returns the modified duration for an enumerated cashflow
DURP Returns the modified duration for a periodic cashflow stream, such

as a bond
INTRR Returns the internal rate of return as a fraction
IRR Returns the internal rate of return as a percentage
MORT Returns amortization parameters
NETPV Returns the net present value as a fraction
NPV Returns the net present value with the rate expressed as a percent-

age
PVP Returns the present value for a periodic cashflow stream, such as a

bond
SAVING Returns the future value of a periodic saving
YIELDP Returns the yield-to-maturity for a periodic cashflow stream, such as

a bond

Hyperbolic
COSH Returns the hyperbolic cosine
SINH Returns the hyperbolic sine
TANH Returns the hyperbolic tangent

Macro
CALL EXECUTE Resolves an argument and issues the resolved value for execution
CALL SYMPUT Assigns DATA step information to a macro variable
RESOLVE Returns the resolved value of an argument after it has been proc-

essed by the macro facility
SYMGET Returns the value of a macro variable during DATA step execution

Mathematical
ABS Returns the absolute value
AIRY Returns the value of the airy function
CNONCT Returns the noncentrality parameter from a chi-squared distribution
COMB Computes the number of combinations of n elements taken r at a

time and returns a value
CONSTANT Computes some machine and mathematical constants and returns a

value
DAIRY Returns the derivative of the airy function
DEVIANCE Computes the deviance and returns a value
DIGAMMA Returns the value of the DIGAMMA function
ERF Returns the value of the (normal) error function
ERFC Returns the value of the complementary (normal) error function
EXP Returns the value of the exponential function
FACT Computes a factorial and returns a value
FNONCT Returns the value of the noncentrality parameter of an F distribution
GAMMA Returns the value of the Gamma function
IBESSEL Returns the value of the modified �essel function
JBESSEL Returns the value of the �essel function
LGAMMA Returns the natural logarithm of the Gamma function
LOG Returns the natural (base e) logarithm
LOG10 Returns the logarithm to the base 10
LOG2 Returns the logarithm to the base 2
MOD Returns the remainder value
PERM Computes the number of permutations of n items taken r at a time

and returns a value
SIGN Returns the sign of a value
SQRT Returns the square root of a value
TNONCT Returns the value of the noncentrality parameter from the student’s t

distribution
TRIGAMMA Returns the value of the TRIGAMMA function

Probability
CDF Computes cumulative distribution functions
LOGPDF Computes the logarithm of a probability (mass) function
LOGSDF Computes the logarithm of a survival function
PDF Computes probability density (mass) functions
POISSON Returns the probability from a Poisson distribution
PROBBETA Returns the probability from a beta distribution
PROBBNML Returns the probability from a binomial distribution
PROBBNRM Computes a probability from the bivariate normal distribution and

returns a value
PROBCHI Returns the probability from a chi-squared distribution
PROBF Returns the probability from an F distribution
PROBGAM Returns the probability from a gamma distribution
PROBHYPR Returns the probability from a hypergeometric distribution
PROBMC Computes a probability or a quantile from various distributions for

multiple comparisons of means, and returns a value
PROBNEGB Returns the probability from a negative binomial distribution
PROBNORM Returns the probability from the standard normal distribution
PROBT Returns the probability from a t distribution
SDF Computes a survival function

Quantile
BETAINV Returns a quantile from the beta distribution
CINV Returns a quantile from the chi-squared distribution
FINV Returns a quantile from the F distribution
GAMINV Returns a quantile from the gamma distribution
PROBIT Returns a quantile from the standard normal distribution
TINV Returns a quantile from the t distribution

Random Number
CALL RANBIN Returns a random variate from a binomial distribution
CALL RANCAU Returns a random variate from a Cauchy distribution
CALL RANEXP Returns a random variate from an exponential distribution
CALL RANGAM Returns a random variate from a gamma distribution
CALL RANNOR Returns a random variate from a normal distribution
CALL RANPOI Returns a random variate from a Poisson distribution
CALL RANTBL Returns a random variate from a tabled probability distribution
CALL RANTRI Returns a random variate from a triangular distribution
CALL RANUNI Returns a random variate from a uniform distribution
NORMAL Returns a random variate from a normal distribution
RANBIN Returns a random variate from a binomial distribution
RANCAU Returns a random variate from a Cauchy distribution

Random Number
RANEXP Returns a random variate from an exponential distribution
RANGAM Returns a random variate from a gamma distribution
RANNOR Returns a random variate from a normal distribution
RANPOI Returns a random variate from a Poisson distribution
RANTBL Returns a random variate from a tabled probability
RANTRI Random variate from a triangular distribution
RANUNI Returns a random variate from a uniform distribution
UNIFORM Random variate from a uniform distribution

SAS File I/O
ATTRC Returns the value of a character attribute for a SAS data set
ATTRN Returns the value of a numeric attribute for the specified SAS data

set
CEXIST Verifies the existence of a SAS catalog or SAS catalog entry and

returns a value
CLOSE Closes a SAS data set and returns a value
CUROBS Returns the observation number of the current observation
DROPNOTE Deletes a note marker from a SAS data set or an external file and

returns a value
DSNAME Returns the SAS data set name that is associated with a data set

identifier
EXIST Verifies the existence of a SAS data library member
FETCH Reads the next nondeleted observation from a SAS data set into the

Data Set Data Vector (DDV) and returns a value
FETCHOBS Reads a specified observation from a SAS data set into the Data Set

Data Vector (DDV) and returns a value
GETVARC Returns the value of a SAS data set character variable
GETVARN Returns the value of a SAS data set numeric variable
IORCMSG Returns a formatted error message for _IORC_
LIBNAME Assigns or deassigns a libref for a SAS data library and returns a

value
LIBREF Verifies that a libref has been assigned and returns a value
NOTE Returns an observation ID for the current observation of a SAS data

set
OPEN Opens a SAS data set and returns a value
PATHNAME Returns the physical name of a SAS data library or of an external

file, or returns a blank
POINT Locates an observation identified by the NOTE function and returns

a value
REWIND Positions the data set pointer at the beginning of a SAS data set and

returns a value
SYSMSG Returns the text of error messages or warning messages from the

last data set or external file function execution
SYSRC Returns a system error number
VARFMT Returns the format assigned to a SAS data set variable
VARINFMT Returns the informat assigned to a SAS data set variable
VARLABEL Returns the label assigned to a SAS data set variable
VARLEN Returns the length of a SAS data set variable
VARNAME Returns the name of a SAS data set variable
VARNUM Returns the number of a variable’s position in a SAS data set
VARTYPE Returns the data type of a SAS data set variable

Special
ADDR Returns the memory address of a variable
CALL POKE Writes a value directly into memory
CALL SYSTEM Submits an operating environment command for execution
DIF Returns differences between the argument and its nth lag
GETOPTION Returns the value of a SAS system or graphics option
INPUT Returns the value produced when a SAS expression that uses a

specified informat expression is read
INPUTC Enables you to specify a character informat at run time
INPUTN Enables you to specify a numeric informat at run time
LAG Returns values from a queue
PEEK Stores the contents of a memory address into a numeric variable
PEEKC Stores the contents of a memory address into a character variable
POKE Writes a value directly into memory
PUT Returns a value using a specified format
PUTC Enables you to specify a character format at run time
PUTN Enables you to specify a numeric format at run time
SYSGET Returns the value of the specified operating environment variable
SYSPARM Returns the system parameter string
SYSPROD Determines if a product is licensed
SYSTEM Issues an operating environment command during a SAS session

State Postal, FIPS, and ZIP Codes
FIPNAME Converts FIPS codes to uppercase state names
FIPNAMEL Converts FIPS codes to mixed case state names
FIPSTATE Converts FIPS codes to two-character postal codes
STFIPS Converts state postal codes to FIPS state codes
STNAME Converts state postal codes to uppercase state names
STNAMEL Converts state postal codes to mixed case state names
ZIPFIPS Converts ZIP codes to FIPS state codes
ZIPNAME Converts ZIP codes to uppercase state names
ZIPNAMEL Converts ZIP codes to mixed case state names
ZIPSTATE Converts ZIP codes to state postal codes

Trigonometric
ARCOS Returns the arccosine
ARSIN Returns the arcsine

Trigonometric
ATAN Returns the arctangent
COS Returns the cosine
SIN Returns the sine
TAN Returns the tangent

Truncation
CEIL Returns the smallest integer that is greater than or equal to the ar-

gument
FLOOR Returns the largest integer that is less than or equal to the argument
FUZZ Returns the nearest integer if the argument is within 1E-12
INT Returns the integer value
ROUND Rounds to the nearest round-off unit
TRUNC Truncates a numeric value to a specified length

Variable Control
CALL LABEL Assigns a variable label to a specified character variable
CALL SET Links SAS data set variables to DATA step or macro variables that

have the same name and data type
CALL VNAME Assigns a variable name as the value of a specified variable

Variable Information
VARRAY Returns a value that indicates whether the specified name is an

array
VARRAYX Returns a value that indicates whether the value of the specified

argument is an array
VFORMAT Returns the format that is associated with the specified variable
VFORMATD Returns the format decimal value that is associated with the speci-

fied variable
VFORMATDX Returns the format decimal value that is associated with the value of

the specified argument
VFORMATN Returns the format name that is associated with the specified vari-

able
VFORMATNX Returns the format name that is associated with the value of the

specified argument
VFORMATW Returns the format width that is associated with the specified vari-

able
VFORMATWX Returns the format width that is associated with the value of the

specified argument
VFORMATX Returns the format that is associated with the value of the specified

argument
VINARRAY Returns a value that indicates whether the specified variable is a

member of an array
VINARRAYX Returns a value that indicates whether the value of the specified

argument is a member of an array
VINFORMAT Returns the informat that is associated with the specified variable
VINFORMATD Returns the informat decimal value that is associated with the speci-

fied variable
VINFORMATDX Returns the informat decimal value that is associated with the value

of the specified argument
VINFORMATN Returns the informat name that is associated with the specified vari-

able
VINFORMATNX Returns the informat name that is associated with the value of the

specified argument
VINFORMATW Returns the informat width that is associated with the specified vari-

able
VINFORMATWX Returns the informat width that is associated with the value of the

specified argument
VINFORMATX Returns the informat that is associated with the value of the specified

argument
VLABEL Returns the label that is associated with the specified variable
VLABELX Returns the variable label for the value of a specified argument
VLENGTH Returns the compile-time (allocated) size of the specified variable
VLENGTHX Returns the compile-time (allocated) size for the value of the speci-

fied argument
VNAME Returns the name of the specified variable
VNAMEX Validates the value of the specified argument as a variable name
VTYPE Returns the type (character or numeric) of the specified variable
VTYPEX Returns the type (character or numeric) for the value of the specified

argument

Web Tools
HTMLDECODE Decodes a string containing HTML numeric character references or

HTML character entity references and returns the decoded string
HTMLENCODE Encodes characters using HTML character entity references and

returns the encoded string
URLDECODE Returns a string that was decoded using the URL escape syntax
URLENCODE Returns a string that was encoded using the URL escape syntax

