
 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 1

Software Evaluation: Criteria-based Assessment

Mike Jackson, Steve Crouch and Rob Baxter

Criteria-based assessment is a quantitative assessment of the software in terms of sustainability,

maintainability, and usability. This can inform high-level decisions on specific areas for software

improvement.

A criteria-based assessment gives a measurement of quality in a number of areas. These areas are

derived from ISO/IEC 9126-1 Software engineering — Product quality
1
 and include usability,

sustainability and maintainability.

The assessment involves checking whether the software, and the project that develops it, conforms

to various characteristics or exhibits various qualities that are expected of sustainable software. The

more characteristics that are satisfied, the more sustainable the software. Please note that not all

qualities have equal weight e.g. having an OSI-approved open source licence is of more importance

than avoiding TAB characters in text files.

In performing the evaluation, you may want to consider how different user classes affect the

importance of the criteria. For example, for Usability-Understandability, a small set of well-defined,

accurate, task-oriented user documentation may be comprehensive for Users but inadequate for

Developers. Assessments specific to user classes allow the requirements of these specific user classes

to be factored in and so, for example, show that a project rates highly for Users but poorly for

Developers, or vice versa.

Scoring can also be affected by the nature of the software itself e.g. for Learnability one could

envisage an application that has been well-designed, offers context-sensitive help etc. and

consequently is so easy to use that tutorials aren’t needed. Portability can apply to both the software

and its development infrastructure e.g. the open source software OGSA-DAI
2
 can be built, compiled

and tested on Unix, Windows or Linux (and so is highly portable for Users and User-Developers).

However, its Ruby test framework cannot yet run on Windows, so running integration tests would

involve the manual setup of OGSA-DAI servers (so this is far less portable for Developers and,

especially, Members).

The assessment criteria are grouped as follows.

Criterion Sub-criterion Notes – to what extent is/does the software…

Usability Understandability Easily understood?

Documentation Comprehensive, appropriate, well-structured user

documentation?

Buildability Straightforward to build on a supported system?

Installability Straightforward to install on a supported system?

Learnability Easy to learn how to use its functions?

Sustainability

and

maintainability

Identity Project/software identity is clear and unique?

Copyright Easy to see who owns the project/software?

Licencing Adoption of appropriate licence?

1
 http://www.iso.org/

2
 http://sourceforge.net/projects/ogsa-dai

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 2

Governance Easy to understand how the project is run and the

development of the software managed?

Community Evidence of current/future community?

Accessibility Evidence of current/future ability to download?

Testability Easy to test correctness of source code?

Portability Usable on multiple platforms?

Supportability Evidence of current/future developer support?

Analysability Easy to understand at the source level?

Changeability Easy to modify and contribute changes to developers?

Evolvability Evidence of current/future development?

Interoperability Interoperable with other required/related software?

The rest of this document covers each category in greater depth, with lists of questions that we use

at the Software Sustainability Institute when compiling detailed software evaluation reports.

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 3

Usability

Understandability

How straightforward is it to understand:

 What the software does and its purpose?

 The intended market and users of the

software?

 The software’s basic functions?

 The software’s advanced functions?

Yes/No, supporting comments if warranted

High-level description of what/who the software

is for is available.

High-level description of what the software does

is available.

High-level description of how the software works

is available.

Design rationale is available – why it does it the

way it does.

Architectural overview, with diagrams, is

available.

Descriptions of intended use cases are available.

Case studies of use are available.

Documentation

Looking at the user documentation, what is its

 Quality?

 Completeness?

 Accuracy?

 Appropriateness?

 Clarity?

Yes/No, supporting comments if warranted

Provides a high-level overview of the software.

Partitioned into sections for users, user-developers

and developers (depending on the software).

States assumed background and expertise of the

reader, for each class of user.

Lists resources for further information.

Further information is suitable for the level of the

reader, for each class of user.

Is task-oriented.

Consists of clear, step-by-step instructions.

Gives examples of what the user can see at each

step e.g. screen shots or command-line excerpts.

For problems and error messages, the symptoms

and step-by-step solutions are provided.

Does not use terms like “intuitive”, “user friendly”,
“easy to use”, “simple” or “obviously”, unless as

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 4

part of quotes from satisfied users

States command names and syntax, says what

menus to use, lists parameters and error messages

exactly as they appear or should be typed.

Uses teletype-style fonts for command-

line inputs and outputs, source code fragments,

function names, class names etc.

For Java, the package names of classes are stated

the first time a class is mentioned.

English language descriptions of commands or

errors are provided but only to complement the

above.

Plain-text files (e.g. READMEs) use indentation and

underlining (e.g. === and ---) to structure the text.

Plain-text files (e.g. READMEs) do not use TAB

characters to indent the text.

API documentation e.g. JavaDoc or Doxygen,

documents APIs completely e.g. configuration files,

property names etc.

Is held under version control alongside the code.

Is on the project web site.

Documentation on the project web site makes it

clear what version of the software the

documentation applies to.

Buildability

How straightforward is it to:

 Meet the pre-requisites for building the

software on a build platform?

 Build the software on a build platform?

Yes/No, supporting comments if warranted

Web site has instructions for building the

software.

Source distributions have instructions for

building the software.

An automated build (e.g. Make, ANT, custom

solution) is used to build the software.

Web site lists all third-party dependencies that

are not bundled, along with web addresses,

suitable versions, licences and whether these are

mandatory or optional.

Source distributions list all third-party

dependencies that are not bundled, along with

web addresses, suitable versions, licences and

whether these are mandatory or optional.

Dependency management is used to

automatically download dependencies (e.g. ANT,

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 5

Ivy, Maven or custom solution).

All mandatory third-party dependencies are

currently available.

All optional third-party dependencies are

currently available.

Tests are provided to verify the build has

succeeded.

Installability

How straightforward is it to:

 Meet the pre-requisites for the software on a

target platform?

 Install the software onto a target platform?

 Configure the software following installation

for use?

 Verify the installation for use?

Note that in some cases build and install may be

one and the same.

Yes/No, supporting comments if warranted

Web site has instructions for installing the

software.

Binary distributions have instructions for

installing the software.

Web site lists all third-party dependencies that

are not bundled, along with web addresses,

suitable versions, licences and whether these are

mandatory or optional.

Binary distributions list all third-party

dependencies that are not bundled, along with

web addresses, suitable versions, licences and

whether these are mandatory or optional.

Dependency management is used to

automatically download dependencies (e.g. ANT,

Ivy, Maven or custom solution).

All mandatory third-party dependencies are

currently available.

All optional third-party dependencies are

currently available.

Tests are provided to verify the install has

succeeded.

When an archive (e.g. TAR.GZ or ZIP) is

unpacked, it creates a single directory with the

files within. It does not spread its contents all

over the current directory.

When software is installed, its contents are

organised into sub-directories (e.g. docs for

documentation, libs for dependent libraries) as

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 6

appropriate.

All source and binary distributions contain a

README.TXT with project name, web site,

how/where to get help, version, date, licence

and copyright (or where to find this information),

location of entry point into user doc.

All GUIs contain a Help menu with commands to

see the project name, web site, how/where to

get help, version, date, licence and copyright (or

where to find this information), location of entry

point into user doc.

All other content distributed as an archive

contains a README.TXT with project name, web

site, nature, how /where to get help, date.

Installers allow user to select where to install

software.

Uninstallers uninstall every file or warns user of

any files that were not removed and where these

are.

Learnability

How straightforward is it to learn how to

achieve:

 Basic functional tasks?

 Advanced functional tasks?

Yes/No, supporting comments if warranted

A getting started guide is provided outlining a

basic example of using the software.

Instructions are provided for many basic use

cases.

Instructions are provided supporting all use

cases.

Reference guides are provided for all command-

line, GUI and configuration options.

API documentation is provided for user-

developers and developers.

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 7

Sustainability and maintainability

Identity

To what extent is the identity of the

project/software clear and unique both within

its application domain and generally?

Yes/No, supporting comments if warranted

Project/software has its own domain name.

Project/software has a logo.

Project/software has a distinct name within its

application area. A search by Google on the

name plus keywords from the application area

throws up the project web site in the first page

of matches.

Project/software has a distinct name

regardless of its application area. A search by

Google on the name plus keywords from the

application area throws up the project web

site in the first page of matches.

Project/software name does not throw up

embarrassing “did you mean…” hits on Google.

Project/software name does not violate an

existing trade-mark.

Project/software name is trade-marked.

Copyright

To what extent is it clear who wrote the software

and owns its copyright?

Yes/No, supporting comments if warranted

Web site states copyright.

Web site states who developed/develops the

software, funders etc.

If there are multiple web sites then these all state

exactly the same copyright, licencing and

authorship.

Each source code file has a copyright statement.

If supported by the language, each source code file

has a copyright statement embedded within a

constant.

Each source code file has a licence header.

Licencing

Has an appropriate licence been adopted?

Yes/No, supporting comments if warranted

Web site states licence.

Software (source and binaries) has a licence.

Software has an open source licence.

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 8

Software has an Open Software Initiative
3
 (OSI)-

recognised licence.

Governance

To what extent does the project make its

management, or how its software development is

managed, transparent?

Yes/No, supporting comments if warranted

Project has defined a governance policy.

Governance policy is publicly available.

Community

To what extent does/will an active user community

exist for this product?

Yes/No, supporting comments if warranted

Web site has statement of number of

users/developers/members.

Web site has success stories.

Web site has quotes from satisfied users.

Web site has list of important partners or

collaborators.

Web site has list of the project’s publications.

Web site has list of third-party publications that

cite the software.

Web site has list of software that uses/bundles this

software.

Users are requested to cite the project if

publishing papers based on results derived from

the software.

Users are required to cite a boilerplate citation if

publishing papers based on results derived from

the software.

Users exist who are not members of the project.

Developers exist who are not members of the

project.

Accessibility

To what extent is the software accessible?

Yes/No, supporting comments if warranted

Binary distributions are available (whether for

free, payment, registration).

Binary distributions are freely available.

Binary distributions are available without the

need for any registration or authorisation of

3
 http://www.opensource.org/

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 9

access by the project.

Source distributions are available (whether for

free, payment, registration).

Source distributions are freely available.

Source distributions are available without the

need for any registration or authorisation of

access by the project.

Access to source code repository is available

(whether for free, payment, registration).

Anonymous read-only access to source code

repository.

Ability to browse source code repository online.

Repository is hosted externally to a single

organisation/institution in a sustainable third-

party repository (e.g. SourceForge, GoogleCode,

LaunchPad, GitHub) which will live beyond the

lifetime of any current funding line.

Downloads page shows evidence of regular

releases (e.g. six monthly, bi-weekly, etc.).

Testability

How straightforward is it to test the software to

verify modifications?

Yes/No, supporting comments if warranted

Project has unit tests.

Project has integration tests.

For GUIs, project uses automated GUI test

frameworks.

Project has scripts for testing scenarios that have

not been automated (e.g. for testing GUIs).

Project recommends tools to check conformance

to coding standards.

Project has automated tests to check

conformance to coding standards.

Project recommends tools to check test

coverage.

Project has automated tests to check test

coverage.

A minimum test coverage level that must be met

has been defined.

There is an automated test for this minimum test

coverage level.

Tests are automatically run nightly.

Continuous integration is supported – tests are

automatically run whenever the source code

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 10

changes.

Test results are visible to all

developers/members.

Test results are visible publicly.

Test results are e-mailed to a mailing list.

This e-mailing list can be subscribed to by

anyone.

Project specifies how to set up external

resources e.g. FTP servers, databases for tests.

Tests create their own files, database tables etc.

Portability

To what extent can the software be used on other

platforms?

Yes/No, supporting comments if warranted

Application can be built on and run under

Windows.

Application can be built on and run under

Windows 7.

Application can be built on and run under

Windows XP.

Application can be built on and run under

Windows Vista.

Application can be built on and run under

UNIX/Linux.

Application can be built on and run under Solaris.

Application can be built on and run under RedHat.

Application can be built on and run under Debian.

Application can be built on and run under Fedora.

Application can be built on and run under Ubuntu.

Application can be built on and run under MacOSX.

Browser applications run under Internet Explorer.

Browser applications run under Mozilla Firefox.

Browser applications run under Google Chrome.

Browser applications run under Opera.

Browser applications run under Safari.

Supportability

To what extent will the product be supported

currently and in the future?

Yes/No, supporting comments if warranted

Web site has page describing how to get support.

User doc has page describing how to get support.

Software describes how to get support (in a

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 11

README for command-line tools or a Help=>About

window in a GUI).

Above pages/windows/files describe, or link to, a

description of “how to ask for help” e.g. cite
version number, send transcript, error logs etc.

Project has an e-mail address.

Project e-mail address has project domain name.

E-mails are read by more than one person.

E-mails are archived.

E-mail archives are publicly readable.

E-mail archives are searchable.

Project has a ticketing system.

Ticketing system is publicly readable.

Ticketing system is searchable.

Web site has site map or index.

Web site has search facility.

Project resources are hosted externally to a single

organisation/institution in a sustainable third-party

repository (e.g. SourceForge, GoogleCode,

LaunchPad, GitHub) which will live beyond the

lifetime of the current project.

E-mail archives or ticketing system shows that

queries are responded to within a week (not

necessarily fixed, but at least looked at and a

decision taken as to their priority).

If there is a blog, is it is regularly used.

E-mail lists or forums, if present, have regular

posts.

Analysability

How straightforward is it to analyse the software’s
source release to:

 To understand its implementation

architecture?

 To understand individual source code files and

how they fit into the implementation

architecture?

Yes/No, supporting comments if warranted

Source code is structured into modules or

packages.

Source code structure relates clearly to the

architecture or design.

Project files for IDEs are provided.

Source code repository is a revision control

system.

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 12

Structure of the source code repository and how

this maps to the software’s components is
documented.

Source releases are snapshots of the repository.

Source code is commented.

Source code comments are written in an API

document generation mark-up language e.g.

JavaDoc or Doxygen.

Source code is laid out and indented well.

Source code uses sensible class, package and

variable names.

There are no old source code files that should be

handled by version control e.g.

“SomeComponentOld.java”.

There is no commented out code.

There are no TODOs in the code.

Auto-generated source code is in separate

directories from other source code.

How to regenerate the auto-generated source

code is documented.

Coding standards are recommended by the

project.

Coding standards are required to be observed.

Project-specific coding standards are consistent

with community or generic coding standards (e.g.

for C, Java, FORTRAN etc.).

Changeability

How straightforward is it to modify the software to:

 Address issues?

 Modify functionality?

 Add new functionality?

Yes/No, supporting comments if warranted

Project has defined a contributions policy.

Contributions policy is publicly available.

Contributors retain copyright/IP of their

contributions.

 Users, user-developers and developers who are not

project members can contribute.

Project has defined a stability/deprecation policy

for components, APIs etc.

Stability/deprecation policy is publicly available.

Releases document deprecated components/APIs

in that release.

Releases document removed/changed

 SOFTWARE EVALUATION: CRITERIA-BASED

 NOVEMBER 2011

 13

components/APIs in that release.

Changes in the source code repository are e-mailed

to a mailing list.

This e-mailing list can be subscribed to by anyone.

Evolvability

To what extent will the product be developed in the

future:

 For a future release?

 Within a roadmap for the product?

Yes/No, supporting comments if warranted

Web site describes project roadmap or plans or

milestones (either on a web page or within a

ticketing system).

Web site describes how project is

funded/sustained.

Web site describes end dates of current funding

lines.

Interoperability

To what extent does the software’s
interoperability:

 Meet appropriate open standards?

 Function with required third-party

components?

 Function with optional third-party

components?

Yes/No, supporting comments if warranted

Uses open standards.

Uses mature, ratified, non-draft open standards.

Provides tests demonstrating compliance to

open standards.

