An Integer Linear Programming
Approach to Product Software Release
Planning & Scheduling

C. Li
J.M. van den Akker
S. Brinkkemper

Technical Report UU-CS-2006-065

August 2006

Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands



An Integer Linear Programming Approach to
Product Software Release Planning &
Scheduling

Chen Li

Master Thesis
Master program of Business Informatics
Department of information & computing science

Utrecht University

August 10, 2006



Index

INDEX 2
0. INTRODUCTION 5
0.1 PROBLEM STATEMENT 1.uuttitiieetiettttiaeseeeeeeetttattataseessaessassttsanaaeeeeessssssttanaaeeserssssssrannsasaeaaseees 5
0.2 RESEARCH QUESTION. .. etttiettetueieresteeersstaeesesssessssnneessstneessrtneeesssnareessrnreessrtneeerenmeeer 6
(O 2 R [ 0] (0] g g F= 110 g I =Yl (=Y o [ = PUUPTRRPRN 6
0.2.2. Algorithms & Computational MOEL: ......cceeeeeeiiiiiiiiiieeiii e 6
0.2.3. ProtOtYPE AESION: ..oiiiiiiiieiiie ettt ettt ettt e s st e e e e s b e e e e e s raeee s 7
0.3 THESIS STRUCTURE . ... ceeitettttttt e e eeeeeseettataseeeeeaaesee s s aas s esessesetesbeba s seesssseasssanbanssseeesessenes 7
THE FACTORS & PROCESSES OF RELEASE PLANNING 9
1. RELEASE PLANNING FACTORS 10
L. L INTRODUCTIONS 1. .t ttttttteetetttesertaeeeesstteesstanesesanneesesaaesastnsressstneesessaessstnstressrsneesssrnneerens 10
1.2IMPORTANCE OR BUSINESS VALUE......0tuiieitttneeetttieeresteeersrteeesrtnaesesssnaeesstnsesessaneesssineessrnnens 10
1.3PERSONAL PREFERENCE OF DIFFERENT STAKEHOLDERS.......ccctvtttitiieeieeeeeeeerriniineeeesesseessssnans 11
1.4 COST OF DEVELOPMENT ..tuutttttuteetttteeesstteeesttnseessstnasssestanersssnaessstneeessueeesssntesesriereesssnns 12
ST 7Y USSP 12
L B RISK ettt e e e e e e e e e eeaatea——t i eaereettb— e aeaererearraaaa, 13
1.7 REQUIREMENT DEPENDENCY. . ...t iiitiiittttttieeeeeeeteesssasassessesssetessssessssssesssseesssasssasesessseessens 13
LB TIME TO MARKET ...t titttettiteeeeeeeeeetttet e e eeeeeeeees st s sesesses e e aaba s eeeaeseassaaban e sseeaaessssesesrannses 14
1.ORESOURCES OF THE COMPANY......uuuuutteeeetttttsttteeestesttessssantesesesseesstseessseessrsssrnsaseeaees 15
2. SOFTWARE RELEASE PLANNING PROCESSES 16
2. L INTRODUGCTION. ..ttt ettttteeessieeetsteesessteeessatressrstsaeesstasressranraessstnaeesssasessssnasressssnseessnsnneerens 16
2. 2 THE THREE CASES. .. ittttutetttuieetettnteesstteeesstaeeseesneeestaeesstttesestteeessteessstnseessnsneressssneeeees 16
2.2.1 The requirement management processes at Baan............ccccoovvvvieerienniiiiinesssninnnnns 16
2.2.2 The requirement engineering process at Boic$gadio Systems AB.........cccceveviiviveinn 17
2.2.3 Requirement engineering for Time-to-Markej@0t..............cccoeviiiiiieiin i 18
2.3THE COMPARISONE CONCLUSION .. ....ceiiiieittuttsieeeeeateeessstatssesssesssesatessssnsesesseessrasnssseessreeenes 18
THE MATHEMATICAL MODELS OF RELEASE PLANNING 21
3. THE MATHEMATICAL MODELING 22
3.1 THE QUANTITATIVE REPRESENTATION OF THE FACTORS....uutttttteieitiieeerstineeesrnneeeessniesssnsnanaens 22
3.2INTRODUCTION TO LINEAR PROGRAMMING.......cvvtuereetnieerrrsneeesssiaaeesstneeeersnaieeesseersssnneeesns 25
3.2.1 The Standard fOMM ........oovuiiiiii i ceeceeeie ettt e e e e e e e e e ee s e e e e e eeeeaerans 25
3.2.2 The algorithms to Solve ILP Problem ...t 26



4. THE KNAPSACK MODEL FOR RELEASE COMPOSITION 27

4.1 PROBLEM DESCRIPTION......ceituttttssutettasieteaastatassssseessmneessasseeeassneessabeesessnbeeessbneeeaanneessneeenan 27
4.2 ONE POOL OF DEVELOPERS....0ctttiiiitttettieseiiittsteeeeaaainsetesssansaee s s e s s sesbnnesaessssssnnaeeesesanrnnesses 28
4. 3DEVELOPMENT TEAMS ... uiitiiiieetiiitreee e e e sttt e e s s s sibn e e e e e s s be e e ee e s e aan e e e st e e s s nbbbr e e e e e s sannaeeeeeeas 29
A ATEAM TRANSFERS ... .0tttititiiitttiittte s s ittt te e e e s s e e e e st et e e e s e e b bttt e e s sasbbe et ee e e e ssnnneee e s aanraneeees 29
4 5EXTERNAL RESOURCES......uutiiiiiiiiitrtieeeeiatianttees s s sibetsee e s ssiibe e te e s e aanraee st e s s s nbban et eeessannneeeeeeas 32
4 B DEADLINE EXTENSION. ...ttt ttteeateeeesueeeaausteaeamteeassaseesaasseeesaaseeaanseeaeanseeeeansseeeeasneessnseeasneeens 32
4.7 REQUIREMENT DEPENDENCIES. ... .uetautttteaattetesauterasaueaeaaseeeaaasseseassseesansseesanseessaseeasanseeeannes 33.
4.7.1 Six types of requirement dePeNUENCIES e eeeeeeee e e e e e e e ae e 33
4.7.2 The ILP model for requirement dependencies...........coooeveeeiiiiiiecciiceeeeeee e 33
4 8DEPENDENCY GENERALIZATION. ... .ttteetutetaeaatteeeaaueeeaanneeaeasseaasssseesanseeaeasssesaasseessanseeesnnneesansens 36
4.8.1 CONSIIUCE @ PACKAGE .. ceeeeeuiieeit it cmmmmme ettt e e et ettt et e e e e sttt ee e s st e e s s s bbb e ee s e s s nbbraeeaaenaas 36
4.8.2 Requirement and PaCKage............uicccceuiiiiee ittt 37
4.8.3 PENAtY PACKAGE ......ouiiiiiieee et i ettt ettt e e e et e e e e et e e e e e s bbb e e e e e s aane 38
4. 9MODEL PERSONAL DIFFERENCES ......ciuuttttitieessitttreees s ettt eessesssaeee s e e s nnnse e e e s s annre e e e e s s eesnnees 40
4.9.1 Problem StALEIMENT..........viiiiiiiiscereme ettt e et 40
4.9.2 The BASIC MOAEL.......ooiiiiiieiiiie e e e e e e e e e s 40
4.9.3 Working in different teams (team tranSfeL) ... ....eureiiiiiiiiiieeeee e 42
4.9.4 Personal PreferenNCEeS ......cooii e e e e e e e e 44
4. LOCHAPTER CONCLUSION. ¢ uttttetuttteaateeeeaauteaasamteesanaeaaasaeaaassseesamseeesaaseeeaasneeeaansseaeansnessnsees 45
5. SCHEDULING THE REQUIREMENTS 46
5.1 PROBLEM STATEMENT ...tttitttteeaittteeaitree e sttt e e st e e s s eesams e e e e s e e e eabbe e e abb e e e e abneee s s ne e e s amneeennneeees 46
5.1.1 PrecedenCe CONSIIAINTS. .....cciuutiiiireeeeitiee ittt ettt ene e 46
5.1.2 NO PrecedencCe CONSIIAINT..........iiiuuuiiiieeeeiiiiiiee e e tiiie e e e e s eesssabe e ee e s ssnbbeeeeeennns 47
5.1.3 0N€ POOI Of AEVEIOPET ..ottt ettt ettt e e ettt e e st e e e e et ee e e e s s aneeee 48
5.1.4 Schedule with team and precedence CONSLLAINL.............eevviiiiiiiiiiie e 49
5.2 SCHEDULING WITH TEAM & PRECEDENCE CONSTRAINTS. ... veetetuereesteraesanreeeeneneeasneeesaaneeeans 51
5.2.1 FOUr DASIC aSSUMPLIONS: ... .ueuteeeeet e s e oo e s ee e s e st eeeeeeeeeaeaaeaeaaaaaaaaeeaeeens 51
5.2.2 The RCPSP MOUEI ....ccciiiiiieiiiii e ettt e ettt e e ente e e nate e e e emee e e e aaeeeeaeneeeae e 52
L7 N o (0] o] (=0 0 e 1= o] o T o ISR 52
5.2.4 Precedence CONSIITAINTS........ooiiiiiiiii ittt er et e e e e e e e e e eeeeeeeeeeeseasea e e aaaennnnnns 53
5.2.5 The UPPEI DOUNG......iiiiiiie et ceec ettt e st e e et e e e e snnbbeeeas 54
5.2.6 The tiM@ WINTOW ......eeiiiiiiiiiiiieccemeete ettt e et 55
5.2.7 The (0,1) integer programming MOUE! ....cceeeciiiiiiiiiiiiiiiiiiiie e 55
6. SELECT AND SCHEDULE THE REQUIREMENTS 57
6. LINTRODUCTION. ... uuttttteee ettt e e e sttt e e s e et e et e s e aa et e e e e e abn s e e e e e e s an b e et e e e e s arnae e e e e e sasnbneeeeee s 57
6.2 THE INTEGER LINEAR PROGRAMMING MODEL ... ..ctetuttiaeaateeaesaueeeasanneeeasaeeeaasseeaasseeesanseeessnseess 58
LS I o o] o] (=0 0 e 1= o3 o T o IR 58
6.2.2 Precedence CONSIIAINTS........ooii i er e e e e e e e e e e eeeeeeeeeeeesesa e e s nnnnns 58
6.2.3 Compute the earliest start and the lategt Sta............cccvvvvieeiee e 59
6.2.4 The Obijective function & the CONSLIaINIS cccee..vvvivviiiiiiiiiiiieeeeeeeeeee e 59
6.2.5 The explanation of the MOdel ..o 60



6.2.7 Requirement dePeNUENCIES: ......oiiiiiieeeieeeie e ee e s 61
6.3 THE DIFFERENT TIME AVAILABILITY FOR DIFFERENT TEAMS. ... uvetttitieeaaueeaaanteeeeanneeeesseneesaneess 66
6.4MODEL THE HOLIDAY SEASONS. ...ceutttaeauteeaeaateeeasansereaaseeessastesaaasseesansesessssessssseesssneesessseesensde O
B.4.1 THE MOUEI ..o et e e et e e e s et e e e e e e neees 67
6.4.2 Explanations of the CONSIIAINTS ... 69
7. DYNAMIC ADJUSTMENT OF THE RELEASE 71
8. RELATIONSHIPS BETWEEN THE MODELS 74
8.1 STRUCTURE OF THE MODELS......uctttiuteeeautteaasueeeasanteeesaaseeesanseeeaneesesseeessssesesssneessseeessnsenesd 4
8.2PROCESSES TO USE THE MODELS. ... .ttttetautitaeauteeeatteeeaasteeasaueeasaseeessaseeaaanneeaaanssesaannseesssneeesans 76
8.3THE COMPARISON OF THE MODELS. ... .ttttttuttieaateeeaaterasaaeeaaasnseeaanseeaassseesaaseeaesanseeasnneeeesnseneess 77
APPENDIX 1: SETS, VARIABLES AND PARAMETERS: 79
THE TOOLSAND THE TEST RESULTS 81
9. THE TOOLS 82
9.1 GENERAL INFORMATION ... ttteauteeaaunueaeanteeeesasseeesaseeeaaneeeaanneaeasseeaaanseeeeasseessanseeesanseeaanneeens 82
9.2 SOFTWARE STRUCTURE ... euttttattutteeaatteeeaanteeasamseeaaanseasasaeasassseesansaeesaasseeaanneeeeansseaesseessnsens 83

9.3SCREEN SHOTS

9.4THE ACTIVITY DIAGRAM OF “SCHEDULER’ ......uutttttitieeeieeeieeeeeeeeeeeeeeeeee e e e eeeeeeeeeaaaaaaaaaaaeaens 86
9.5THE ACTIVITY DIAGRAM OF “PLANNER”.......coii ittt e e e e nnnnnneas 87
10. SIMULATION TESTS 89
L0, LT EST PURPOSE. ...t tieteetttttitiaseeeeeeeee sttt e e s e aaaaeetaaa s taa e e eeeeee e s setaa e s eeaeeeeessae b eeeeaeeeessnnns 89
O I S Y] = T ] L TSRS 89
10.2.1 TESELOOIS. ... et e e e e e et e et aaaaaaaaaaaaaaaaaaaaaaaas 89
O 1T A - | - R 90
10.2.3 The requiremMent dEPENUENCY .......uuvuueiiiiiiiiiiiiieiee et et e e et e e e e e e e e e e e e e eeee s eennennneenes 20
02 Lo T 1o T 11 T PRSP 93
10.2.5 The reSUIS fOMAL........ouuiiii e e e e e e e e e et e e e e e e e e eeaaraas 93
L0, BT EST RESULT. .. eei i e e e et e oot e oottt et e e e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeaaenssssssssennnnnns 96
10.3.1 The first group Of FESUILS .......coo oo 96
10.3.2 The second group Of FESUIL ...........ouiiiiiiiiiie e 99
11. CONCLUSION & FUTURE RESEARCH 102
0 K00 ) T od U [ ] SO 102
L11.2FUTURE RESEARCHES. .. ..ccittttttutiieeeeeeetttttiiasaeeaeeeeeeaassasaa e eeaeseeetesannaaaaeeeeeeessstsnaaaaneeens 103
APPENDIX 2 THE EXPERIMENT RESULT BASED ON OTHER SAMPLE.........cccccceveeunenen. 105
REFERENCES 106




0. Introduction

0.1 Problem statement

The development processes of product software earategorized into four phases: Requirement
managemer® Architecture/Design developmer® Deliver > Implementation ServicésIn
requirement management phase, the main activitescagenerate requirements and to select
requirements. Release planning is one of thosgitées which refer to the process of selecting
the right requirements for the coming release. Thésis is built around this topic of release
planning.

“Release planning—the definition of upcoming ret=am a product roadmap—ifulfils a strategic
role. Making incorrect choices for a release ddfori may significantly impact the
competitiveness of software intensive companiasarket driven environmeft

It is always a challenge for software companiedetermine the upcoming release due to the fact
that the wish list of requirements gathered frorfiedént parties is so big that exceeds the
capability of the company. Other constraints likeet to market, cost, etc also restrict the scope of
the coming release into a limited range. So howelect or prioritize the requirements becomes
very important and can even play a strategic role.

Several techniques have been published for reqeinesrselection and prioritization. Firesmith
(2004) has presented a list of dimensions, andgitioeity of a requirement is determined by the
average value of each dimensidmeffingwell and Widrig (2000)* has designed a voting
mechanism to determine the average weight of eaghinement through the voting of different
stakeholders. Suzanne Robertson and James Robesisdra method called ‘quality gateway’ to
determine on each requirement's go or nofgblarjan van den Akker, et al (2004) used a very
intriguing selection method using Integer lineangramming (ILP)however, there are several
open questions left to answer. This thesis will address some of those questions.

Firstly, most of the releases planning methodddryalance the trade of between values and cost,
for example, obtaining the maximal revenue withitéd amount resources. However, whether
these two factors—cost and value—are sufficientighdo determine a good release plan remains
uncertain. This provides us the first opportunityfind out which factors should be considered in
making a release planning.

Secondly, Marjan van den Akker et al (2004) havavigied a knapsack model for requirement
selection and some management steering mechanismaking a release plan, however, more
functions are demanded. These functions includéngetependencies, modeling personal
differences scheduling requirements, etc. Theseaddmrequire us to enrich and extend the ILP
model so as to include more functions for makimglaase plan.



At last, prototype tools for the new functions sldoalso be implemented. Besides the technical
issues, like the design, the implementation anegiattion, using these tools, we can not only test
the mathematical models for the additional functjolout also check for how much the release
planning factors can influence the final result. \6@n also search for whether there are
opportunities for further process improvement it help of the tools.

0.2 Research guestion

To address the problems mentioned above, my ma@areh question will be:

How to define grofitable andpractical release definition which can fulfill thdifferent interests
of stakeholders in the release planning context?

In this research question, three issues are spyeeraphasized:

e First, the key point is still to maximize the aipated revenue of the requirements
composition, that's whygrofitable’ is addressed.

e Second;practical” means the release definition should not conftidhe external and
internal constraints. For example, the resourcetiamgl are limited; the requirements are
interdependent, etc.

»  Third, “fulfill different interests” means it should provide more functions or managémen
steering mechanism to fulfill the wishes from diéfet stakeholders.

This research question can be divided into seweralquestions categorized into three scientific
fields—Information science, Algorithms & Computata model, as well as Computer science.

0.2.1. Information science:

* What are the factors for release planning?
* What are the key activities and processes to makkase plan?

In this field, the research goal is to find whietttors should be included in release planning, and
what are he processes and key activities for relptning. The factors will be included in the
later chapters as input parameters, and the keegses will guide the modeling and be integrated
with other process supporting models.

0.2.2. Algorithms & Computational model:

Here, the basic assumption is the number of rexpgings is restricted within 200, and ILP model
is capable enough to solve the probléni8]. Based on this assumption, the research curesti
are:



* How to model the functional extensions of the auri@ear programming model i.e.
what-if analysis?

» How to model each type of requirement interdepecylesing ILP?

e How to schedule the requirements development exaciime?

» How to integrate the new models with the originsdfsack model?

After we determined the factors for release plagrand the key activities, we will focus on the
mathematical modeling. As stated above, we will ge ILP for the modeling. We will try to
include more management steering mechanisms imtidel and solve at least the requirement
dependency issue and the requirement scheduling.ibseedless to say, these new models should
be compatible with the original knapsack model icttensions.

0.2.3. Prototype design:

e How to implement the computational mode?

e How to integrate it with the prototype of the kragsmodel?

* How to adapt the tool with J2EE environment?

e How much can the release planning factors influgheeresult?
» Is there any possibility for process improvement?

After the computational models are determined,ftilewing issue is how to implement them.
The new prototype should not only be capable ofisglnew problems, but also compatible with
the prototype of the knapsack model. An additiamaistraint is the new prototype should work in
J2EE (Java 2 Enterprise Edition) Environment.

After we implement the prototype, we will try tanéi out how much the release planning factors
can influence the result, and also search for gip®dunities for process improvement.

0.3 Thesis structure

Same as the sub-research questions, the theseddinided into three main parts. The first part

includes chapter one & two, which is the informatiscience part of the thesis. Chapter one
discuss the factors needed for release plannind,chapter two discuss the processes and key
activities for release planning.

The second part is the mathematical modeling paitiwincludes the chapter three to chapter
eight. Chapter three gives a general introductiotihé mathematical modeling problem and some
basic information on integer linear programminga@ter four is based on the knapsack model for
requirement selection and also presents severahgeament steering mechanism for requirement
selection. After the requirement selection, we @néshe requirement scheduling model in chapter
five using integer linear programming. Based onfttet that the scheduling result may not always
keep the deadline, we present a combined modetefuirement selection and scheduling in

chapter six. We also include two more extensiomste combined model, i.e. holiday seasons,



and different time availability in this chapter.dhapter seven and eight, we will talk about how to
dynamic adjust release plan and the relationshépsden each mathematical models.

The third part—the prototype and tests—includegtdranine and ten. In chapter nine, we discuss
two prototypes for requirement scheduling and tbentwned model. It includes the general
information, the software structure and the agtidibgram of the two prototypes. Using these two
prototypes, we will present two simulation testchapter 10. The first simulation test is to find
how much the dependencies can influence the regaire scheduling. And in the second
simulation, we will compare the two release plagnprocesses i.e. whether one should select
requirements first and then schedule them or saletschedule requirement at the same time.

Chapter 11 provides the lucid answer to the rebegtestions and draws conclusion of the
thesis .This section also accounts the limitatiofrihie research and proposes some of the possible
future dimension of research in this context.



The factors & processes of release planning

In this section, we will discuss the factors invavfor release planning and the processes to
conduct a release planning. There are two chapiterthe first chapter, we will discuss which
factors should be involved in release planningahet are the relationships between them. In the
second chapter, based on three case studies, Wdisuiliss the general processes to determine
which requirement should be in the next release.

Discussions in these two chapters refer to therimétion science part of this thesis and should be
considered as the foundation of the “mathematiocadleting” part. The factors mentioned here

will be modeled in the mathematical modeling settiand the release planning processes will
guide the relationships between the mathematicalefso We also propose several questions in
this section, and will try to find the results atdr “tools and tests” section.



1. Release planning factors

1.1 Introductions

Software release planning is a complex processrenhables many factors. In this chapter, we will
discuss what factors should be involved in relgdaening, and what's the relationships between
these factors.

The purpose of release planning is to find theablét requirements for the next release given the
constraints like time-to-market and limited avaiéalbesources. Obviously, available time, and
resources are two main factors. To evaluate regeinés, we have identified six factors from

literatures, which are: 1) importance or busineakie; 2) personal preferences of different
stakeholders; 3) cost of development, 4) quality, risk 6) requirement dependency. The

following table shows the relationship among thiestors:

Time
To
Market

Release
Planning

Requirement

Available
Resource

Figure 1.1: release planning factors

1.2 Importance or business value

Different requirements will have different values the business. Some requirements will be
critical, whereas others will be less importantutio still mandatory. Some potential requirements
are not requirements at all but merely desirabbeigh not necessary features or characteristics,
and others will be merely characteristics that wWdu nice to have or items on someone’s wish
list. Also, some requirements have a tactical usefis, whereas others have a more long-term

10



strategic value to the business.

A revenue value can be tangible (like estimatedrnebn investment or estimated revenue) or
even intangible (like user satisfaction). Two magtegories of revenue value calculation are
recognized: absolute value determination, and ivelatalue determinatidn In absolute value
determination, the product manager of a compangldping standard software products could
determine and estimate value for the revenue. Aselative revenue value calculation, Karlsson
and Ryan provide a useful approach through AHRach requirement can be assigned a value
between for example 0-100. Ruhe and Saliged take the stakeholders’ opinions into account,
and assign each stakeholder its weight of impoetaAdl the stake holders need to estimate the
value of a requirement, and the final value of guneement is computed as the average weighted
value from different stakeholders.

1.3 Personal preference of different stakeholders

Different stakeholders (e.g., customers, usersketiag, operators, maintainers, and architects)
will prefer certain requirements over others. Tikigspecially true when practical reasons such as
schedule and budget mean that all of the requirtsyeamnot be implemented and released during
the current build of an incremental developmentecyc

Both internal and external stakeholders are identt The internal stakeholders include:

1. TheCompany board is responsible for the definition and communicatidrstrategy, vision
and mission to the rest of the company. It can otitat a requirement is sent directly to the
product manager.

2. The Research & innovation has two core responsibilities: (1) doing reseamhnéw
opportunities for product innovations and (2) fimgliways to incorporate improvements or
new features into the existing products. The firs¢ results in requirements in the form of
technology drivers that are communicated to thelycomanager

3. TheService department is responsible for the implementatibthe software product at the
customer organization. They need to be aware of mésase features and they gather new
requirements from the customers

4. TheDevelopment has as main responsibility the execution of theas® plan. The release
definition also includes functional explanationtieé product requirements that serve as input
for the functional and technical design. It may wcthat during the development process
new requirements can arise, due to more complaxregents than was anticipated

5. The Support stands for the helpdesk to answer questions (Astdupport) and for small
defect repair unit (2nd line support). Large defeepair is usually performed by
Development.

6. TheSales & marketing is the first contact with a potential customer.dtigh these contacts
new requirements can be gathered.

There are also some external stakeholders like:
1. The Market is an abstract stakeholder, standing for potemtmtomers, competitors and
analysts.

11



2. Theexternal partners: the implementation partner, the development paramd distribution
partner etc.

3. The Customers often have new feature requests in the procesksing the deal or during
the usage of the product. These requests can benwoicated to Services, Sales &
marketing, Support, but also directly to the praduanager

The opinions of stakeholders can influence theevalia requirement. Ruhe and SHlitook the
stakeholders’ opinions into account by assigninthesdakeholder a weight of importance. All the
stake holders need to estimate the value of amagent, and the final value of a requirement is
computed as the average weighted value from diffeseakeholders.

1.4 Cost of development

The cost of a requirement can be presented by mgnedst and/or labor cost. Briand éfahave
summarized and compared the common methods on asefteost estimations. The typical
variables includes: System type, organization tgpmlication type, target platform, productivity
factors and so on.

When use labor cost as the cost unit, i.e. the isoptesented by man days or man hours. A
benchmarking number linking the cost and the liheadle is : one man day = 20 line of cades
When a requirement is transferred to software nwdad conceptual solutions, the top down
resource calculation or bottom up calculations payide a useful estimation for the cdsts

Although the cost unit may be the same for differesources, the cost of labors is not the same.
A software company may have specialists in differelds, for example, it may have Java
developers and C++ developers. When record theofastrequirement, we need to make clear
which types of resource are needed. To make a elgamation of the cost, we need to know not
only how many but also which kind of resourcesrareded.

1.5 Quality

Quality is a complex and multifaceted conéépErom the user’s view, the quality is the product

characteristics that meet the user’'s needs. Frenptbduct point of view, the quality is more

focused on the internal product properties thalt negult in improved product behavior. It is also

difficult to evaluate the quality; in general, sudtre quality includes the following attributes:

1. Functionality: a set of attributes that bear on the existenca sét of functions and their
specified properties.

2. Reliability: a set of attributes that bear on the capabilitysoftware to maintain its
performance level under stated conditions for tedtperiod of time.

3. Usability: a set of attributes that bear on the effort ndefde use and on the individual
assessment of such use by a stated or implied ssers.

4. Efficiency: a set of attributes that bear on the relationshgiween the software’s
performance and the amount of resources used stated conditions.

12



5. Maintainability: a set of attributes that bear on the effort néedmake specified
modifications.

6. Portability: as set of attributes that bear on the abilitgaffware to be transferred from one
environment to another.

The quality of a requirement also influences itsaativeness. For example, if a requirement is
highly reusable within a product line, then it ntigle wise to give it a higher priority so that no
system within the product line has to wait foriftgplementation.

1.6 Risk

Software industry is risky: 80% of software projece late or over budgetéd Shown in the
financial market, software industry is one of thdustries which have the highest expected rate of
returrt®. For release planning, it may well make senserioriize requirements by the risks
associated with their implementation. For exampmleg can attempt to implement those
requirements having the highest risk first so asdéal with the resulting problems during
development. On the other hand, it may make semsmpglement the lowest risk requirements
first in order to maximize the amount of the systemplemented by ensuring that limited
resources are not wasted on trying to implement higk aspects of the system that may be
impossible to successfully implement. Postponirg ithplementation of high risk requirements
can also maximize the time available to researah rikks and determine appropriate risk
mitigation approaches.

It is also important to balance the overall risktlod whole release. Ruhe has provided a method
based on generic algorithm to balance the risldifterent releasé$ A tool called EVOLVE+ is
developed for decision support. It can help to wheitge which requirement in which release so
that the trade of between risk and revenue arenbath When determining only on release,
Ruhé® consider risk in a way similar to how we considest: one requirement is associated with
a number between 0 to 1 which stands for its rahg the average risk of the selected
requirements should be lower than a certain bougen dealing with the risk of project plan
issues, the risk reflects the uncertainty or prdivalof a value, for example the expected duration
of a job. It is then very complex because a stdithagstem is in need For example see , Marjan
van den Akker (2004}° When there are task divisions to develop a remeére, which means
the project are running concurrently in severalugsy we can consult the stochastic model of
resource constrained scheduling méYBkesearch about Stochastic systems on planningeaye
new and so far models developed have found to h@ramdical application in the field of release
planning.

1.7 Requirement dependency

Requirements are not isolated islands but have lompelationships within them. These
relationships are requirement dependencies. Ifildteof software release planning, Carlshathre
has found about 80% of requirements are interdep#nend only a few requirements are singular.

13



This practical data suggests that requirement dkpwies play an important role for release

planning. In the same paper, six types of requirgndependencies have been identified, which

are

1. Combination. A printer requires a driver to function, and théver requires a printer to
function.

2. Implication. Sending an e-mail requires a network connectionnbtithe opposite.

3. Time-related. The functionAdd object should be implemented befoBelete object. (This
type is doubtful, which is discussed in section 3.1

4. Revenue-based. A detailed on-line manual may decrease the custorakre of a printed
manual.

5. Cost-based. A requirement stating that "no response time shdeldonger than 1 second"
will typically increase the cost of implementing mysother requirements.

6. Exclusion. In a word processor, it can be either providedhtegrated drawing model or a
link of external drawing application.

Multiple types of relationships can be found betwé&®o particular requirements. For example,

R1 may require R2 to function, and R2 also incrélasesalue of R1. It is suggested to priority the

dependencies and only consider the dependencythétthighest one. The priority order is as

follows: 1. Combination, 2, Implication, 3, Timelated, 4 Revenue-based & cost-based, 5,
exclusion. For the above case, we may only congigelmplication dependency.

Not all the types of dependency appear equallyuieat] Implication and cost-based are the most
common types, which can take up 80% of the totpkddencies. The least common one is the
time-related dependency. Some pape¥s suggest ignoring this type of dependency, andirgav

it to the project plan phase; sothespecially picks this type as Implementation depeicies. A
comparison of the two will come in later chapter.

1.8 Time to market

For software product, although the pressure of tionmarket is evidefit ?° *, 80% of software
project are late or over budgetédFrom a former survéy; the average time-to-market a new
release is about 6 weeks, and within this peribd, dompany can expect receiving around 80
requirements on average.

There are normally two ways to determine the timeatirket of a new release: internally and
externally. When the project is budget or qualitgfse oriented, the release date is normally
internally defined, and the release date is the tivhen the requirements in the project scope are
complete. When the project is market oriented réhease date is normally on the pressure of the
external market condition. The focus of this thdsi®n product software, so we will use the
second method: the release date determined by tamidition and not on company situations.

14



1.9 Resources of the company

The most valuable resource of a software compathei$iuman resource or its specialties. For the
release planning problem, to evaluate how manyuress are available in the period includes two
steps:

® \What kinds of resources are available? Everyoneataasvn specialty, for example someone
is good at system analysis, and someone is goptbgtamming. A good understanding of
what kind of skills are available is the first stepevaluate the resource of the company.

® How many resources are available? After knowing aleavailable for the new project, we
need to know how long can they work for the projézch developer may have different
time availability, or need to go to holidays, oredeto work for other projects. A clear
understanding of how much resources are availabtedffferent type of resources is
important.

15



2. Software release planning processes

2.1 Introduction

When developing software for a market-place, rathan for a single customer, the pressure on
short time-to-market is evident. Market-driven Riegmnents Engineering processes have a strong
focus on requirements prioritization and often liincremental releases of a continuously

evolving product.

It takes several processes to determine which remeint to be included in the next release. In
This chapter, we want to find processes that grEayly included in release planning. As to the
scope of the problem, we will consider the procegsam the time when new requirements are
issued until the time when requirements are readgdévelopment.

Based on literature, we will compare three requeetengineering or release planning processes,
and try to identify the common processes for relgaanning. The three cases are:

1. Requirement management process at Baan
2. Requirement engineering process at Ericsson Radie®s AB°
3. Requirement engineering for Time-to-Market Profect

2.2 The three cases

2.2.1 The requirement management processes at Baan

The requirement management processes at Baarvim shiohe following chart:

When a customer wish related to future product coimé the company, it is recorded as a market
requirement. Then the product managers need totliskmarket requirement to the business
requirement, while the business requirement isodymt requirement covered by Baan’s product,
and described in Baan's way. Then a conceptuatisalis designed and linked for a business
requirement. When the company’s manager decidestatit a new release, a release initiation
document triggers the writing of the correspondiyy and CS. These are then used as input for
the development processes, which include writirgjgtedocuments and actual coding.

16



Market —>—— Business
requirements requirements

Baan Requirements Database
\\\\ongoing, continuous

|
Release /l *\\ release-hased

initiation Version Conceptual
definition solution

refease-bas% /
I
= |
Definition ___ Functional Technical =
study design design Software
component

Figure 2.1: requirement management processes at Baan

Juawafieuew
sjuawainbay

Development
management

2.2.2 The requirement engineering process at BmcBadio Systems AB

The requirement engineering process at EricssoroF®tems AB is as follow:

Flanning

S (i ation

OP1
Cagturing

Figure 2.2 The requirement engineering process at Ericsson Radio Systems AB

The RE process at Ericsson is called RDEM modekrAd requirement is captured by the product
committee, the requirement goes to the specifinattage when all information needed to proceed
with implementation and verification from a narrosystem-oriented perspective is analyzed.
However, in this stage , it does not yet hold argdpction-oriented information, e.g., when and

17



how the requirement is best implemented from aoenst or product management perspective. If
a requirement can be elevated to the planned stag#l, be implemented and verified, and after
this is done, the requirement is the done and garéd to the product.

2.2.3 Requirement engineering for Time-to-Markedj&ut

The requirement engineering process for time-toketgoroject is as follow:

Project
Inception

RE Process

w

o Elicit Requirements | . Analyze
fram Stakeholders Requirements
k4
“alidate Develop / Wodify
Reguremenis % Requirements
with Stakeholders Specification
-
Eﬁles:gn anf L N Deliver and
il ¥ Maintain System
System

Figure 2.3: Requirement engineering for Time-to-Market Project

The RE process consists of four main activitiegitation, analysis, specification, and validation.

Elicitation is the activity of gathering the reqerinents from stakeholders. After gathering the
requirements, they are analyzed to determine aegpsring clarifications, logical groupings, etc.

After being analyzed, the requirements are docuedaermind validated with the stakeholder to
ensure that the product developed from the reqeinésnwill meet the needs of the stakeholder.
Small development increments and formal requirerdectimentation or experimental prototype
are also of high importance.

2.3 The comparison & conclusion

From the cases, we can conclude that:

There are two similarities of the models:

1. The processes “issued” and “specified” appear & ttiree models. In the Baan’s model,
market requirement is the “issued” requirement @ni later refined into the business
requirement. The same process to refine the rauirmgent into a more structured, and more
understanding way is in all the three models.

2. All the three models emphasize on building concalptoodels. The Baan’s model has one
process for it, the Ericsson’s model build the niadethe “specification” phase, and the last

18



model do it in the “develop/modify requirement Sfieation” phase.

There are also three differences in the model:

1. All the three models have the process to selectirement, but in different ways. The Baan’s
case has a special process to select requiremsed ba release initiation, the Ericsson model
select requirement every time when elevating ardahkt model do it in an iterative way. So,
the selection must be a process in the releasaipamodel, but how to do it is not clear yet.

2. The Baan’s model is not an iterative model, whiile test of the models are. The Ericsson
model is an iterative model while the third modeiphasize on quick iteration.

3. For the Ericsson model, in the “planned” stage,pifttgect plan issues are mentioned, but not
in the rest of the model. It is not a big probleetéuse, when the requirements go to the
constructed model, normally the first step is tokenéhe project plan. It is only a matter of
choice whether we should consider project plan@ia@n issue in the release planning or we
leave it when we construct the requirements. lerlebhapters, we will discuss this question in
details.

To sum up, a requirement may goes through thewollp steps to turn a market wish in to a

software product component:
Constructed

Rejection

speciﬁel

Issued

Figure 2.4: different stages for a requirement in release planning

A requirement is only called as a requirement wheis “issued”. The customer, the product
manager or any stakeholders inside or outside@fttmpany can issue requirements. For every
issued requirement, if it is feasible and clearthier researches will be conduct to specify the
requirement into a highly conceptual model or soiut When it is done, we can call this
requirement as a “specified” requirement. All thissted” requirements and “specified”
requirements are stored in database for furthersee-When determining the next release, the
company will find the suitable requirements for tieav release against the available resource in a
certain period. If a requirement is selected is fhriocess, it is elevated to the phase of “Accépted

19



The next step is to make a project plan to implentieem. In this process, it is also possible to
drop some requirements because of the implementdépendencies within the requirements. If a
requirement also fits the project plan, then teguirement is “planned”. When the project plan is
accepted, the requirement will go to the final $@pmplementation.

The process is very much like the combination cdiBand Ericsson model. The main differences

are: 1) we specially designed a process to sadgainement against available resources in a given

period of time and 2) make several processesiitetatThere are two reasons for it:

® First, when confronting hundreds or even thousamidsequirements, without a proper
selection, it is very difficult to conduct the seecling processes. So, we designed a special
process to reduce the scope of the problem.

® Second, in later chapters, we will try to find wafgg tooling support. This provides
opportunities to repeat some complex and tediobs, jlike select requirement or schedule
requirement. Making the processes repeatable chnuseto determine whether doing it
iteratively can improve the result or not.

20



The mathematical models of release planning

In this section, we develop and demonstrate armigdtion technique based on integer linear
programming (ILP), to support software vendors @tedmining the next release. As with the
approach of Jurf§ and Carlshamré our technique is based on the assumption thateage’s
best set of requirements is the set that has mamiprojected revenue against the constraints like
available resources, planning period, dependenetes,In this section, we demonstrate how to
include the factors for release planning in thedin programming model and present several
models to realize different functions, like requiknt selection, requirement scheduling, etc.

The first chapter gives a brief introduction to theeger linear programming. A simple example
representation of the release planning problermefsioted afterward. The second chapter shows
the knapsack model and its extensions for requinéselection. The third chapter shows the ILP
model to schedule the requirement exactly in tiffiee Fourth chapter presents a new model
which can select and schedule requirements atatime sime. Its extensions, like holiday seasons,
different time availability, etc are presented mfterd. The fifth chapter shows how to
dynamically adjust the release plan. The last @ragitows the relationships between the different
models.

21



3.The mathematical modeling

3.1 The quantitative representation of the factors

In the former section, we have discussed the fa@ad processes of release planning. We have
identified eight factors: the requirement’s valaest, priority, risk, quality, dependency, and the
time to market as well as the available resountcdise company. We have also identified two main
processes: selection and scheduling, after theresgents are specified.

To present a general idea of the domain, the fatigwtable depicts a simplified example
representation of a release planning problem.

Release Definition 3.1

Nr. [Requirement Revenues|Total [Team A[Team B{Team C|

12 |Authorization on order cancellation and removal 24 50 5 45

34 [Authorization on archiving service orders 12 12 2 5 5

63 |Performance improvements order processing 20 15 15

25 [Inclusion graphical plan board 100 70 10 10 50

43 [Link with Acrobat reader for PDF files 10 33 33

75 |Optimizing interface with international Postal caestem |10 15 15

35 [Adaptations in rental and systems 35 40 20 20

66 [Symbol import 5 10 10

67 [Comparison of services per department 10 34 9 25
Total 226 279 |42 77 160
Available team capacity 180 |60 60 60

Table 3.1: an example of a release planning problem (Source from Marjan van den Akker, et al (2004) )7

For the nine requirements in the datasheet, thtorlaare estimated. Each requirement has
expected revenue (in euros) anaxpected cost (required man days per team) associated to it. In
addition, the priority of the model is also evakdhtSuppose for instance that the total amount of
available man days in the three teams is 60, threemate that team ‘A ‘has some free capacities
while team ‘B’ and team ‘C’ are overloaded. Ther thet of requirements that brings the
maximum revenue has to be determined.

Several scholars have discussed the trade off batthe cost and revenue. A very famous model
is to use the Integer Linear Programming (ILP).sTiP model is also adopted and extended in
this thesis. We will give a clear introduction &fPl in the next chapter and propose the detail
model afterwards.

The table (3.1) does not include all the factorsdestified before. The factors: the requirement’s

22



value and cost, the time to market and the tearadifgpare explicitly presented. We can also
include the other four factors in the following way

For thestake holder’s opinions or priorities, Ruhe and Salfi modeled it by assigning each
stakeholder a weight of importance. For each reguént, all the stake holders need to estimate
the value of it, and the final value of a requiraiis computed as the average weighted value
from different stakeholders. For example, staked&iofA has the weight of 0.4, and estimate
value of requirement is 10; stake holder ‘B’ has weight of 0.6, and assume the requirement has
the value of 15, so the weighted value of this iegoent is 0.4x 10+ 0.6x 15= 1.

Value —>

The
weighted
value

—

Priority

Figure 3.1: relationships between value, priority and the weighted value

The above figure shows the relationships betweernv#itue, the priority and the weighted value.
When considering the value of a requirement, weictgrate the two factors: value and priority
together as the weighted value.

As to therequirement dependency, we have identified six types of requirement delgsties in
the former chapters, they should also be includedncomposing release plan. Theoretically, we

need to consider the relationship between every gfarequirements, which inx(n-1)/2

times if we have n requirements to consider. lerlahapter, we will show the detail model of
requirement dependency.

The factorquality is very difficult to quantify. When a requiremermquires a certain level of
quality, like reliability or reusability, we can mel it by issuing a new none-functional
requirement to show the influences (for example additionalerase or additional cost) and link
the new none-functional requirement with the orjione by setting dependencies between them.
Clearly, it is animplication dependency, because this non-functional requirerfantuality
requires the original one to work.

Another important factor for release planning risk. Unfortunately, the ILP model is a
deterministic system which does not allow varianoéghe input data. In the former release
planning tools, most of them do not include theitaite of risk; Ruh& consider risk in a way
similar to how we consider cost: one requiremenassociated with a number between 0 to 1
which stands for its risk, and the average riskhefselected requirements should be lower than a

23



certain bound. In fact, the risk reflects the utaiaty or probability of a value, for example the
expected revenue or expected man days in our ifase want to handle risk in this way, we have
to introduce a stochastic system in which all takues have a certain level of uncertainty (for
example see Marjan van den AkiFor the sake of simplicity, when the input datanot risk
free, we can use the following empirical fornfilao compute the expected value of a job's
duration:

For a jobk, we evaluate the optimistic tingg, the pessimistic tima, , and the most possible

timem, . Then the expected value of the job’s duration is:

4
d =AM R QUQ (3.1)

We can then used, as a risk free value in the model so that we siti solve the problem in a

deterministic system.

To sum up, We can use the value and priority terdahe the weighted value of a requirement.
Using the empirical formula, we can show the risfuence on the value and cost. The quality of
a requirement can be modeled as an additional fumaional requirement as well as a
dependency. We can show the relationship in theviing chart.

Time
To
arket

Weighted N

Release
Planning

Available
Resource

Figure 1.2: the factors and their relationships for release planning

After pre-solve some factors, we can reduce thatifgctors of the linear programming model.
These factors include the weighted revenue, the (oegresented in expected man days) and the
dependency for each requirement, the time to mankétthe available resource. The rest factors,
like quality, priority and risk are indirectly inadled in the model. In the later chapters, we will
present how to build the integer linear programnmmagels using these factors.

24



3.2 Introduction to linear programming

For the sake of completeness, we present a smadldirction of linear programming in this
chapter. For more background information, we réferreaders to the book of Wold&y(1998) as
a reference book.

In mathematicslinear programming (LP) problems are optimization problems in whitte t
objective function and the constraints are alldine

Linear programming is an important field of optiation for several reasons. Many practical
problems in operations research can be expresdettasprogramming problems. Certain special
cases of linear programming, suchregwork flowproblems andnachine schedulingroblems
are considered important enough to have generateth mesearch on specialized algorithms for
their solution. A number of algorithms for othepé&g of optimization problems work by solving
LP problems as sub-problems. Historically, ideasnftinear programming have inspired many of
the central concepts of optimization theory, sugtuality, decompositionand the importance of
convexityand its generalizations.

3.2.1 The standard form

Standard formis the usual and most intuitive form of describatinear programming problem. It
consists of the following three parts:

A linear function to be maximized

e.g. maximize C1T1 + €212

Problem constraints of the following form

eg. @171 + 1Ty < by

Non-negative variables

eg. 120

o 2 0

The problem is usually expressed in matrix forng #ren becomes:
Maximize CTX

Subject to Ax < b! x=0

25



Other forms, such as minimization problems, prolslemth constraints on alternative forms, as
well as problems involving negative variables chvags be rewritten into an equivalent problem
in standard form.

3.2.2 The algorithms to solve ILP problem

In general, integer linear programming problemshi#Pehard. This implies that it is very unlikely
that there exists an algorithm that is guaranteeéind the optimal solution in a time that is
polynomial in the input size. Finding the optimalwion requires an amount of time which in the
worst case grows exponentially with the problene siz

We can first obtain a linear program which is ahitbe P-relaxation If in a given ILP we relax
the integrality conditions, i.e.Xintegral’ is replaced byx =0 and XD{O,]} byO< x<1, we

obtain a linear program which is called the LPxataon. This problem can easily be solved by
e.g. the simplex method. The simplex algorithm, edigped by George Dantzig, solves LP
problems by constructing an admissible solutioa &ertex of the polyhedron, and then walking
along edges of the polyhedron to vertices with essively higher values of the objective function
until the optimum is reached. Although this aldumit is quite efficient in practice, and can be
guaranteed to find the global optimum if certaieqautions againsglycling are taken, it has poor
worst-case behavior.

The first step to solve an ILP is to solve the ERxxation. If the solution of the LP-relaxation is

integral, it is done. If not, we start with a brarend bound tree. The ILP is split into several
sub-problems corresponding to two or more nodestafe. The algorithm starts evaluating one of
the nodes. First the LP-relaxation in the nodeoisesl. If the solution is integral, the node is

finished and the best-known integral solution islated, if necessary. If there is not feasible
integral solution, obviously, then the node isdived. If the value of LP-relaxation is lower than
the best known integral solution (in case we agchéng the maximal value), the node can be
skipped. Otherwise, new nodes are generated by hiran

Since we maintain the best known integral solutood we have an upper bound from the
LP-relaxation, we have a solution with a qualityagantee from the moment at which an integral
solution is found. This allows us to stop if théusion is guaranteed to be within a certain margin

from the optimum.

This method is used in most of the ILP softwarekpges.

26



4. The knapsack model for release
composition

In this chapter, we introduce the knapsack modetdiease planning. Van den AkReret al have
presented a linear programming model in this fi€ldr the sake of completeness, we repeat the
models from section 4.2 to 4.6 and extend the nsaddhter sections.

4.1 Problem description

In this chapter, we can formulate selecting reqo@ets for the coming release as a combinatorial
optimization problem. In such a problem, we havdind the best from a finite but very large
number of solutions. From a former sur¥eya product software company gets minimal from 0 to
20 and maximum from 5 to 500 requirements a wedlk. most probable values range from 1 to
50 with a mean of 13.6 requirements/week. The sualso reported that the mean-time-to-market
is about 6 weeks. So, we can expect to handle dr80nrequirements every time for a new
release. Given the time to market and the fixedwe® in the company, it is not possible to
develop all of these requirements. A selectioneisessary here to determine the coming release,
and this is a typical combinatorial optimizatiomipiem.

In the former chapter, we have introduced the kettégnear Programming technique. We will use
it to model release planning problem in the latempters. Although ILP in general are NP-hard,
using advanced algorithms and software, we canogxpdind an (near-) optimal solution within
a reasonable time.

We can model the problem i.e. selecting requiremtortthe next release as follow. We are given

a set ofn requirement{sR1 R - R}. For each requiremeR;, we can estimate its

revenue ag;. The cost for a requirement is expressed in theben of man days required in

different teams. We assume the time-to-market v&rgi hence we have to deal with a fixed
planning period with limited resources. Therefave,have to make a selection of requirements to
be included in the next release, preferably, wittximmal possible revenue. This can be considered
as the following optimization problem: find the ssdt of requirements for the coming release
such that the revenue is maximal and the availedgecity is not exceeded.

We firstly present the basic selection model wihn division and without team division. In the
later sections, we present three managerial steeniechanisms: team transfer, hiring external
team capacity and deadline extension. At last, tvewsthe models to handle requirement
dependencies.

27



4.2 One pool of developers

When there is no team division in the company, nk deal with the total amount of man days in

the company. The planning period | and available working days ard(T) in the planning
period. Moreover, letQ be the number of persons working on the releagieeitompany. The

available capacity then equald(T) Q man days.

Moreover, we estimateaj as the amount of man days needed to impIemenlirem;entRj.

Such estimation could come from project managers-gown) or developers (bottom-up). We

model the requirements selection problem by definiminary variablesX; (j=1,2,...n).

Where:

X; =1 if requirement R, is selected;

X; =0 otherwise.

We can model this problem as an integer linearnarging model in the following way:

n
max v,
i=1
Subject to:

2.8%<dMNQ (4.1)
=
x, 0{0,3 For (j=12,..n)

This problem is known as the binary knapsack profleWe want to include as much as
requirement in the “knapsack” to get maximal valdeng in 1998 has presented the
application on requirements analysis. If the corypdecides that some of the requirements have

to be included in the new release in any case, aveatld one more constraint thaj =1if

requirement R, is fixed.
In this model, d(T)Q is the total available man days in the pefiodWe assume every

28



developer has the same available working da{d") in the period. If the number of working
days in the planning period is different from p&sothe total capacity is given bde(T),

where d (T) is the number of working days of persgn in period T and the sum is over all

persons in the company.

4.3 Development teams

In the previous model we have been too optimisticnbt considering the team divisions. In
practical usually, there are different developmésams in the company with their own
specialization. There are other reasons to fornmsgeia the company, like geographic reasons or
management reason. We can include the team-diffeseim the following way. Letm be the

number of teams and suppose te&n(i =1,2,..m) consists of Q persons. We assume that
the implementation of requiremeer needs a given amourg, of man days from team

G (i =1,2,..m). Now we can replace capacity constraint (4.1) by:

_Zn:aM <sd(MQ, for (1=1,2,..m)  (4.2)

Note that whenm =1, this model is the same with model for one podal@felopers. This model
is known as binary m-dimensional knapsack proBterBame as the model for one pool of
developer, this model can be adapted to the situatith different amounts of man days in the

planning periodT . We can replace the team capact{T)Q by de(T) where d (T)

is the number of working days of persgnin team G, in the period T .

4.4 Team transfers

When some teams are overloaded and some teamityaipanot fully occupied, we can consider
transferring people to the overloaded team. Thig meault in additional revenues. We call this
team transfers. A transfer will probably resultidecrease of efficiency because the person is not
experienced in the new working environment. Whegpeeson is working in his own team, we

assume he can perform 100% of his capacity, buhvehperson is transferred from tea@ to

team G, his contribution in the new team turns to bg per day. The factor, also

reflects the feasibility of a transfer:

29



a, =0 if atransfer from G to G, is infeasible, for example, because the spectadizaf

I
the teams differ too much of geographical reasons.

a, =1 if persons from teas, can do the work in tean(5, without any reduction in

performance, e.g. if the work in the two teamsassimilar.

O<a, <O if person from teamG, can work in teamG, . However, their productivity will
reduce because of the new working environment.

Note that a;, does not necessarily equal,; , for example if the work in teamsG, and G, is

in similar areas, but the work inG, is more difficult than that inG, . Then @, is larger than

a,; . Itis also clearly that wheni =k, a; equals one. Because then the transfer is in the sa

team.

We assume that the amount of time for which a pecsan be transferred is a multiple of the

so-calledCapacity Unitwhich is denoted byUJ ___. This value ranges from 1 tal(T) . If people

cap*
can be transferred per day thdzhcap =1, or if, on another extreme, a person can only be
transferred the whole period, thehiCap =d(T). If people can only be transferred for a number

of complete weeks, thek . equals five.

p

Besides the variabl , we now define a new group of variablg, as the number of capacity
units transferred from tears, to tean(5, . We can compute the number of capacity umjtsin

team G, equals:

New we can present the model with team transfers:
n
maxzivj X
J:

Subject to:

30



Zaﬂ)ﬁ SUcap[yli-'_zaki Y] for, (i=1,2...m) (4.3)
=

k:k#i
2 Y =m for, (i=1,2,..m) (4.4)
k=1
x 0{0.3 for (j=1,2...n)
Y, non-negative and integral, for (j =1,2,...n)

Constraint (4.3) shows the re-distribution of tapacities in the company. The tea@® ‘s actual

capacity equals the capacity of its own plus theaciy obtained from other teams. Equation (4.4)
ensures that total capacity in a team does ndoget

Note that if only full-time transfers are allowettien Yy, is just the number of persons from

team G working in teamG, . By deleting the integrality constraints on theiafles Y,

persons can get any fractional division over teams.

In the above model it is possible that for exan#feersons are transferred from team A to team B
and 1 person from team B to team C, i.e. team &iended by transfers and sends persons to
other teams simultaneously. This situation is in&fht but will possibly occur in an optimal
solution. However, it is not desirable and we caclge it in the following way. Define a binary

variable z which equals 1 if people from tea® are transferred to other teams and 0

otherwise. Now we can add for each tedin the constraints:

IR E: (4.5)

k:k#i

>y s(M-m)a-7) (4.6)

k:k#i

n
where M = Z m Constraint (4.5) ensures that tea@ can only send capacity to another team
i=1

when z =1and inequality (4.6) ensures that other teams cdyntoansfer capacity to tears,

if z =0 One can think of situations where the restricti¢h$) and (4.6) are not desirable.

Suppose that transfers from team ‘A’ to ‘B’ andnfraeam ‘B’ to ‘C’ are feasible, but transfers

31



from ‘A’ to ‘C’ are not. If there is lack of capaygiin team ‘C’, this can be solved by transferring
form ‘B’ to C. When this leads to lack of capacityteam ‘B’, these can be compensated by
transfers from ‘A'to ‘B’.

4.5 External resources

When the teams are overloaded, the company maydeonisiring external personnel in some
teams. This decision will not only increase thertgacapacity, but also bring in a certain cost.

We assume the cost of external capacity is lineaihé number of man days. We defiltgas the
daily cost of hiring external capacity in teafd , i.e. if U, is the amount additional man days
hired in team G, , then the cost are U . Please note thag} can be different from team to team.
Similar to the case of team transfers, we assuatetttle contribution ofu, external man days is

given by a u,, where 0<a, <1.Given the maximal budg&t for hiring external personnel.

This results in the following model which is anengion of the model from Section 4.3:

maxp,v;% =2,
=1 i=1

Subject to
Zaj)gsd(DQ+ap for, (i=1,2,...m) (4.7)
i=1
dYaysE (4.8)
i=1
U, non-negative and integral, for(j =1,2,...m),
X, D{O,]} for (j=12...n)

When m=1, this model is also available. So, this extensitsop applies to the case with one
pool of developers.

4.6 Deadline extension

When the deadline allows a bit range of varianaecan consider postponing the delivery date if

32



it is profitable to do so. Suppose the deliveryediat postponed by, working days, and the

estimated additional costs a€ per day. We can defin@, as a (integer) variable in the

n
integer linear program model. We will change theereie function toZvj X = Co. and the
j=1

d(T) on the right-hand side of constraints to ()Q(T) + dr) :

4.7 Requirement dependencies

4.7.1 Six types of requirement dependencies

In an industrial surve§* above of requirement dependencies in softwareystaglease planning,
six types of dependencies have been identifiecpandtized. They are:

Example 1: Combination. A printer requires a driver to function, and the/dr requires a printer
to function.

Example 2: Implication. Sending an e-mail requires a network connectiohnbtithe opposite.
Example 3: Time-related. The functionAdd object should be implemented befobel ete object.
(This type is doubtful, which is discussed in sati3.1)

Example 4: Revenue-base. A detailed on-line manual may decrease the custorakre of a
printed manual.

Example 5: Cost-based. A requirement stating that "no response time shdealdonger than 1
second" will typically increase the cost of implertieg many other requirements.

Example 6: Exclusion. In a word processor, it can be either provideoh&grated drawing model
or a link of external drawing application.

The detail of the requirement dependencies angbttibetization of them have been discussed in
former section.

4.7.2 The ILP model for requirement dependencies

Combination

R requireR;, and R; requiresR . So, we should select either both of them or nointhem.
This can be done by add one more constraint:

X =% (4.9)

Implication

33



R requireR; to function, but not vice-versa. So, we shouldyosélect R when R, is

selected. This can be done by adding one moreraamist

X < % (4.10)

Time-related

Either R has to be implemented beforiaj or vice-versa . As this type of dependency is fyure

for requirement scheduling not selection, ILP witit model Time-related dependency. In later
chapter, we will present a new model which canudelthis type of requirement dependency.

Revenue based

R affects the value ofRR, . In this case, ifR is selected, the value B will change, either

positively, or negatively. The following table shewhen this dependency will take effect:

Will it influence the value?
R R

Not select| Not select| NO

Not select| Select NO

Select Not select NO

Select Select YES

From the truth table above, you can see only ihb& and Rj are selected in the coming
release, you can obtain a certain amount of basaysng B“. (if R decrease the value de ,

then B”. will be negative). To model this, we need to idtroe a new integer variableIj which

equals 1 when both of the requirements are selected
We also need to add the following constraint:

G <s(x+x)/2 when B

, is positive (4.11A)

x+x -1l<g when B, is negative (4.11B)

(

The truth table for the upper inequality is:

X | X | x*+x -1 (x+x)/2 g

0 |0 | -1 0 0
0|1 |0 0.5 0
1 1|0 0.5 0
1 |1 1 1 1

34



Which is inline with the truth table of the rever@sed dependency.

n
Moreover, we also need to change the target equfiﬁmmaxz XV, to
j=1

max(>_xVv, +B ¢ ) (4.12)
=1
x; {0, 1} forj=1,...,n.

Cost-based

The ICOST dependency meaRs influence the cost oR, . In the linear programming

framework, the cost is represented by man days.eSaith revenue-based, this influence can
either be positive or negative. The following taf®ws when this dependency will take effect:

Will it influence the cost?

R R

Not select| Not selectl NO

Not select| Select NO

Select Not select NO

Select Select YES

Here, we can say if bottR,  and Rj are selected in the coming release, we can sawe B@n
days, sayingS ;_, ,(if R increase the man days needed fe, then §;_, is negative). To
model it, we first need to introduce a new varialbjlg. Same as revenue-based, a new constraint

for i, will be added:
I S (X +X%,)/2 when §;  is positive (4.13A)
X+ X% =1<iy when §;_, is negative (4.13B)

n
We also need to adjust the original constraintian days fromz 8% <dMQ to:
=1

Zn:au’ﬁ kS . sdDQ for (i=1,2,...m) (4.14)

35



Exclusion

OR dependency means we need eitlier or RJ. but not both. It is also possible that we need

neither of them. To model this type of dependeneycan set one additional constraint as follow:

X +x <1 (4.15)

4.8 Dependency generalization

So, far, we only apply the dependencies betweeas parequirements, however, the dependencies
mentioned above can be generalized to the situaiitnlarger sets of requirements which we call
a package. For example, if we develop a completkgue for marketing, we can obtain some
extra value besides the revenues from individuglirements in the package. We can use the
value-based dependency to model all the requireeing, but it is very difficult to determine:
first, which requirement influences which, and setchow to divide the package bonus into each
requirement pairs.

4.8.1 Construct a package

This problem can be represented in the following:wa

The packag® consists of a set of requiremenR®, j=1...| and |l <n (the package

contains at most all the requirements). If we impat all of them, we can obtain the bonus value

of B, from the package. To model this, we need a bimarigble Yy, to determine whether we

have the package or not.

Now, we need to add the constraints:

I!

2%

y<jL
<

I for j=1,...,. (4.16)
t

At last, we can add:

B Y, (4.17)

to the revenue function.

When the value of a package is shown as cost-rieducither than additional values, we can

36



model it in the following way. If implementing theackage P can reduce the work in team

G for a,, we can include the cost reduction effect by cirangonstraint 4.2 into:

i@j%‘yqﬁdDQ (4.18)

4.8.2 Requirement and Package

4.8.2.1 Dependencies
So far, we know how to construct a requirement pgek Same as each requirement, a package

also has its expected reveri§ie and its decision variabl . So, a package can be considered as a

“special requirement”. If we do so, the requiremedapendencies mentioned above then can be
generalized to the dependencies between requirenagt packages or even between packages.

Similar to how we use the binary variabbq to model dependencies, we can use the binary
variable y, as well. For example, If the packade requires requiremenRj to function, it is

typically animplicationdependencies, then we can sgt< X; to model this dependency.

4.8.2.2 Package relationships

However, because a package is a group of requittsiiers actually a set not a basic element as
requirement is. So, there are more issues to disasut. Think of the following three packages,
A, B, C. Each package contains several requiremewaiskage A include all the requirements that
package C has, and package A also share someeammguits with package B.

A

We would expect all the packages are like C anditizre the packages are disjoint. In this case,
we can use the package freely, just like a requérgnand no further constraint is needed.

Another case is like A and C, where package A metupackage C. For example, package C is a
basic package of marketing, where only key requer@mare selected; on another hand, package
Ais an extended version of marketing package, e/her have not only the key requirements but
also some supporting requirements. The packagingésand common, but this situation leads to

37



a problem. Because package C is just a part ofggecl, if we finally select package A, we
actually automatically select the package C, andwitl get the bonuses from both A and C. This
should not be the case, because package C aret itcofanted twice. We can solve this problem by
adding a nevexclusionconstraint:

Yat Vsl (4.19)

If the condition is satisfied for both packages thP can automatically select the higher bonus
package, which is normally the one with more rezmients.

The third case is like A and B, where two packagjfesre some requirements together and have
some others for their own. For example, one packaggses on route planning, another focuses
on inventory management, and both package contaire gequirements on saying handling of
customer orders. If both the two packages are teeleit seems not reasonable to have all bonuses,
because a part of the two packages is overlappifggcan deduct some of the value by using

negative revenue-based dependency. For exampleislbverlapping make a lose o, , we
need to:

> First, introduce a new variabl¢/,,
> Second, subtract,, Yy, to the revenue function

> Third, set a new constrainy,, >y, + Yy, -1

If the two packages share large amount of requingsnet is also possible to seiclusion
dependency between them. This is a management iatecislereby we suggest using
revenue-based dependency because it has a hidgbrdtypr

4.8.3 Penalty package

In requirement dependency, the revenue/cost-baspendency can model both positive and
negative influence on revenue or cost. In the gectibove, we introduced the package with
additional values or decreasing cost; in this sectwe will introduce the package with negative
values or additional cost which we call as a “pgnalackage”. This package is useful when
overlapping happens. For example, a group of reménts have the similar function of providing
user manual, but doing in different ways like thgbuvebsite, or electronic document or paper
version. Having three of them may have some ovpit@pso as to reduce their overall values.
Another case regarding to cost is when having thelevpackage requires additional work. For
example, when the dependencies between the reaaritenn the package are very complex,
implementing the whole package may needs additicostlto handle these dependencies. In these
two situations, we need to construct a penalty pgeko show the value reduction or additional
works. Unfortunately, we can not use the methoskiction 4.8.1 to construct penalty package.

38



When we use constraint 4.16 to construct a packémgeselection variabley, still has the

freedom to be zero even when all the requirementea package are selected. When then value
of the package is positive or the package can eethe implementing cost, the ILP model will

turn Yy, to one so that to obtain additional value or ceduction. But when the package value is

negative, the ILP model will lety, to zero so that not to lose values or have additioost. This

problem requires us to construct a “penalty packamga different way.

A penalty package can be constructed in a simi&ar & a bonus package, the differences are:
First the constraint 4.16

X
y, < Jll for j=1,..,. (4.16)
t
Should be replaced by:
|
Y2y x—L+1  for j=1... (4.20)
=1

Second, we can not set compulsive requirementhénptickage, because these compulsive
requirements are in fact modeledmgplication dependencies between requirements and package.

The reason is because the ILP is searching for gesults. If it is a bonus package, the system
will automatically go for it when the condition satisfied, because it increases the value. So, we
only need to set an upper bound as a lunching tondlike in inequality (1). However, fulfilling

the condition does not compulsively launching taekage. The decision variakjee still has the

freedom to 0, because the condition is an uppendoihat is why we can set additional
dependencies for the package. On the contrarysiis®em will not go automatically for penalty
package, because it decreases the revenue. Sediéonget the condition in (5) as a lower bound,
which means if the condition is satisfied, the ggnaill compulsively lunch. In this way, we can
not set additional dependencies for a penalty ppgkaecause immediately after we construct the

penalty package i.e. when the condition is fulfilléhe decision variablpj will turn into a
constant which is 1.
The conclusion for penalty package is although are @onstruct penalty package if necessary, we

can not set additional dependencies for penaltykames neither between it with other
requirements, nor within itself.

39



4.9 Model personal differences

4.9.1 Problem statement

So far, the ILP model is based on team capacityerahan individual members. So, it has made
two assumptions to eliminate the difference betwesh team member. First, every team member
has the same productivity; second, all team memberk in the same period, from the beginning
of the project to the end. In addition, as mentibireformer chapter, the personal preference is
also an important issue for release planning. dieoto show the personal differences in capability,
available time, and preference, we need to exteadtrrent team based model to a people based
model.

One of the important scenarios in the knapsack imsdeam transfer. However, one important

parameter igy, , which shows the contribution of a person in te&n when moved to teanG, .

This parameter is needed between every pair of.telamever, when consider personal difference,
this parameter is very difficult to evaluate. Calesing the following case:

developer Own team Other team
Alice 1 0

Bob 1 1

Carol 1 0.6

David 1 15

(team leader)

As shown in the table, Alice can not work in theter table; Bob works as well in his own team
as in other team; Carol works only 60% when tramsteto another team while David works even
better in another team, but unfortunately, he éstdam leader, and not allowed to move. In such
situation, it is very difficult to evaluate the tearansfer rate between these two teams, or not
possible to get a precise one. There is a needeivamodel to solve the problem.

4.9.2 The basic model

Let mbe the number of teams and each tea@) (5=1,...,m). Assume there are1persons in
the company, and each persodigk =1,...,n). The next to do is to create X N matrix
showing each person’s performance rate in eactpgits use S, reflect the performance rate

of the personH, in the tean5, . There are several possibilities:

40



> B, =0 If the personH, is not capable of working in the te&. It can be technical

reasons, geographic reasons, management reassmsi@thing else.

> B, =1 If the personH, works in the teas at the standard performance rate. This

standard rate can be the number of lines per pepswnday, or other standard the
organization use. In this model, it should be latdé within the whole organization. Please
also note that this standard is also the standéedto estimate the development man days for
a requirement.

> B, =others If the persoH, s performance in the tea@is considered to be better or

poorer. If it is less than one, it means this persorks poorer than the company’s wish. It
can also be higher than one, which means this p&ao do a better job there.

We can then assign our developers by introducingew binary variablg, (i =1,...,m),

(k=1,...,n), where:

z, =1 ifthe personH, works in the tearfs,

Z, =0 ifthe personH, does not work in the tea@

If we assume one person must work full time and ealy work in one team in the whole
development period, we can add a group of consstain

>z, =1 for k=1,...,n (4.21)

This constraint makes sure that one person canwali in one team, and it applies for all the
team members.

The team’s capacity is the sum of the capacitylldha team members. Then, instead of using a

fix numberQ, the teants, 'capacity is:

dM> 4 2 for i =1,...m 4.22)
k=1

n
Now, we can replace team capacity d{T)Q by d(T)Z B, 7. . then the original model will
k=1

be extended to a model based on people rathetdhars.

! In Sjaak’s information business course, the stahtste is 20 line of code per person per day.tBstis the
figure for the whole development process. | doniolk whether this can also be the benchmarking dignare.

41



4.9.3 Working in different teams (team transfer)

Till now, we have built a fundamental people-baseddel. This model has taken members’
different capacity into account. However, there stit some management issues to think about,
for example scheduling people more flexibly, or miaty working periods for different members.
They will come in this chapter as the extensiothefbasic model.

4.9.3.1 Working in different teams (team transfer)
Sometimes, a developer needs to work in differesints due to various reasons. For example, the
team capacities are not in balance; delay in d#sens or for management reasons. We can model

this by introducing a new group of integer variabyg which is the number of days the person

H, works in the tear®, .

No, instead of using (4.21), we need to add a mewpmof constraints:
m
D Vi =d(T) for k=1,...,n (4.23)
i=1

These constraints make sure that one developeassgign all his/her working days to at least one

of the groups. Please note the(T) can differs from person to person.

Please note nowy, is the number of days a developer works in a gr@q the total group

capacity is now:

Zﬂikyik for i=1,...,m (4.24)
k=1

n
We can then replacel(T)Q by Z,Blk Y, in the team based model and it will turn to be a
k=1

people based model then.

In section 4.4, we introduced the concept of Cdjpplinit for team transfer. This concept is also

applicable here. We can define the varialye is the number of Capability Unit a developer

works in a certain team. To include this, we neecdkplace the constraint 4.23 by :

2 Vi —( for k=1,...,n (4.25)
oy U,

And the team capacity (4.24) by::

42



U BiYic for i =1,...,m (4.26)
k=1

4.9.3.2 Management issue for team transfers

More often, a team member is not willing to transfieonly accept a limited times of changes. For
example, a team member is not will to work for mitran 2 teams within the development period.
Sometimes, it is also necessary to set a lowerddamthe number of days one developer works
in a team. Like we only transfer a person to anogneup if he/she needs to work more than 5
days there. We also need to deal with personabnsador example two developers always want
to work together or do not want to work togethdr.these management issues will be discussed
in this section.

4.9.3.3 Basic constraint
Before we model the management issues, we firsl teeset a new group of constraints to link

two variableg, and Yy, together. The definition ofz, and Yy, can be found in 4.9.2 and

4.9.3.

Y £z, xd(T) for k=1,...,n

for i=1,...,m (4.27)
This constraints means: if a person works in a@edroup, he can work no more than the whole
project period there. The constraints od, and Y, will be explained next depending on

management choices. Even though it might seem eseacy here, however, we will need it for
all the further extensions.

4.9.3.4 Limit the number of transfers

If we want to limit the number of teams one persarks in, we need to use the variaije

again. (The definition ofz, can be found in section 4.9.1) If we only wanteveloper H,

works in no more thanN teams. We can add the following constraint:
>z, <N (4.28)
Please note thalN can be different from person to person.

4.9.3.5 Lower bound of working days

We can also set the lowest working days a developeks in a team. If a develople, need to

work more thanM days in a team, we need to set a new group otreoms:

43



Mxz, <V, for i =1,....m (4.29)

4.9.4 Personal preferences

4.9.4.1 Preference to team
A developer may only want to work in a few teams. Model this, we can only define the

variables z, and Y, for the teamsG where personH, prefer to work.

4.9.4.2 Working with others
When a developer has person preference to othexlapmrs, like he/she wants to work with

someone else or he/she does not want to work witthar one. We can use the varial#g to
model his preference. When developkk,. only want to work with H, , we can add the a group

of constraints that:

Vi = Vi for i=1,...,m

Or when developerH,. does not want to work withH, , we can add the a group of constraints

that:
Yie TV <1 for  i=1..m

4.9.4.3 Key team members
Some team members are very important for a teangxample the team leader. When make the

people planning, it is better to fix these peopl¢hie team. If we want to fix the persdd, in the

teamG, , we can set the decision varialje to 1.

4.9.4.4 Different time availability
In the team based model, every team member hasathe working period which is equal to the

planning periodl(T) . In the people based planning model, it is possiblassign each people a
different working period. This will be representasl d(T,) (j =1,...,n) for the develope, .

Then you need to replacd(T) by d(T,) in the constraint (4.23) and (4.27).

44



4.10 Chapter conclusion

In this chapter, we introduced the knapsack modeflélease planning. Based on the knapsack
model, we also introduced several management stpeniechanism as the extensions of the
knapsack models. The relationships between theselmare depicted in the following table.

Product /manager
*

extend deadline

/

/
<<extend>>
/

software package
<<extend>

Hire external people

<<extend>>

development teams

personal preference

work in different teams

Use case chart of release planning

As shown in the picture, the heart of the modehés knapsack model. And all the other models
are the extensions of this one. The combinatiosal af any of the models is applicable except
only one case: when we need to include personéénereces, we introduced a new model for

transferring people and this one has the sameifumes team transfer described in section 4.4.
These two models are not compatible, and it is qulgsible to use one based on whether the
personal preference model is included. In the péctthis conflict is shown as an OR constraint

between the two models.

45



5. Scheduling the requirements

5.1 Problem statement

After we select the requirements, a very imporfaotcess in the release planning is to schedule
the activities exactly in time. In this chapter, wl discuss what will influence the scheduling
process, and how to make a project plan with mihtimee span.

5.1.1 Precedence constraints

In the former chapter, we have indicated five typdsrequirement dependencies. These
requirement dependencies will continue influending schedule of the development processes.
When schedule the requirement, we should take twofdfive types of requirement dependencies
into consideration-implication and cost-related They are considered as implicitly mentioned

precedence constraints’. If requirement Rj influences the implementation cost of
requiremenR,., or if requirementR;. requires R, to function, it is better to start develBp

after R, is finished. Let us denote this precedence cansty R, < R..

According to a former survéy implication andcost-relateddependencies take up a great portion
in practice: three out of five cases reported tlarthe most common dependencies and took up to
about 80% of the total requirement dependencieter Ahfluencing the requirement selection,
these dependencies are inherited and will alsaénfie the project schedule.

Besides the inherited precedence constraints,atsis possible to séime-relateddependencies
for project plan purposes. This dependency expmsgect plan issues like: “we need to

developRj, after RJ. ". For example, it is better to develop the functitilelete an item” after

develop “add an item”.

Although Carlshamf@ suggested only taking one type of requirement deecy between a pair
of requirements, but in fact in his discussion heerpreted more than one. For example, if

requirement RJ., requires RJ. to function, thigmplication dependency means not only th&,

logically require R to function, but also thatR, need to be developed aftdR;. So this

relationship is in fact anmplication plus atime-related Theoretically, there can be more

relationships between a pair of requirements, fanwple, RJ.. requires Rj to function and
influences its cost, then, they hawgplicationandcost-basedlependencies.

46



If it is allowed to set multiple dependencies betwea pair of requirements, not all combination of

the six are valid. The first exception is that: legon is not compatible to any other dependencies,
because we can at most have one of the two regeitsiso building more relationships between

them is not necessary. The second exception is @atidn and Implication, because

Combination meansR; require R;, and R; also requiresR;.. The rest of the types can work

together without any problems.

We can divide the requirement dependencies ingetgroups-

® The functional dependency including Combinationplination and Exclusion;

® The value-related dependency including revenudeeland cost-related dependency
® The time related dependency.

The following table shows how the requirement dejeecies influence the requirement selection
and requirement scheduling. The functional and esatlated dependencies can influence the
requirement selection, while thienplication, cost-relatedand time-related dependencies will

influence the requirement scheduling. For simplicéason, we can define these three types of
requirement dependencies as precedence constrainggecedence constraint is denoted as

R, < R.,if R; need to finish before requiremdRt starts.

Influence Influence
Dependency | Dependency . .
rou tvpe requirement | requirement
group yp selection scheduling
. Combination 4
Functional —
Implication 4 4
dependency :
Exclusion 4
Value-related Revenue-related | v/
dependency Cost-related v v
Time-related Time-related v
dependency

Table 5.1: the influence of requirement dependencies on requirement selection and scheduling
It is clear that the precedence constraint caruénfte the development sequence in a team.
However, the question is: as we have already ssleetquirement based on our capability, why

should we still consider scheduling activities asiraportant issue in release planning? Can the
precedence constraint also influence the deadfitieeqroject?

5.1.2 No precedence constraint

It is not a problem if there are no precedence tcaimés between the requirements. As each team
works independently, they just need to randomlye gvpermutation of all the jobs, and develop

a7



them one after another. In this way, we can guegtitat the project will be on time.

n
Proof: We have selected requirements based on the abnsthj)g < d(T) Q for all the
j=1

teams G, (i =1,...,m). So, in the release plan, we can gEaﬁ <d(T)Q for all the

teamG, . The development time for requiremeﬁij in team G equals the man dayaﬁ

divided by the number of developer® . Because each team work independently and

continuously, the total development time E i in team G . Given the constraint

Zaij <d(T)Q we can get thatz %S d(T).

5.1.3 One pool of developer

If we have time-related requirement interdependenciwvhen there is only one team i.e. the
requirements are developed by one pool of devedppmmheduling the activities is also not a

difficult issue. We can first draw a Directed AdgdGraph (DAG) by setting the requiremen&

as vertexes and setting the precedence constfint R. as a directed ed¢®, R.). Then the

schedule of the development is the topological ebthe directed acyclic graph. A topological

sort of a DAG is a linear ordering of all its vests such that ifG contains an edgdR,, R.),

then Rj appears beford?j, in the order. The topological sort algorithm idafw:
Topological-Sort G ):
1. Call depth-first searchG ) to compute finishing timesf[R;] for each verteR,; .

2. As each vertex is finished, insert it onto the froha linked list.
3. Return the linked list of vertices

We can compute this sort i©Q(V + E) time whereV equals the number of requirements and

E equals the number of dependentiede can also prove that the project will finishtane.

Proof: Let /7 be a topological sort of the requirements basedhenprecedence constraint.
Because the team can develop requirements consiyldbe total time span to finish them is

48



a. n
z aj As we selected requirements based Eaﬂ)g <d(T)Q, we will get that

=1
o . a |
Zaj < d(T) Q. This yields the conclusion thaz a is less or equal tad(T) .
The following figure shows one example of topol@gisorting. In the chart, the nodes are the

requirements and the arrows represent the precedemistraints, which point to the immediate
successor of the requirements.

Figure 5.2 example of topological sorting

The topological sorting gives a linear sequenceioad the requirements so that when there is a

precedence constraint betwed® and R, then R, appears beforeR;.. Using the algorithm

above, we can get the order of 7,5,11,2,3,8,9,[Hase note that the topological sorting of a chart
is not necessary to be unique, and does not hdwve depth-first search. The following two orders
are both valid topological sorting of the chart:

® 75311,8,2,9,10 (width-first search)

® 7511,23,10,8,9
This order can be used as the schedule for developm

5.1.4 Schedule with team and precedence constraint

When there are precedence constraints and thenmdtiple development teams in the project.
The scheduling problem becomes very complex.

Let’s have a look again at the small release sample
Release Definition 5.1

Team Team Team

PrioNr. Requirement Revenu@stal B c
1 12 Authorization on order cancellation and removal 24 50 5 45
1 34 Authorization on archiving service orders 12 12 2 5 5
1 63 Performance improvements order processing 20 15 15

49



1 25 Inclusion graphical plan board 100 70 10 10 50
1 43 Link with Acrobat reader for PDF files 10 33 33

Optimizing interface with international Pos
75 10

! code system 1 1

1 35 Adaptations in rental and systems 35 40 20 20

1 66 Symbol import 5 10 10

1 67 Comparison of services per department 10 34 9 25
Total 226 279 42 77 160
Available team capacity 180 60 60 60

If we use the knapsack model, the solution with imak revenue is to select, requirement 34, 63,
25, 43 and 66 for the next release. In this waycese compose a release plan with the highest
revenue of 147.

If there is a precedence constraint between themgexample, between Requirement 25 and
Requirement 34, what will happen?

Req 34 Req 25
Team A 2 days
Team B 5 days
Team C 5 days
| | | | 1 | | | >
0 1 2 3 4 6 7 8 t
Day 5

In this chart, the blue bar shows the time for Rement 34, and the yellow bar represents the
time for Requirement 25. We can see from the dhattactually at day two, Team ‘A’ has already
finished their work for Requirement 34, howevercdiesse Team ‘B’ and Team ‘C’ still need
another three days to finish their job, so the Reguent 34 does not finish at day 2, but actually
finish at day 5, when Team ‘B’ and Team ‘C’ finisheir jobs for this requirement. So, if
Requirement 25 needs to be development after Regait 34, the earliest start time is at day 5.
So, here comes a problem - Team ‘A’ has wastec ttags on waiting Team ‘B’ and Team ‘C’ to
finish their jobs. It is possible that during thekgys, team ‘A’ can do something else, for example,
developing some other requirements which do noedémn Requirement 34. However, the risk
of waiting others still exist, and this risk raisas important issue that how shall one design a
schedule which make teams do not waste time oringadgithers or if this problem can not be

50



eliminated, how should one minimize such waitingeiand also minimize the total project span
of the whole release project?

Another issue is: if we need to spend too much timevaiting others, is that possible to re-select
the requirements so that the release plan fits edlgtermined deadline? For example, if
Requirement 43 depend on Requirement 25. Evemjifirement 25 starts at the first day, it takes
Team ‘C’ 50 days to finish their job, and even & wnmediately start to develop Requirement 43,
it will still take Team ‘B’ another 33 days to cohate this requirement, so the project span will
not be less than 50 + 33 = 83 days. If we still wwarkeep the 60 days as the deadline, we then
need to re-select the requirements. This issueeis more important than to schedule the selected
requirements, because it is a more market orightatpproac? and the pressure on
time-to-market is evidefit %,

In this chapter, we will focus on solving the twagoplems mentioned above: under the

circumstances that there are both development tgath® company and precedence constraints

between requirements:

1. How should we schedule the selected requirementsiriamize the total development time
span when there are precedence constraints betheeaquirements?

2. Given a predetermined release date, how should elextsrequirements with precedence
constraints to maximize the revenue of the nevass@

In addition, the assumption so far is that all thems are available for the whole development
period. However, what if some teams have othevities to do or what if there are pre-arranged
holidays during the development time? How should syachronize them? It may be highly
relevant and normal for international companiegsalise the public holidays in each country are
significantly different.

5.2 Scheduling with team & precedence constraints

In this section, we will try to answer the questtbat if there are precedence constraints between
requirements, how can we make a schedule with nainimoject time span?

5.2.1 Four basic assumptions:

1. Each development team works independently on omeireament. If one requirement needs
the efforts in several teams, there are no predéfisequences between the jobs in these
teams.

2. One requirement is available to use only afteritsllcomponents are finished. If one
requirement needs the effort for multiple teamss donsidered ready to use only after all the
teams finish their jobs for this requirement.

3. One team can only develop one requirement at ome fif a team wants to parallel develop
requirement, we can divide the team into severaltsams, where in these sub-teams, they
work on just one requirement.

51



4. One team will continue its work until it is donegwlo not allow a team to switch to develop
another requirement before finishing the currerg.ddowever, it does not mean that the
development can not be interrupted, the team cato gwlidays or be interrupted for other
reasons, but after the break, they still need tdicoe with the unfinished requirement.

5.2.2 The RCPSP model

This schedule problem is so unique that it doesfalbinto any traditional machine scheduling
problem. It is not a multi-stage problem becauseahs no predefined sequential order in a
requirement. It is hardly a parallel-machine prablbecause the jobs for a development team
have already been given. It is not a single macpinblem as the schedule of a team also depends
on that of other teams. Most likely, it is a reldyeb shop problem with no prescribed route, but it
is not very efficient to model it as a job shoplpem, because it is regarded as one of the hardest
in combinatorial optimizatiof.

One widely used technique to solve precedence monist is PERT (program evaluation and

review technique). We can compute the minimal mtogpan by identifying the critical path ,

and also compute the earliest start and latedtfstagach job. However, one problem in PERT is
that it does not consider the resources it usdiateg in our case, the resource is our team cgpaci

and a team is only capable of development one remeint at a time. So, the result of PERT is not
very practical since it can plan a team to develapuple of requirements at a time. To include
both resource constraint and precedence consttagmResource Constrained Project Scheduling
Problem (RCPSPj is a good reference to use.

The RCPSP model is often used when a project @agivien limited amount of resources
available at a time. Normally, the amount of reseus not necessarily fixed at one like modeled
in our case. Here, we model the requirement scheggroblem as a special case of RCPSP
problem because it is too unique to fit in a maetsoheduling problem category.

RCPSP is an NP-Hard problémThe problem complexity caused many scholars t@ldpment

heuristics methdd or exact algorithniS. One such was proposed Byistide Mingozzi et al
(1998), and gave solution to the problem with heddrof job¥.

5.2.3 Problem description

We can now model the problem in the following way:

We are given a set of n requireme{dﬁ R - R} . Let m be the number of tean{s,
(i=12...m). We denoted; is the man days needed for Requireméjt in team G, .

We can consider the development process in tégmfor requirement Rj as one individual job.

Because for most of the time, one team does ndl teelevelop all the requirements and one

52



requirement normally only need a few teams to deyetorrespondingly, we can find lots &,
are zero, which means te&n is not involved in the development of requiremdﬁlt. So, we
can simplify the model by only considering the jolith positive man days.

Let us define a seX =(1, 2.... ,k)of all the jobs with positive development time &hdre are at

most kK (k < mx n) jobs in the set.

Because each job belongs to only one requiremeatthis attribute, we can partition the s¥t

into n disjoint subset{sR1 R, - Rn} where R ; = {k| job k is for requirement

R}, (j=1,2,..n). So, now we consider a requirement is a set of joldlo in different teams.

And we can get thaU R, =X.
j

Similarly, one job only belongs to one team, so cae partition the setX into m disjoint
subsets{G1 G, - Gm} where G, = {Kk| job k is in ttam G} (i =1,2,..m). We

consider a team is a set of jobs to do for differeguirements. And we also can get that

Ue =x.

Assuming the number of developers in tedty isQ , we can determine the development time

d, is equal toi for job k where job kDRjﬁGi
Q

5.2.4 Precedence constraints

To show the precedence constraint, we also neédtrtmduce two virtual jobs, the start of the
project and the end of the project. The SPARTmMuSst start before starting the jais the job
END can only start when all the jobsare finished. We consider the processing time e$ehtwo
virtual jobs is 0. And the new job set with the taaditional virtual jobs iX" .

The precedence constraints are set between twireéstgnts, not between tasks. According to our

former definition, the precedence constraIR} < R is considered as precedence constraint

between two sets ofjolliéj and R ;- We can model them in the following way.

53



With each job k is associated with a sdf" [ X'/{R of immediate successors: jobs that can
only start after the completion of jok .
We set the precedence constraint one after andﬂth&i < R ,
-1 _ -1
For OKI Ry, I'={r'UR}.
In this way, we set all the jobs for requiremRJ],t as the successors of the tasks for
requiremen’Rj . In this way, we can make sure that any jobs 'qu'remeanj, can only start

after all the jobs for requiremeRg is done.

We can define a seA:{(Rj, R)‘ R< IJ?} which contains all the precedence constraints.

After we set all the precedence constraintskif] X/ U Rj , it means jobk does not
(R RHOA

have any successor, then we $ef ={END . Or if k[J X/ U R, it means jobk

(R.RI)OA

kOX/ |J R;¢.
(R, R)OA

The precedence constraints can be representediiogcaed acyclic graphG = (X', H) where

does not have any predecessor then welsgf, = {k

H ={(k,|)\km X', [T ;1}

In this graph, the nodes are the jobs and the tduleedges show the precedence constraint
between jobs. This grapks is different from the graph we presented in sechidn3, because this
graph shows the relationships within jobs while thert in section shows the relationships
between requirements.

5.2.5 The upper bound

Let T, be the upper bound of the completion time. We cah the upper bound as

n
z max(d, ‘ KOR ;). It happens if we process requirement one by one.
=1

54



5.2.6 The time window

For each jobk, we can computees, (earliest start)ls, (latest start) as its time window. Before
we compute the time interval, we can first topodagisort the jobs, so that jolj is before job

k inthe orderif (j,k)OH .

Compute e§;:
1) Setthe earliest star@S; rr = 0.
2) Use critical path algorithm (forward recursion)ctampute thees, for the rest jobs.
Critical path algorithm (forward recursion):

1. es= max(e§+ ql)

(j.k)OH

2. Perform 1 from theSTARTto the END according to the topological order of the
jobs.

Compute IS, :

1) Set Is, =T

max *

2) Use critical path (backward recursion) to comphee Is, .
Critical path (backward recursion):

1. Is; = min (IsK —dj)

(j.k)OH

2. Perform 1 from théEND to the STARTaccording to the topological order of the
jobs.

5.2.7 The (0,1) integer programming model

Let ¢, be a (0-1) binary variable that is equal to 1 iflaly if activity kK starts at the

beginning of period t. We can formulate the probksn

t=lsgnp

min >t (5.1)

t=esnp

Subject to:

55



t=ls,

> & =1, kOX (5.2)
t=eg
t=ls, t=ls,
Dt +d, < Dt for  (kK)OH (5.3)
t=esg Eeg
t
Z c(kr <1
kOG; = o(t,k)

t=(0,1,..T,,), o(t,k)=max(Ot-d, +1

i=1....m (5.4)

The (5.2) means one job must be selected onctsadtshows that each job has the same priority
and there is no preemption between them.

The (5.3) is the precedence constraint—one reqeinéroan only start after its predecessor is
finished.

The (5.4) means a development team can only deeloyst one job at one time.

56



6. Select and Schedule the requirements

6.1 Introduction

Given a fixed release dat& , we know the available amount of working dagi§ T) within the
period, and if during this period the number of elepers in teamG, is fixed to Q , we can

compute the available team capability equ&sd(T) man days in teanfS, . We set this figure

as the capability constraint in our knapsack motwever, using the method of resource
constrained project scheduling problem (RCPSPJs ipossible that the project needs more

working days thand(T) and finishes after the release deadlifie If this happens, we will face

a new problem: namely how to modify the originalns?

It is not difficult to think of using the knapsaakodel for selection and RCPSP model for
scheduling iteratively until a good solution is fol In fact, this method is used in most of the
software engineering methods. However, doing itatteely is not only difficult but also
time-consuming.

To use the two models iteratively, we need to refiea3 steps until a satisfied solution is found:
1. Drop some requirements so that the project pléin is
2. Re-fill in some requirements to take up the fregpacity.
3. Make project plan for the new group of requirements

Because RCPSP problem is NP-Hard, it is difficaltfihd a fast solution to determine which
requirements to drop in order to make the deadlMere importantly, if we drop some
requirements to fit the project plan, we actualiit free some capabilities. It is very wasteful to
ignore these free capabilities because there #drdastie piles of requirements waiting to be
developed in our repository. So we need to rarfilome requirements using the knapsack model.
Then we need the RCPSP model to schedule them tgage whether they fit. The problems of
doing it iteratively are: first of all, this seainy method is difficult to find, and secondly, evién
we find one, the knapsack model and RCPSP modddateNP-hard, which means we need to
spend lots of time on solving them. A better metlsodemanded to solve this problem.

This results in the following research questionitipossible to find a method to select and
schedule requirements at the same time so thatawelefine a profitable and practical release
plan? In this release plan, we still want to hawerhaximal revenue, but we also want the project
to finish before the fixed given deadline. To agki¢ghese two goals, this model should not only
be able to include functional and value-relateduirgment dependencies, but also include the

57



precedence constraints. In the following sectioa,will present the model to select and schedule
the requirements when a fixed project deadlinevierg

6.2 The integer linear programming model

6.2.1 Problem description

The first step is to mathematically define the iegment, the team, the job, etc. These definitions
are exactly the same as what stated in sectioB.5:@r the sake of conciseness, we will not repeat
the definitions here. Please refer to section Fd.8etails.

6.2.2 Precedence constraints

The precedence constraints are set between twireéstgnts, not between tasks. According to our

former definition, the precedence constralR} < R is considered as precedence constraint

between two sets ofjot& and Rj,. We can model them in the following way.
We can define a seA:{(Rj , R)‘ R< IJ?{} which contains all the precedence constraints.

With each jobk is associated with a sdt* [0 X /{R of immediate successors: jobs that can

only start after the completion of jok .

We set the precedence constraint one after andﬂth&, < R ,
-1 -1
For OkI Ry, I*={r'UR}.
In this way, we set all the jobs for requireméq.t as the successors of the tasks for
requiremenRj . In this way, we can make sure that any jobs qu'remenIRj, can only start

after all the jobs for requiremeRg is done.

The precedence constraints can be representediiogcied acyclic graphG = (X', H) where

H={(knkox 7}

58



6.2.3 Compute the earliest start and the latedt sta

For each jobk, there is a time windowes, , IS,) associated to it. This time window defines

the possible time interval for this job to starte\déan compute the time window in the following
way:

(2) Compute es;:
® Set the earliest stares =0 for all the jobs k which do not have predecessor.

® Use critical path algorithm to compute thess, for the rest jobs.

Critical path algorithm:

1. Give atopological sort of all the jobs, so that(if,k) (JH , then j appears
before Kk in the order.

2. e5= max(es+ d)

3. Perform 2 from the start to the end according tthpological order of the
jobs.

(3) Computels, .

® For each jobk, Is, is equal tod(T)—d,. We can not lower this upper bound

because we do not know whether its successor &ildbected or not.

(4) If Is, <es, which means this jokk can not fit in the time span of the project, and th
requirement Rj which contains this job will not be the candidafethe coming release, so

X'=XIR,.

6.2.4 The Objective function & the constraints

6.2.4.1 Define the variables:

® For each requiremeﬁtj O X", we define a binary decision variabbe, associated to it,
X; =1 if and only if requirementR, is selected.

® For each jobk[d X", there is a binary decision variablg associated to it.y, =1 if

and only if job k is selected in the new release.

59



® For each job kO X", we define a group of binary decision variabf, where

tO[es, Is]. ¢, =1 ifandonlyif job k starts at timet .

6.2.4.2 The objective function
We can model it as follow:

n
maxz v, X (6.1)
=1

Subject to

Z \

KOR -
| S m for j=1...,n (6.2)
t=ls,
D> &=V for kOX' (6.3)
t=es
X < X% for (j,j)OA (6.4)
t=ls, t=lsy
Dt td, < Dt + Ly, ) [E(T)
t=es t=eg
for (k,K)OH (6.5)

t

z Ekr <1
(

kOG; & o(t,k)
o(t,k)=max(0t-d, +1 for t=(0,1,..T,.,.),

i=1...,m (6.6)

6.2.5 The explanation of the model

(6.1) is the objective function, we want to maxienthe revenue of the requirement in the time

span. v, is the revenue of a requirement, aqdis a binary selection variable of that requirement

60



(6.2) means that a requirement is only selectedhvdiethe sub-jobs in related teams are also

selected. In the formulay, is a binary selection variable for the jolisfor requiremenRj .
Here m; is the number of jobs for requirem&qt, which is a constant. Please note that
m; < M because we do not count the jobs with no developtiree.

(6.3) Means a job is only selected when it is p&hné,,is a binary selection variable, which

equals 1 when the jolk start at timet .
(6.4) and (6.5) deals with precedence constradd) (means a requirement is only selected when
its predecessor is selected. (6.5) means the @hhd successor requirement can only start after

all the jobs for its precedent requirements finéshia this constraint,d(T) is the number of

available working days in the release plan project.
(6.6) is the resource constraint that one teamlig @ble to develop one requirement at one time.

6.2.6 Transformation:

® If we ignore the precedence constraints (4) andi{33 another way to represent the
multi-dimensional Knapsack problem which we useddtve the requirement selection
problem.

® If we ignore the resource constraint (6), the métivdl turn to be a normal project plan
problem without specific team capacities. Using tG&art or Network Chart, we can
solve it in Polynomial-time.

6.2.7 Requirement dependencies:

In this model, we introduced a new group of vaeablvhich deal with the time issues. These
variables provide us the opportunities to inclutke time-related requirement dependencies. In the
knapsack model, we have introduced five types qfirement dependencies: 1) Implication, 2)
Combination, 3) Exclusion, 4) Revenue-based andCb}t-based’. These five types of
requirement dependencies have been modeled in fatmapter using the knapsack model.

Besides the functional and revenue-related reqe@rérdependencies, there are also time-related

requirement dependencies: we have to impIemenir&rqantRj before requiremerﬁj, 2 The

standalone time-related interdependencies drale Hitention when compose the release plan,
however, this dependencies usually come togethitr ether dependencies likmplication and

cost-basetf. For example, if we need requiremeﬁ{j to implement requiremeﬂj., we

61



probably need to implemenRj before RJ.,. Similarly, if RJ. influence the implementation cost

of requiremenRj,, we probably also need to implemeﬁi]. before requiremerﬁj,. We can

conclude that although the time-related dependédoeg not come alone, it is associated with the
implicationandcost-basediependencies.

The time-related dependency expresses more pri&nesdedge rather than product knowledge.
To fit the pressure on time-to-market, considetimg time-related dependencies can help product
managers to deal with the project plan issues dneegime as they select the requirements. This
model may sacrifice some revenue to fit the moretstonstraints, but on return, the selection
result will be more practical to fit the releaseedand a project plan for the coming release will
be made simultaneously.

The Implication, combination, exclusion, revenusdzhdependencies are same in the knapsack
model, please refer to section 2.7 for details.

cost based
In this model, we assume the development time foeréain requirement in a certain team is a

deterministic figure which equals the expected miays divided by the number of developers in
the team. The cost based requirement dependentiehange this assumption because then the

development timed, for job Kis not deterministic but is influenced by otheruiegments. This

will turn the model into a non-linear one. To ragtthe model in a linear way, we need to model it
differently.

If requiremenRj influence the implantation cost of requiremE&]Jt after implemenR,, the
development cost of the jobk’ (k' JR ;) for requirementR,. will change fromd, to d,.

man days. So we can virtually define a new requiam!malled?j. , and this requirement is a copy
R]., only that this development cost has been influém;erequiremeriRj , and the durations of
the jobs k' (k'OR i) change fromd,. to d,.. We can define these jobs as a group of new
jobs callek” . So the newly created requiremeFﬂi” has the same expected revenueFé}s,

and the job k' and k' belongs to the same team. Only the durations dfitbetasks are different.
For the newly created requirememR.. , there is a selection variablg. associated to it, and for

each jobsk’ in R, there are a selection variablg. and the time variable,, associated

62



to it.

We can now analyze the relationship amE&pg R]., and the virtually created requiremR}t.

a) If we want to obtain the cost benefit, i.e. to hwquiremenRj. we must have requirement
R, selected first.

b) If we have selected requiremeﬁqt, then we can not select requiremelR}, any more,
because the requiremerﬁj will change the development cost &, and actually turn
R, to R;.

c) It is obvious that it is not possible to selecttbd®. andR;., becaus&;. is not a real

requirement, but just another version EQ‘J which shows the influence of the cost-related

dependency betwed) .

It can be seen clearly from the following truthléab

R, | Ry | R. | T/F | Explanation

0 0 0 T It is possible to select neithRj nor Rj,

Not possible, can not obtain the cost influence withselecting

R.

I

0 1 0 T | Itis possible to select onI)Rj. .

0 1 1 F Not possible, can not select boIRj. and Rj..

1 0 0 T | Possible. We can just selede )

Possible, when we selecteEZj , then we can get the cost influence

on Rj, so as to selech.

Not possible. When we selecteRj , We can not ignore the copt

influence on Rj,.

63



1 1 1 F Not possible, we can not select boRj, and Rj. )

From the relations we analyzed amd®g R, R;.and from the truth table we can get that:

1. RequiremenRj. hasimplicationdependency on requiremefqt.So, X S X

2. RequirementR; hasexclusiondependency on requiremdRt. So, X; + x. <1

3. RequirementR; hasexclusiondependency on requiremdst . So, X; + x. <1.

Based on the above result, we can modelctis-relatedrequirement dependency by creating a
virtual requirement Rj. and adding three new constraints X) <X, 2) X; +X. <1, 3)

X+ X <1 in the model.

To model this dependency, we have created a vierIiremenRj.. This has created a problem
-which one should we use if we need to model depecids betweeer, and other requirements,
if we do not know whetheer. or Rj. is actually selected. We can define a new varighle
where Xj» = X+ % . We can use this variable to model the dependshaaveen requirement
Rj, and other requirements. For example, if requir&m@p exclusionrequirement R, then

; <
we can setX;;. + X, <1.

time-related
The time-related dependency always come along iwifilication or cost-basedf.we

need to implement requiremenRj before requiremenR., we can set a time-related
dependency between them, denotedrgs< R..

With each jobk is associated with a sdf " [0 X'/{R of immediate successors: jobs that can

only start after the completion of jok . If RJ. < R we need to set:

For OK1 R, IA={rJR}.

64



In this way, we set all the jobs for requiremR}t as the successors of the jobs for

requiremen’Rj so that requiremeer, can only start after all the jobs for requirerrﬁpt is

done.

The precedence constraints can be represented eaedpes in a directed acyclic graph

G=(X',H) where H ={(k ) [kKOX', T }.

At last, we add the constraints:

t=ls, t=ls,

Ztgkt+dkszt|}l(t+(l_yk)DD (k,k’)DH
t=eg tEeg

to the model.

Please note that thene-relateddependency can not work alone in the model. Ittbasssociate
with either Implication or cost-based As we modeled thecost-baseddependency as one
implication plus twoexclusionsdependencies (see the section above), we neessteiate the

time-related dependency on tingplicationrelationship, i.e. between requiremqu. ande .

65



6.3 The different time availability for different teams

So far, we considered all the teams are availabtettie whole project period. However,
sometimes a tean@5, is only available for a certain intervélbi,ub] where Ib, and uly are

the lower bound and upper bound of the time inteivar the new release project, which lasts

from day O until dayd(T), we assume, without loss of generality, that ime iinterval for each

G (i=12,..m), [Ib,up]O[0,d(T)].

When a team can not work full time on the projéatot only reduces its capacity on the project,
but also influences the schedule of other teampofts up a synchronization problem among

different groups and also changes the time int@e@l I%] for a job. In the following chapter,

we will show how to calculate the new time intel[\ﬁsﬁ(, I§] for the all the jobs.

The earliest start €§

AteamG, is available for the project from the timks, on. We can create a virtual requirement
R, =(lb,Ib,....,Ib)as the start of the project. This requirement dosttéhe jobssl, s2...

sm where d; =1 (i =1,2,..m). As the start of the projectR; is the predecessor of all

the requirementsR; which does not have a predecessor. I&F{(R, R)‘ R< IJ:{} be the

set which contains all the precedence constraintde can create a new

setA':ALJ (Fg, F§) RD{ % U RJ,J , so that it also contains the precedence
(

Rj.R)OA
constraints betweerR and R;.

Instead of using\, we now use the seA’ to construct the seH in section 5.3. Because the

virtual requirementR; is the predecessor of all the requirement, alleitdiest starts of the jobs
es,,(i=1,2,..m)equal zero. In this way, this virtual requiremeskets up the time interval

[0,Ib, —1] when the team is not available for the projeceaBé note that it is mandatory to

66



select the virtual requiremeRY .

The latest start [S,

The latest start of jobk is determined by the available time of the teanenetthis job belongs.

So the latest start of jotk equals uly — d., where kKOG, . This day is the time when tedn

has just enough time to complete jdb before its last available day.
In the same way as we discussed befordsjf< es, it means this jobk can not fit in the time

span of the project, and the requiremeﬁﬂjt which contains this job will not be the candidafe

the coming release, sX"' = X/ R.

6.4 Model the holiday seasons

Sometimes, a development team is temporally urehailwhile other teams are still working, for

example, one development team needs to work omanptoject for a while or simply because of
the holidays. This model is especially useful foternational companies, since the holidays in
each country are significantly different.

Based on our assumption before, if a team goesotidaly before finishes the job at hand, this
team will continue to develop this job until it c@mplete. The holidays can influence in two
fields:

First, if holidays interrupt a job, the completitbme of this job will be delayed and it will also

influence the start time of its successors (iféhisrany).

Second, if a team is on holiday, obviously, thert&apacity is zero during this period. It is neithe
possible to proceed a job nor to start a new one.

Without losing generality, we assume the holidagsiathe team’s available time. i.e.

Ib <Hs < He < up. (6.7)

6.4.1 The model

If we want to include the holiday period in a teame, need to set the following constraint:

Heg
> > & =0 (6.8)

kOG t Hs

67



We also need to modify the development duratigolofk from d, to d,:

Hg-1
d, =d, +(He-Hs)l > &,
p=m(i k)
kOG and 71(i,k) = max(OHs - d, + 1, (6.9)

We need to changel, in constraint (5) tod, .

In the resource constraint (6), we need to modiéyrhodel to:

t

Z c(kr <1
(

kOG = o(t,k)

t=(0,1,..Hs), of(t,k)=max(0t-d, +1

i=1...,m (6.10A)

t=(He,...d(T)),
#(t,k) =max(0t-d - He-Hs)+1) if t-d, <He

#(t.k) = max(0t—d, + L

if t-d,>He

i=1...m (6.10B)

The holiday will also influence the latest staregbb. The latest starks, of job k equals:
d(T)-d, if d(T)-d = He
d(T)-d —(Heg - Hyg) if d(T)-d <He

If Is, <es, it means this jobk can not fit in the time span of the project, theuieement Rj

68



which contains this jobk will not be the candidate of the coming release %’ = X/ R.

6.4.2 Explanations of the constraints

Constraint (6.8) means the teaf can not start to develop a new requirement whisrt¢am is

on holiday. In this constraintHs is the time when teafs, starts the holidays andHg is the

end of the holidays

Constraint (6.9) deals with the jobs in the tedsn if they are interrupted by the holidays. If job

k does not finish before the holiday starts, thentshould continue its development job after the
holidays. If we count the holiday time in, the teageds to spend more time on jéb and it will
influence the start time of its successors (ifgéhisrany).

The following picture depicts such situation:

Hs He
T G i
eam G K Holidays K t
| Hs Hs g
7.K) X P > ok, +d, +(He - Hs)

p=n(i k)

If the team G, starts to develop jokk after the time 77(i,k), it will not be able to finish its

Hs
development job before the holiday starts. We can UZ {kp to determine whether it is the
=i k)

case. Ekp is a binary decision variable which equals ong drthe development jobk starts at

Hs
time p. The formula Z p[k(kp can tell us when the development starts. And litfimiish
p=m(i k)

Hs
at Z p¥é,+d +(Hg —Hs) . In this case, we can usel, which equals
p=11(i k)

Hs;
d, =d, +(He — Hs)l Z ¢, as the development duration for jdb instead of d,
p=1(i k)

The holidays also influence the resource conssatéparated by the holiday, we can divide the
project into two parts, the one before the holidag the one after it.

69



Before the holiday starts, it has no influence oy af the jobs. So, the resource constraint before
the holidays (6.10A) remains the same as what wia $ke original model.

After the holidays, however, a team also needsd with the left jobs before the holiday. At any

time t, a team is devoting its time on jok if and only if this job starts less thad, working
days ago. Ifd, working days ago is before the holidays start(l, < He ), we need to include

the holidays time in. If nott(—d, > He) we can just ignore the influence of the holiday.

Please note that we do not set resource constdtinin the holiday period. We can ignore it
because we have already set constraint (6.8) smdham can start a new job within the holiday
season.

If we can not complete jotk after the holidays end, i.ed(T) — He < d, we have to start this
job somewhere before the holidays to keep the grdieadline. So the latest stdg, of job k
equals d(T)—-d —(He—- Hg) if d(T)-He<d. The time d(T)—-d, —(He - Hg)is

the time where you havel, working days left for the project.

In this way, d, is still linear to d, becauseHs ,He and 77(i,k) are constant for each

development jobk .

70



7. Dynamic adjustment of the release

Until now, our approach supports the release ptanfor a fixed given time period. In practice,
the revenue value of requirements may evolve aueg,tas the release is being developed in a
changing market. During the development phasegkpected working man days can be either
overestimated or underestimated. It can also hafipstnone very important customer places an
order after the release is determined, and sontieeofiew features must be added in the coming
release. This section will answer how to deal \htse changes i.e. how to modify these data, and
how to set up a new model.

The following picture depicts a general examplettod problem. Team A and Team B were
assigned with a couple of jobs to do in the relgees@od. After the project started, re-planning
was needed due to over/under-estimations or importaw order. Then the product manager
needs to decide which jobs to continue and whidirdp if necessary.

|
|
Team A Job Al |
I
I Job A2
|
: Job A3
|
|
|
Team B Job Bl :
:
: Job B2
|
: Job B3
|
|
|
: Job B4 time
| >
T Re-planning Release
day date
d(T")
d(T)

Figure 7.1 an example of release adjustment problem

Change release time

In our model, the planning periodTis and d(T) is the number of working days in the planning

71



period. If the date of release changes, you neadauify the constarft . Please notice that the
new T' will be the date between your release date and gecision date, (the date when you
change thd ).

Change expected revenue

You can change the expected revenue of any reqgeirefreely, even the ones which you have
already developed or under development. For exaniplgou want to change the expected

revenue of requiremenRj from v; to V'] , itis free to do at any time.

Change man days or dependency

When we need to change the expected man days ifequarement or want to add additional

dependencies, we first need to divide the requingsnato third groups.

» The first group is contains all finished requirertsefior example, the job Al and B1 in figure
7.1

» The second group contains the requirements cuyrentler development, for example, the
job A2, B2 in figure 7.1.

» And the third group contains all the rest requireteeFor example, the job A3, B3, B4 in
figure 7.1.

First group
The requirements in this group have already beg@heimented. So it is not necessary to adjust the
expected man days for these requirements.. Howiverstill meaningful for these requirements

to appear in additional dependencies. We just meedld one additional constraints tha} =1

because these requirements have already been imqtiesn
Second group
For the second group of requirements, the expeaoi@d days should be the remaining days to

complete the requiremeanj . Please note that we do not deduct the revenuRjofaIthough

we have already developed something for this requént. It is because we believe the expected
revenue can only be obtained after the whole deveémt is complete.

Using this method, it is possible to terminate quieement which is under development at the

decision time. There are mainly three reasons whyddel in this way:

1. First, from financial® point of view, the effort put on the requirememtfdre the decision
date is sunk cost. It should not influence the sleni

2. Second, the requirements under development haveehijgrobability to be selected again
because we have already deduced a part of theogeweht cost while the revenue remains
the same.

3. Third, The ILP model does not guarantee that tih@irements currently under development
are better than the requirements in the waiting liss possible that the requirements in the

72



waiting list have higher ROI than the ones underettjmment, even when parts of the
development cost have already been deducted.

Still, it is a management decision. If a manage&idieto continue with the current development in

terms of morale or other reasons, it is still polgsiThen we just set the decision variatlein

this group as 1.

If the requirements in this group are re-selectesl would rather continue the development. So
when defining the timing variableg,, for the jobs in this group, we only defing, instead of

within the whole interval. In this way, we guaramteve will continue with the undergoing
development if the requirements are re-selected.

Third group

The third group constrains all the requirementtha waiting list. The requirement in this group
has no difference with the requirements in the sépoy. There is nothing to worry about when
changing the requirement data or the dependencies.

Important new orders

It is possible that a very important customer pdaae order after the release plan has been made
and his order have to be included in the comingasg. If it happens, we can set the decision

variables X; for these requirements as 1 and place these reagits in the third group.

Launch

After modifying the data and fixing several variehl put all the requirements in three groups back
into the requirement repository. Run the ILP moaghin, and it will decide which to drop or
which to add, and make a new project plan whesriecessary.

73



8. Relationships between the models

8.1 Structure of the models

The ILP models are not isolated islands. The fallguwise case diagram shows the relationships
among different models.

Release planning system

<<include>>

construct software package

Hire external people {OR} work in different teams

Product mapager

<<extend>>

~<<extend>> <<include>>T
- .

<<extend>>
i

generalize dependency

select requirements

schedule requirements

different available time

schedule requirements

handle big order

{The three use cases (marked in grey) is integrated with the
Scheduling part only when:
1. One developer works full time in just one team
2. When hire anexteral person, he/she needs to work
full time in only one team }

handle over/under-estimation

Figure 8.1: the structure of the models

74



This use case diagram describes the interactiodiftdrent models. There are mainly four
functions in the system. The “manage requiremesttfie part where requirements are issued and
the relationships between them are modeled. Thendeand third parts are ILP models for
requirement selection and requirement schedulihg.l@st part “adjust release plan” is used when
we need to adjust the release plan.

Requirement management

In the “manage requirement” parts, the factorsefmry issued requirements are estimated and the
requirement dependencies are set. In general attier§ include, expected man days, expected
revenue for each requirement, requirement depereenelease date, priority, risk, personal
preference and so on. The details of these f&cioe discussed later in the section thie”
factors and process of release planning

Requirement selection

The “select requirement” is based on the knapsagcllein There are also several management
steering scenarios modeled as extensions of thgskok model. We can “hire external personnel”,
“extend deadline”, “model dependencies”, “team ¢fari’, and “model personal preferences”. The
details and explanations of these models are disduis the section ottie mathematical models
of release plannirig These extensions can work simultaneously onlhwine exception: If we
want to include personal differences, we have eéaisew ILP model “work in different teams” to
handle team transfer, therefore the old “team feahsnodel is not available any more. This

confliction is shown as an “OR” relationships i thse case diagram.

The input of the model is a collection of requirertsewith estimated factors and relationships,
after selecting the scenarios a product managetswire output of the model is as a group of
requirements for the next release.

Requirement scheduling

After the selection of the requirements, the né&p 3s to schedule them. It is also possible to
consider them as consecutive processes, i.e. tipaitoof the requirement selection part is the
input of the requirement scheduling part. Unforteha this connection is not seamless. In the

scheduling part, we assume the development timgofork is d, which equals the expected

&

man days divided by the number of developers irtehen, i.e.d, =—. So the Q has to be a
constant number for the whole planning time. Thidsaadditional constraints for the requirement
selection model:
1. If hire external personnel, he/she will have to kvfar the whole period in one
team.
2. If enable team transfer model, a person can onlyrdvesferred for the whole

period, i.e. U, =d(T).

75



If the above mentioned constraints are satisfiegl,can link the two models together with no
worries.

It is also possible to only use the scheduling rhokhethat case, the input of the model is a
collection of the requirements as while as the irequent dependencies between them; the output
is a project plan with minimal project span.

Select & Schedule

It is also possible to select requirements and dideethem as the same time. In this way, we
introduced a new model “Select & Schedule”. Thiddelcwombines the two processes together so
that the out put of the model is a group of requeats for the next release as well as a project
plan to implement them. This model has four extamsi Two of them, “extend deadline” and
“model dependencies”, are similar with the ones Konapsack model, it also has two more
extensions, “holiday seasons” and “different tirvaiability”, specially used for timing issues.
All four of the scenarios are compatible with other

Adjust release plan

After the release plan is set, it is also possibleadjust it due to the changes of external

environment. Mostly, there are two reasons fofilist, as the requirements are developed in a
dynamic environment, the estimated values of tlséofa are changing under market conditions.

So we need to handle over/under-estimations. Seedreh an important customer proposes some
orders, it is also necessary to adjust the relpise to make time for these unexpected orders.
These two conditions are modeled as two use cagbe idiagram. The input of the model is the

requirement dataset, as well as the changes dhthers, and the output of the model is a new
release plan.

8.2 Processes to use the models

The following picture shows how to use the modelmbke a software release plan. The first step
is to manage the requirements. In this phase, wetatrgather requirements from different
stakeholders and estimate the values of requirefaetars. These factors include business value,
cost, dependencies, priority, risk, quality andbso In the first section, we will introduce several
methods to estimate them. These factors will treended as the input of the optimization models.

Then the next step is to select the right requirdgrfar the release. We introduced the knapsack
model and its extensions to compose a releasesplémat to achieve the maximal revenue. Based
on different company preferences, we have provaaral management steering mechanism to
improve the profitability, like team transfer andadilline extension. After the selection, we can
make a project plan of these requirements usinREBSP model. Another way is to combine the
selection and scheduling processes together sofaita group of profitable requirements with a
suitable implementation plan. Using this method gaarantee that the project will finish on time
but will lose some management steering mechanig, Hiring external people. No matter
choosing which processes, we can expect to findbt#st group of requirements for the next
release.

76



When the market condition changes or the origirstir&tion is not very precise, we need to

Manage
Requirement

Adjust Select
Requirement Requirement

Select & Schedule
Requirement

Schedule

Requirement

_4

Adjust the release plan. In this phase, we may teetiange the original estimations or even set
more figures or relationships for a requirement.idtalso possible to receive additional
requirements from other stakeholders. These adarggmwequire us to re-manage the requirements
and then re-optimize the selection. These proces#lesontinue iteratively so as to find the best

Figure 8.2: the processes to use the models

choice for the next release.

8.3 The comparison of the models

The release planning model contains three mainnidélels—the knapsack model, the RCPSP
model for scheduling and the model to combine theseprocesses together. Each of them has it
advantages and disadvantages.

The knapsack model is good at finding the mostiatoie solution and has the most management
steering mechanism options. These extensions mradditional way to find a profitable solution,
and, for most of time, will increase the valueldd telease plan. The disadvantage however, is that
the result of the model might appeared to be litaptimistic, and this may lead to delays of the
project.

The RCPSP model can help us to find a project pifim the minimal project span. This model is
very much connected to the knapsack model, bectheseoutput of the knapsack model is

77



normally the input of this model. This model is y&s use and follow, but the function of this
model is a bit limited.

The ‘Select & Schedule’ model can help us to finel tequirement selection as well as the project
plan at the same time. This model focuses on thénom delivery and is very useful when the
release deadline is very strict. On the other htnd,model does not have as much extensions as
the knapsack model does. So from the functionaitpafi view, this model has less functions then
the knapsack model. Without the help of hiring ext persons, or team transfer, the result found
by this model might be not as reliable as the kaelpsnodel.

78



Appendix

1:  Sets,

parameters:

variables

and

ne

Name Description Type Note
R Requirement] . It is considered as a set whighSet
! contains all the jobs for this requirement
G Teami . It is considered as a set which contains|fet
! the jobs for in this team.
. Parameter
Q Number of developers in tedD .
. . Parameter
Y Man days for RequwemenRj in teamG, .
k Job K. We consider the development task for We only define a job whe
requirementj inteam i as an individual job.
3 >0
d The duration of joi . Parameter
k
X The set of all the jobs. Set
Set
A The set of all precedence constrairtR, < R)
L The immediate successors of jdb Set Every job is associated with o
k
-1
setl ™.
H A set which contains all the precedence constrgirBet
between dual jobs.
es Earliest start time of jobK Compute using critical patl
algorithm (forward)
s, Latest start time of jobk Compute using critical patl
algorithm (backward)
Binary decision variable. Equals 1 if and onlyabj| Variable ) ) i
' For each jobk, &, is defined
K starts at timet
from €§ to IS,
Scheduling the requirement
The maximal time of the project span
Tmax
START A virtual job which is the predecessor of all tledg | Job Duration is zero.
in X .
END A virtual job which is the successor of all thegah | Job Duration is zero.

X

79



ne

X' All the jobs X together wittSTARTandEND Set
Select & Scheduling requirements
The deadline of the new release Parameter|
d(T)
) Parameter
\ The expected revenue of reqwremeﬂi
X Binary decision variable. Equals 1 if and only|iWariable Every requirement is associat
j
requirement Rj is selected for the release with one Xj
Binary decision variable. Equals 1 if and onlyabj| Variable Every job is associated with o
Yk .
K is selected for the release.
Y
. . Parameter
mj The number of jobs for requlremeer
' The set of jobs which are the candidates for the h&Set X"OX
release
Requirement dependency
W The additional value from therevenue-based Parameter
i
dependency betweelR and R
Binary decision variable, equals 1 if and only ié w Variable
X . » X+ X% -1< %
obtain the additional value from thevenue-baseg
dependency
X < ()ﬂ +x)/2

An artificial requirement. Created to show the c

changes of requiremeR .

pRequirement

Created when requirementR;

influence the cost of requireme

R

Different time availability

bound of the team’s available time interval.

The time whenG, starts to be available. The lowgr

Parameter

U

o<l

IA

o

ub < d(T)

u

The time WhenGi is not available anymore. Th

upper bound of the team’s available time interval.

Parameter
e

0<Ib <uh < d(T)

Holidays
Parameter

Hs The time when holidays start in te&. Ib. <Hs < He < ub
Parameter

He The time when holidays end in te&s. Ib <HS < He< up

=}
-

80



Thetools and the test results

We have developed two JAVA applications to testlttfe models proposed in the former section.
The first one is called “scheduler” which can salledhe development activities exactly in time.
The second is called “Planner” which can select saftbdule the requirements at the same time.
In the first chapter, we present the general infiifom and the structures of the two applications.
The source code and the detail model are not iedlinl the thesis for the sake of brevity.

Using the tools we developed, we have conductedasts. The first one is to examine how much
requirement dependencies influence the project glha second one is to compare the two types
of software development processes: i.e. S&t&hedule V.S Select & Schedule. The first type of
planning processes is common in most of the soffwlavelopment processes models, like RUP,
DSDM, Waterfall, etc. However, in the former chaptenve’ve shown that this model may have
some problems, and introduced a new ILP model toboe these processes. These two types of
software development processes are compared basedimulation in chapter 10.

81



9. The tools

Two tools have been developed to test the modéls.fifst one is called “Scheduler”, which can
schedule the activities exactly in time based an ghecedence constraints. The second one is
called “Planner”, which can select and scheduleréggiirements at the same time. This tool is
based on the linear programming model “schedule¢jairement with fixed deadline” and the
out put of the result is a collection of requirettsefor the coming release as well as the project
plan to develop them.

9.1 General information

General Information
Name Scheduler, Planner
Developers Chen Li
Platform Linux
Languages Java 1.4.2
Lib. Used SWING, CPLEX 9.0, CSV
Interface SWING
Input/output CSV file
document format

Table 9.1 the general information of the prototype

Both of the two prototypes are Java applicatiomming in Linux environment. They use three
libraries. The SWING is used for interface, the ERLis used for solving the integer linear

programming model, and the CSV is used to readtidpoument and write output document. The
input and output document format is CSV (coma sapdrvalue) file. The CSV document can be
easily transformed to an excel file.

82



9.2 Software structure

CPLEX
7'y
A
» Reporti <
— eporting Scheduler
=
a Or
R I
(E;" Planner
@ .| Dependency
"] management
A
7Yy
Data Reader

A

Requirement
Dataset

Figure 9.1 The software structure of the prototypes

The user needs to first set requirement dependentianually or automatically through
dependency management. The results then are sén¢ tBcheduler, which is the heart of the
program. The scheduler will model the schedulingbf@m and then sent to CPLEX. When
CPLEX get the results, it will send them to Schedwnd then to the Reporting system. The
hard-copy of requirement dataset is stored in requént dataset in a CSV file, and data reader
will read all the information in the dataset.

The key functions of the models are described lémfo

Interface: Give the program instructions and rezeasults

Reporting: to report the result to the interface

Dependency management: set dependencies amoregjthieements

Data Reader: read date from the release planntageta

Requirement Dataset: Excel files or CSV files véiththe requirement information
Scheduler or planner: The heart of the progranr@ogss data and build up the ILP model
CPLEX: the ILP library to solve the ILP models

The “Planner” and “Scheduler” are similar in sturet Only the heart of the program is different.
The differences of the integer linear programmingdeis are presented in the former
chapters(chapter five & six). The following secsonill show the software differences in activity

83



diagrams.

9.3 Screen shots

The following screen shots show how the prototylpesk like. These interfaces are designed
using Visio, so the final interfaces might lookgslily different than what is shown here, but the

general structure will be the same.
9.3.1 Dependency management

prototype

file view Help

Dependency management || Scheduler | report

| Requirement (Id) v|

has

‘ Dependency type

Implication
Combination

Relation with

‘ Requirement (Id)

Dependency collection
Requirement (Id) IMPLICATE Requirement (Id)
Requirement (Id) EXCLUDE Requirement (Id)

Auto-generate

Requirements are interdependent

B

Figure 9.2 the interface of the dependency management

On this interface you can set requirement deperieemoanually, or generate automatically. As
there is no requirement dependency in the requinenegaset, for testing purpose, we provide the
opportunity to automatically generate a certain amaf dependencies, for example, 5% of the
theoretical maximal number of dependency. (Theildistaautomatically generating dependency

will come in the next chapter).

9.3.2 Scheduler

84



prototype Q@

file view Help
| Dependency management H Scheduler ” report |

Team A Team B Team C
~
Req Id | Description | Startat | Duration | End at | Startat| Duration| End at |Startat| Duration| End at |
Req 1 Day 0 5 Day 4 Day 0 2 Day 1 Day 0 5 Day 4
Req 2 Day 2 10 Day 11 |Day 5 2 Day 6
Req 3 Day 10 6 Day 15
L]
< )

Give me the schedule

Figure 9.3 the interface for scheduler

The days needed for each requirement on each teamascfrom the requirement dataset. After set
the requirement dependency, and click lunch, theecider can present you with the result of
starting and finishing date of particular jobs.

9.3.3 Reporting
prototype [;]g]

file view Help

| Dependency management H Scheduler || report |

. Schedule
Requirement Schedule This requirement start at Day 1 in team A
This requirement end at Day 5 in team C

Tasks in each team
This requirement needs 4 days, from Day 1 to day 5 in team A
This requirement needs 2 days, from Day 4 to day 5 in team C

Show schedule | —————

‘ Requirement (Id) v |

Schedule

Team Schedule

From Day 0 to day 3, work for requirement x for 4 days
From Day 4 to Day 7, work for requirement y for 4 days
From day 8 to day 8, free

‘ Team name v

Show schedule

Figure 9.4 The interface for reporting system

85



This reporting interface details schedule of eamfjuirement and each team. By clicking the
requirement id or team name, we can get a cle@dsié for each of the requirements.

9.4 The activity diagram of “Scheduler”

set dependency

Build the DAG

Gompute lower bound & upper bound)

[higher than UB]
O report error

[lower than UB]

compute Es & Ls

set ILP model

check feasibility

[not feasible]

/ next feasible solution
[feasible]

report result

Figure 9.5 The activity diagram of “scheduler”

The function of “Scheduler” is to make a projecrpbf the selected requirements. So, the input
of the model is the requirements selected by tlap&ack model, and the output of the model will
be the project plan to implement them.

The “Scheduler” first reads the requirement dat#s®miugh “data reader”; and set dependencies
through “dependency management”. Based on thermqgants and the dependencies, it builds up

86



a Directed Acyclic Graph to compute the lower bo(thé maximal value of the critical path and
release date) and the upper bound (when requirenagatfully dependent and need to develop
one after another) of the project span. The “sclegtithen checks the feasibility of every result
starting from the lower bound (the larger one & thitical path and the deadline) to the upper
bound (when fully dependent. i.e. serial one a#teother ). Every time when checking the
feasibility, the model first computes the earlistrt and latest start for each job and then builds
the linear programming model. When a feasible smius found by the CPLEX library, the model
stops and reports the result. Because the modekslike feasibility of the results from the lower
bound to the upper bound, the first feasible rasute result with minimal project span.

9.5 The activity diagram of “Planner”

set dependency

Build the DAG
compute Es & Ls

(remove none-feasible requirements) (remove none-feasible dependencies)

set ILP model

solve model

Figure 9.6 The activity diagram of planner

The function of the “planner” is to find the groop most profitable requirements as well as a
project plan for implementation. So the input oé timnodel is the requirement dataset with all
candidate requirements, and the output is a sefeofirequirements and their project plan.

The “Planner” starts from reading the requiremetadets through “data reader”. It then gets the

87



dependencies from “dependency management”. Basedh@rrequirement datasets and the
dependencies, the model builds up a Directed Acy@liaph and computes the earliest start and
the latest start of each job. When some jobs aréeasible to be selected, for example, when the
earliest start is larger than the latest start, thedel can eliminate these none-feasible
requirements as well the dependencies among thém.“Flanner” then builds the ILP model
based on the remaining requirements and dependeiitis then solved by the CPLEX library
and the result is documented to a CSV file wheolatisn is found.

88



10. Simulation tests

10.1 Test purpose

The purpose of this test is to answer the following questions:

1. What’s the relationship between the number of time-related dependencies and the
possibility of running out of time in the project planning?

2.  What are the differences when we select and schedule requirements at the same time,
and when we select and schedule sequentially?

Currently, we consider the release composition lprabas a knapsack problem. However, if we
consider the precedence constraint fime-relateddependency explicitly, aniinplication and
cost-relatedmplicitly), it is possible that the release corapd using the knapsack method results
in a schedule that exceeds the deadline. We wafihdoout how the time-related requirement
dependencies influence the project span by ansgvéhia first question. When there are more
dependencies, we would expect that the projectdstanhigher chance of being late, and the
project span will be longer. We also want to fihe tlifference between the optimal result and the
lower bound. The lower bound of the model is thigdaone of the maximal team workload or the
project span computed using critical path method.

For the second question, we want to find out how finecedence constraints influence the

requirement selection. In the knapsack model, waaloconsider the time-related requirement

dependencies, while the new model does. Givenahee set of dependencies, the requirements
selected by the original knapsack model are exgetéhave higher total revenue than the new
model, because it does not include the time-relestmaks. However, there is a possibility that the
release date will be delayed. So we will compane hauch the project span may differ and how

much the revenue may differ.

This comparison is in fact a comparison betweerilzerelease planning processes i.e. shall we

follow the processes that we filSelectrequirement and the®chedulehem or shall we combine
these two processes together.

10.2 Test methods

10.2.1 Test tools

In this test, we use three prototypes.

1. The first one is the knapsack model for requirensetction.

89



2. The second one is requirement scheduling methaetlbms RCPSP.
3. The third one is the prototype to select and scleedhguirement at the same time.

The descriptions of the three tools can be founahapter 9. In general, they are all Java

applications based on integer linear programming) mning in Linux environment. They also
use the same library CPLEX to solve the ILP model.

10.2.2 Test data

For testing the program, different types of data sere used. The different types were:

Small: 9 requirements and 3 development teams.
Master: 99 requirement and 17 teams.

All of the used data sets are available onlinedsearch purposes

10.2.3 The requirement dependency

Because there is no dependency in the requirena¢aset, we have tested the result by generating
random dependencies.

10.2.3.1 PERT & DAG
We use the PERT (program evaluation and review nigoke) to model the time-related

requirement dependencies. The requirements arexéarin the graph, and the if requiremeRt
REQUIRE requiremenR, , then there is an directed edd&;, R) which shows that the

requiremen’Rj must be done befordR . A basic requirement for PERT is that the PERTricha

must be a DAG (Directed Acyclic Graphs). The reaisopecause if there are cycles in the chart,
the jobs in a cycle can form a deadlock situationesthey are always waiting for others to finish.
Like in the following situation, none of the jobrcaver start because they are inter-waiting for

each others.

2 http://www.cs.uu.nl/diepen/ReqMan

90



Figure 10.1 the example of a deadlock situation

10.2.3.2 Topological sorting of DAG

For any directed acyclic graph, there is at least mpological sort of the DAGG =(V, E). A
topological sort of a DAG is a linear ordering difits vertices such that ifG contains an edge
(u,V), then u appears beforev in the ordet’. We can get the sort of a DAG i®(V + E)

time by performing a depth-first search @& . (The details of topological sorting is shown in
section 5.1.)

In order to randomly generate a DAG, we can usedbelts above. Assume we have already got a

topological order, if we add a new edda,v) to G, whereu appears beforev in the

order, then new DAGG' is still a directed acyclic graph and the origitaglological sort is still
a topological sort ofG' .

Proof: Assume G’ is not a directed acyclic graph, so the new edgev) has created a cycle
in G'. Then there must be a directed pathGn from v to U so that to complete a cycle with
the new edge(u, V) . If this path exists inG, then vertexVv is an ancestor of vertex in the
depth-first forest, and should be place beforeexett in the topological order ofG . This yield

a conflict, So G’ is a DAG.

We can repeatedly add new edge in the above mextiorethod, which guarantee the new graph

is still a directed acyclic graph. If there ara vertexes, we can add maximally

C?=nl{n-1)/2 edges in the graph.

10.2.3.3 Randomly generate dependencies
1. First, give a random permutation of all the requieaits as their topological sort. This can be

achieved by shuffling algorithm irO(n) time.
2. Use the above mentioned method to generate recemtedependencies. Maximally, we can

generateC’ = n[{n-1)/2 dependencies between the requirements.

Theoretically speaking, when we randomly generatedependency, the actual number may be
more than N because of the implied dependencies. For exarfideneed to be before ‘B’, and
‘B’ need to before ‘C’, these two dependencies aigulies one dependency that ‘A’ is before ‘C’.
So the actual number of dependency is larger themay think. In this model, we do not count

91



the implied dependencies. If this topic is an ie#ting issue for the readers, the following method
provides the possibility to find the total number.

The following chart shows an example:

OO

Figure 10.2 An example of requirement dependencies

In the chart, the nodes represent the requirenrehttee arrows represent the dependency. We can
find the actual number of dependency in the follayivay:

1. Draw the conjunction matrix.

For the example graph, the conjunction matrix is:

GO A B C D E F

mooO w >
o O O o o
o O O O k-
O O O B~
= O Fr O O
o O O O O
o O O O k-

F 0 0 1 1 1 0

In the matrix, if there is an edge pointing fromeamde to another node, then the corresponding
place is shown as 1, otherwise, it is zero. Fompte, there is an edge from A to C, then in the
matrix, you can find the number in the first rowdahird column is 1.

2. Compute the connectivity of graph.

n

The connectivity of a graph is shown as the m&ix Where G* = ZGX and n equals the
x=1

number of node in the grafh. For the example case, tH8* is:

G* A B C D E F

mmooO m>
O 0o oo oo
O o0 o o o,
B O O O b W
W Rk O Fr - o
O O O O K
O 0 o0 o o R

92



The value inG* equals the number of paths from one node to anaottde. For example, the
number in the first row and third column is 3, whimeans there are three paths from Ato C.

3. Count the number of none-zero numbers.

When we compare the difference betwe€n and G*, we find three new non-zero unit,
(marked in blue). These dependencies are the ichgépendencies.

10.2.4 Rounding

Because the duration of a job equals the expecteddays divided by the number of developers
in the team, it is possible to get fractional numsb&he rounding is done in the following way:

1. When the duration is between 0 and 1, we rouna up Since when the duration of a job is
zero and will be removed from our calculation, rdimg up helps protecting the loss of
valuable data (i.e. estimated value).

2. When the duration is larger than 1, it is round#d o

10.2.5 The results format

The first testWhat is the relationship between the number of time-related dependencies and
the possibility of running out of time in the project planning?

We can use the method of scheduling model baseR@RSP (Resource Constrained Project
Scheduling Problem) to test the result. This metbal tell the minimal time span of the whole
release plan.

If we have nrequirements selected in the release composit@orétically, we can set at most,
n{n-1)/2 dependencies. In this test, we can find out asmtimeber of dependencies grows,

how much and how often it will influence the tinfeas of the release date?
The test datasets are the release plans selectbd kgapsack model.

In this table, dependency ratio shows how many -tiefeted interdependencies exist compared
with the maximal possible amount. For example fier $mall dataset, there are five requirements

selected by the knapsack model out of 9, so thiealigt there are at mosbx (5—1)/2=1(

dependencies possibly in the dataset. We can esBdpendency ratio * largest possible number
= Number of Dependencies exist in the dataset.

For the master dataset, we have selected 76 rewprits out of 100. Using the same method we

93



can compute that there are at ma@x (76— 1)/ 2= 285! dependencies.

Data Set Dep | Number | The project span Times The difference  betwden
ratio of Dep of lower bound
Max | Min | Average | delay | Max | Min Average
days | days | days diff diff diff
Small-result 10% 1
(5 Regs, 6d 20% 2
days) 30% | 3
40% 4
Master-result | 0.5% 14
(76 Regs, 3Q 1% 29
days) 2% 57
5% 142

Table 10.1 the result format of the first test

For each row, we will run 100 times based on 1@8 serandom dependencies. For every run, we
can compute the time span of the project. Akerage finishing timés the average time span of
the 100 tests, and tfi@mes of delaghows how many times the project is late in th@ rLs. The
Maximal and Minimal daygecord the largest project span and the minimajept of the
simulation, and th®ifference from the lower bourghows how much the result is different from
the lower bound.

The second testvhat are the differences when we select and schedule requirements at the
same time, and when we select and schedule sequentially?

We will also use the Small requirement datasete@uirements) and Master requirement (99

requirements) data set for this test. Using thehoteimentioned in section 10.1, the theoretical

maximal number of interdependencies in the requérdrdataset are 36 for the Small data set and
4851 for the Master dataset.

For each row, we will run 100 times based on 1Qfugs of randomly-generated dependencies.
The following activities diagram shows the processieevery run.

94



‘@
Candomly generate dependenci9

call the knapsack model

call the combined model

(record requireme
Gall the scheduling modeD

nt & dependenca

compare results

Figure 10.3 the activity diagram for model comparison

For every run, we use the combined model to seledtschedule the requirement at the same time.
For the dependencies, we not only consider thegicéd relationships, but also the timing

relationships. For example, iR, requiresR;, then we need to first seldgtthen R;, and

secondly scheduIeRj afteer, is done. We will document the revenue of everyand compute

the average revenue of the hundred sampldgiaverage revenue of the combined model

95



Data Set| Dep| No. Statistics for the 100 caseg Statistics only ferdblayed cases

ratio | of Average| Average| Averag| Times| Average | Average |Average |Average Average
bep revenue| revenue| e of revenue | revenue |project |revenue time
(combin] (knapsac project| delay | (combine | (knapsack¥pan difference | difference
ed) k) span d)
Small 3%

60 days) | 15%

1
(9Regs, | 10% | 3
5
7

20%

Master 0.5% | 24
(99 Regs] 1% 48
30 days) | 2% 97
5% 242

Table 10.2: the result format of the second test

Based on the same dependencies, we will also centhaetaverage revenue using the original
knapsack model. But in the knapsack model, we onlysider that the implication dependency

have logical meanings so that Rj requirest,, thenx; < .. We will leave the time related

issues to the project plan phase. After selectisgequirements, we will compute the time span of
them using the scheduling method—-schedule theireaent with RCPSP”, and compute the
average time span of the 100 samples, and how tiraaythe project is late.

Based on the simulation results, we will do twdistas. The first one is the statistics for th&10
runs, like the average revenues of the two modelstiae average of the project span. But in the
100 runs, it is possible that in same cases, tte nwdels will select the same group of
requirements, then these runs will not be of neredt because the revenue difference and time
difference will be both zero. It is more interegtito see the difference for the projects which can
not finish on time, so we will make the secondistias only based on the projects that run out of
time.

10.3 Test result

10.3.1 The first group of results

The first test is to find how the time-related riegment dependencies influence the project span.
The computational results are shown in the follgntimble.

bound

The project span ‘

The difference between Io]l/er

96



Max | Min Average | delay Max diff | Min Average

days | days | days diff diff
Small-result 10% 1 83 55 58.80 16 0.00% 0.00% | 0.00%
(5 Regs, 64 20% 2 93 55 63.70 40 27.27% 0.00%| 0.93%
days) 30% 3 103 55 70.42 62 27.27% 0.00%| 2.64%
40% 4 108 55 75.32 76 14.55% 0.00%| 2.12%
Master-result | 0.5% | 14 40 30 | 30.93 33 30.00% | 0.00%| 2.70%
(76 Regs, 3 1% 29 46 30 31.38 27 8.57% 0.00% | 0.22%
days) 2% 57 69 30 36.92 76 22.58% 0.00%| 2.13%
5% 142 84 38 56.15 100 | 19.23% 0.00%| 3.47%

Table 10.3 The test result of the first test

The following four figures visualize the result.

schedule result based on small dataset

120
100
80 =
60 i
40
20

project span

10% 20% 30% 40%
precentage of possible dependency

Figure 10.4 the schedule result based on small dataset

Posibility of overtime based on small dataset

100%

80%

precentage of over  60%

time 40%

W on time

O over time|

ANANANAN

20%

0%
10% 20% 30% 40%

precentage of possible dependency

Figure 10.5 the possibility of overtime based on small dataset

For the small data set, we can find that as thebeurof requirement dependencies increases, the

97



maximal project span, the average project spanthadnumber of overtime project keep on
increasing (see figure 10.4 and 10.5). The avepaggct span grows from 58.8 to 75.32, the
number of delayed projects grows from 16 to 76 #wedmaximal project span grows from 83 to
108 days. However, the minimal project span rematrs5 days, which means even there are a
large number of dependencies, it is still posstbldeep the project on time, but the chance of
meeting the deadline keep reducing. From the lasinan, we can find the computed result is not
far away from the lower bound. The difference ithi 3%.

schedule result based on master dataset

100

80

60

40 L i- =

20

-
= average days

project span

0. 50% 1% 2% 5%
precentage of possible dependency

Figure 10.6 the schedule result based on master dataset

posibility of overtime based on master dataset

100%
80%

d

precentage of over  60%
time 40%

20%

0%

| on time

@ over time

NN

0. 50% 1% 2% 5%

precentage of possible dependency

Figure 10.7 the possibility of overtime based on master dataset

The same trend can also be found in the mastesetafsee figure 10.6 & 10.7). Special attention
is needed for the last row. When there are 142 mbpeeies, which are only 5% of the maximal
feasible number, the result explodes. The minimnag tto finish the project is at 38 days, and the
project is 100% late. The average project spah36 45, which is almost twice as much as in the
project plan. Theoretically, it is still possiblaat the project can be completed on time, but

98



unfortunately, it did not happen within 100 timecoimputation in our case.

We have also used other dataset for this test.ekample, for the small dataset, if the release
planning period is 50 days or 70 days instead afagd, what will be the scheduling result? We
also modified the planning date for the master stdtaand schedule them. Based on the
simulation, the figures are stable and very simtlarthis group of result. For the sake of

conciseness, these results are documented in App2nd

From the result, it is clear that the requiremespgehdencies greatly influence the project plan of
the release. When there are only a few dependertbiedelay is not significant and does not
happen often. As the number of requirement deparggiincreases, the chance that the project
will be delayed is very high. Unfortunately, howmyadependencies can exactly exist between the
requirements remains unknown, however, from a forsnevey', about 80% of the requirements
are interdependent, and most of the requiremenperdiencies are precedence constraints
(Implication or cost-relateddependencies). We can expect the number of depeiedeis at least
higher than the second row of the small or mast¢a det. (To set dependencies between 80% of
requirements, we need at leastx0.8/2 dependencies, wherd equals the number of
requirement)

We can also find that the difference between thaah@roject span and the lower bound is not
significant. From our computation, the differensguist about from 0% to 3.47%. This figure may
trigger the interest of a new searching algoritlumthis problem, since the project span is very
close to the lower bound which can be found in poigial time.

10.3.2 The second group of result

The second test is to compare the requirementstegleusing the knapsack model and the
combined model. We will compare first: the reveuliféeerence between the two models; second:
the time difference to completely implement thesleed requirements.

Data Set| Dep| No. Statistics for the 100 caseg Statistics only ferdblayed cases
ratio | of Average| Average| Averag| Times| Average | Average |Average |Average Average
Dep revenue| revenue| e of revenue | revenue |project [revenue time
(new) (knapsac project| delay | (new) (knapsack¥pan difference | difference
k) span
Small 3% 1 139.17| 141.27| 56.64 9 123.67 147 73 15.87% 6724.
(9Regs, | 10% | 3 128.06 | 132.53 58.14 17 110.53 136.82 76 99.1% 26.67%
60 days) | 15% | 5 114.81 121.45 59.24 22 99.27 129.4% 76.59 9228. | 27.65%
20% | 7 105.59| 110.87| 57.73 24 104.02 126.14 76.07 .84% | 26.78%

Master 0.5%| 24 40420.1] 40429.5| 30.48 | 17 40442.1| 40493.5  32.82 0.13% 9.41%
(99 Regs) 1% 48 39275.9 39479.1| 32.62 | 45 38965.7| 39400.9  35.87 1.15% 19.41%)
30 days) | 2% 97 35581.4 36103.1| 36.41 | 68 35351.8| 36118.7 39.43 2.11% 31.42%

5% 242 26947.71 29127.3| 45.61 | 95 26804.5| 29098.8  46.43 7.84% 54.77%

99




Table 10.4 the result of the second test

The test data is documented in the above tabt@ntbe divided into two parts: the statistics for
the whole 100 cases (from the fourth column togiéh column), and the statistics only for the
delayed projects (from seventh column to the tledtilumn).

The following 2 charts present the results.

model comparison based on small dataset
30.00% 30
o L 1|
25.00% J_ 25 B average revenue
20.00% | 4 20 difference
15.00% | 1 15 I:IaYerage time
difference

10.00% | 1 10 times of delay
5.00% | 15
0.00% 0

10% 20% 30% 40%

precentage of possible dependency

Figure 10.8 the model comparison based on small dataset

In the small data set, it is clear that the averagenue of the knapsack model is lower than the
new model. We can also find both the revenue oftifte models decreases as the number of
dependencies increase. In the delayed projectweasxpected, following the SeleztSchedule
processes, the more dependencies we have, thetineopossibility of the project being delayed.
However, this trend does not appear for the avergg@ect span, and although the average
revenue difference is lower than the average tiifierdnce, they do not differ too much.

100



model comparison based on master dataset
60.00% 100
] 1 90
50.00% [ | 80
40.00% 1 70 I average revenue
1 60 difference
30.00% | 50 @ average time
1 40 d%fference
20.00% | 30 times of delay
10.00% | 120
] J mlr
0.00% 0
0.50% 1% 2% 5%
percetage of possible dependency

Figure 10.9 the model comparison based on master dataset

In the master data set, it is also clear that ¢vemue of the new model is lower than the revenue
of the knapsack model. As the number of dependericaease, following the SeleztSchedule
processes, the average project span extends archdinee that the project is delayed becomes
higher and higher. The same trend exists on theageerevenue difference and the average time
difference, but this time, the difference betwewese figures are significant (see figure 10.9). For
example when there are 48 dependencies, the revwenioe new model is only 1.15% lower than
the knapsack model, but to implement the requirésnselected by the knapsack model, we need
to spend 19.41% more time than planed. Because ther more requirements in the master
dataset, we consider the result is more represemtaian the result from the small dataset.

We can draw two conclusions from this test:

® First: the precedence constraint significantly uefice the requirement selection &
scheduling and it is more efficient to consider fmject plan issues when select the
requirements. From the test result, when ignoreithieg issues on the requirement selection,
the project stand a high change of being delaybd.simulation result also suggests that it is
more efficient to take the project plan issues @toount when selecting the requirements,
because the revenue loss of the new model is gignify less than the additional time we
would spend on the implementation.

® Second, in a market oriented approach, the origiBaelec® Schedule processes are
challengeable. In order to fulfill the pressuretimme to market, we also need to consider the
project plan issue when we select the requireméfiteen the processes are separated the
project stands a higher chance of being late, eord the above conclusion it is quite evident
that this process is also not quite efficient. 8g hone of the release planning process or
software engineering process takes selection aridgias a joint process. A new approach in
release planning process is therefore needed amne rmasearch, attention and time will be
required to achieve considerable results.

101



11. Conclusion & future research

11.1 conclusions

This thesis has investigated software release pignfiom the perspective of three different
scientific fields—the information science part dw tfactors and processes for release planning;
the methodical modeling part on Integer Linear Paogming models; and the computer science
part on prototype design and testing. The followfiggre shows the components and relationships
within the three parts.

Mathematical model
Knapsack model for requirement

Prototype & tests

Prototype of requirement scheduling

Prototype of the combined model
Testl: requirement scheduling
Test2: process comparison

selection
RCPSP model for requirement
scheduling

Combined model for requirement
selection & scheduling

Figure 11.1 relationships within the three fields

In the field of information science, we searchedvihat are the factors and processes for making
a software release plan. We have identified eightofs: value, cost, priority, risk, quality and
dependency for each requirement, and the time tkehand the company resources based on the
market and company’s current situation. Regardinthe release planning processes, it follows

102



five key processes isstespecify>select>schedule>construct to determine whether a
requirement should be constructed. The factorestimated during the “specify” phase and will
be used as selection and scheduling criteria ifiaff@v two processes.

Mostly, a product manager needs to deal with hudslrer even thousands of requirements.
Without proper tooling support, it will be a ted®job and almost impossible to find the best
solution. The complexity of the problem requiresfiust to model the problem properly through
mathematical means. The second part of the thesidben devoted to this issue. Using integer
linear programming, we have presented three maidetaothe knapsack model for requirement
selection, the RCPSP model for requirement schegliind a combined model for requirement
selection and scheduling at the same time. We lads@® modeled some management steering
mechanisms as extensions of the basic models,réigairement dependencies, different time
availability the holiday seasons, etc. Because tledl models are based on integer linear
programming, most of the models and extensionscarapatible with others, only with few
exceptions. The details of the relationship betwegrh model can be found in chapter 8.

Based on the mathematical models in the secongwarhave implemented two prototypes using
Java programming language—the requirement schegutiodels based on RCPSP and the
combined model for requirement selection and sdivegluUsing these two prototypes, we ran
two simulation tests. The first test is how much tequirement dependencies can influence the
project. Based on the simulation result, we found the requirement dependencies that have
significant influence on the project span. The selceimulation test was to compare the result
when we select and schedule the requirement separat when we select and schedule
requirement simultaneously. The simulation resudigests combining the two processes together,
can not only guarantee the project to finish oretitsut will also increase efficiency.

The simulation results have suggested an oppoytuioit process improvement on release
planning. So far, the requirement selection andiireqnent scheduling are separated in most of
the release planning process models and the mdrkeiented software development models. In
fact, combining these two processes appears tcetterblt can guarantee the completion of the
project within the set deadline as well as will remse efficiency. This may trigger more

investigations on the market oriented software igrent processes model.

11.2 future researches

As the thesis has investigated in three scierftéids, the future research also includes thretspar

® |n the information science field, more attentions sequired on the release planning process
optimization. The simulation results in this thesi®ow convincing figures to combine the
requirement selection and scheduling together. Tlais suggested a potential field for
process improvement in the future.

® In the mathematical modeling field, there are $#lb possibilities for improve the models.
First, ILP is not a very efficient way for schedigi Some other techniques like Constraint
Satisfaction Problem (CSP) and local search methag appear to be more efficient. The
simulation results also suggest using some seac¢hathanism for scheduling, because the

103



optimal value found by ILP does not differ too muchm the lower bound, which can be
computed on polynomial time. Another opportunitydsetter integrate the different models.
The scheduling model and the combined model faectieh and scheduling do not fully
integrated with the knapsack model at this momeat.example, we need to set restrictions
on hiring external personnel if we want to use shbeduling mode later. Better models, or
additional extensions are required to enrich thactionality of the models and the
compatibility of the models.

In the computer science field, we can try to firedtér tools for release planning support. For
example to show the results in the Gantt chartgead extension to visualize the result. It is
also better to design and database system forresgent management instead of using
hard-copy data.

104



Appendix 2 the
other sample

Schedule result (Small)

experiment result based on

Data Set Dep ratio | Number | Max Min Average | Times | Difference
of Deps days days finishing | of from the
Small-result time delay | lower bound
(4 Regs, 50 10% N/A
days) 20% 1 83 50 57.78 45 0.00%
30% N/A
40% 2 98 50 69.24 84 1.72%
Small-result | 10% 1 83 55 58.80 16 0.00%
(5 Regs, 6d 20% 2 93 55 63.70 40 0.93%
days) 30% 3 103 55 70.42 62 2.64%
40% 4 108 55 75.32 76 2.12%
(5 Regs, 7d 10% 1 83 70 72.21 17 0.00%
days) 20% 2 103 70 75.06 34 2.48%
30% 3 118 70 81.62 59 2.64%
40% 4 118 70 87.17 65 4.33%
Schedule result (Master)
Data Set Dep ratio | Number | Max Min Average | Times | Difference
of Deps days days finishing | of from the
Master-result time delay | lower bound
(63 Regs, 0.5% 9 20 20 20 0 0.00%
20 days) 1% 19 29 20 21.17 32 5.85%
2% 39 31 20 21.41 39 3.27%
5% 97 51 22 33.76 100 8.11%
(76 Regs, 3q 0.5% 14 40 30 30.93 33 2.70%
days) 1% 29 46 30 31.38 27 0.22%
2% 57 69 30 36.92 76 2.13%
5% 142 84 38 56.15 100 3.47%
(84 Regs, 0.5% 17 44 40 40.18 13 0.32%
40 days)? 1% 34 50 40 40.52 13 0.30%
2% 69 50 40 43.95 14 2.12%
5% 174 90 52 71.7 20 4.93%

3 The last two rows (2% & 5%) are based on 20 rauhe

105



References

! Xu, L., & Brinkkemper, S. (2005). Concepts of RuotiSoftware: Paving the Road for Urgently
Needed Research. In J. Castro & E. Teniente (EHseg)first International Workshop on
Philosophical Foundations of Information Systemgif@ering (PHISE'05)pp. 523-528). FEUP
Press

% The Slide of MBI colloquium—ITEA project proposal

® Donald Firesmith. “Prioritizing Requirements”. 8eére Engineering Institute, U.S.A.
JOURNAL OF OBJECT TECHNOLOGY Vol. 3, No.8, Septemixtober 2004

* Leffingwell, D., and Widrig, D. “Managing SoftwaRequirements - A Unified Approach”,
Addison-Wesley, Upper Saddle River, NJ. 2000

®> Suzanne Robertson, James Rovertson. “Masteringgtherements process”. ACM Press, 1999
® Michael R. Garey and David S. Johnson “Computadsiatractability: A Guide to the Theory
of NP-Completeness”, W.H. Freeman. 1979.

! Marjan van den Akker, Sjaak Brinkkemper, Guido RiepJohan Versendaal. “Software product
release planning through optimization and whatélgsis”

8 Karlsson, J and Ryan, K. “A cost-Value ApproachPoioritizing Requirements”. IEEE Software,
September/October 1997 pp 67-74.

o Ruhe, G., Saliu, M.O. “The Art and Science of &afte Release Planning”, IEEE Software, vol 22,
no 6, November/December 2005, pp 47-53

10 Inge van de Weerd, Sjaak Brinkkemper, Richard Nenhwis, Johan Versendaal, Lex Bijlsma “A
reference framework for software product manageinéiitecht UniversityTechnical Report
UU-CS-2006-014, 2006.

1 Ruhe, G., Saliu, M.O. “The Art and Science of @aite Release Planning”, IEEE Software, vol 22,
no 6, November/December 2005, pp 47-53

12 Lionel C. Briand, Khaled EI Emam, Dagmar Surmasapklla Wieczorek, Katrina D. Maxwell
“An assessment and comparison of common softwaseestimation modeling techniques” .
Proceedings of the 21st international conferenc8aftware engineering, 1999 Pages: 313 - 322

13 Sjaak, Brinkkemper, : slides of “information busis” course.

14 Kitchenham, B. Pfleeger, S.L. “Software qualttye elusive target”, Software, IEEE
Publication Date: Jan 1996,pp 12-21

> Cusumano, M.A.: The Business of Software. Fres$(2004)

'® Brealy, R.A, S.C. Myers, A.J. Marcus “Fundamentfl€orporate Finance.”
McGraw-Hill/lrwin, New York, 2004, % edition.

7 D. Greer, G. Ruhe. “Software release planning:\artugionary and iterative approach” Information
and Software Technology 46 (2004) 243-253

18 Giinther Ruhe. “Software release planning”. Haw#bSoftware Engineering and Knowledge
Engineering - Vol. 3. 2005

19 Marjan van den Akker and Han Hoogeveen. “Minimigthe number of late jobs in case of
stochastic processing times with minimum succesbabilities”. UU technical report
UU-CS-2004-067. 2004

20 Dimitri Golenko-Ginzburg, Ahron Gonik, Zohar Lasl&Resource constrained scheduling
simulation model for alternative stochastic netwprgjects”. Mathematics and Computers in
Simulation 63 (2003) 105-117

21 carlshamre P, Sandahl K, Lindvall M, Regnell B, tNeth Dag J. “An industrial survey of
requirements interdependencies in software relpiasming”. In: Proceedings of the 5th IEEE
international symposium on requirements enginee@091, pp 84-91

2 par Carlshamre, “Release Planning in Market-Dri8eftware Product Development: Provoking an
Understanding”. Requirements Engineering, Volumds3sue: 3 (September 1, 2002), pp: 139-151

%3 Donald Firesmith: “Prioritizing Requirements”, inurnal of Object Technology, vol. 3, no. 8,
September-October 2004, pp. 35-47

24 Novorita, R., Grube, G., “Benefits of Structuredg@gements Methods for Market-Based
Enterprises”, Proceedings of International CouanilSystems Engineering Sixth Annual International

106



Ssymposium on Systems Engineering: Practice andsTONICOSE’96), Boston USA, July 1996

2 Sawyer, P., Sommerville, I., Kotonya, G., “Improgiklarket-Driven RE Processes”, Proceedings
of International Conference on Product Focused SofénRrocess ImprovemefRROFES’99), Oulu
Finland, June 1999

%6 Cusumano, M.A.: The Business of Software. Freg${2004)

21 Bjorn Regnell, Lena Karlsson, Martin Host. “An Agtital Model for Requirements Selection
Quality Evaluation in Product Software DevelopmeRE'03 - IEEE 11th International Conference on
Requirements Engineering, September 8-12, Montagy California USA, 2003

%8 JN och Dag, V Gervasi, S Brinkkemper, B Regnell LiAguistic-Engineering Approach to
Large-Scale Requirements Management”. IEEE Softwlkeuary 2005, pp 32-39

29 par Carlshamre, Bjorn Regnell: “Requirements Lytdée Management and Release Planning in

Market-Driven Requirements Engineering Processagthational Workshop on the Requirements
Engineering Process: Innovative Techniques, Mod@eid, Tools to support the RE Process, 6th-8th of
September 2000, Greenwich UK, preceeding the DEXAf€ence

%0 Christopher McPhee, Dr. Armin Eberlein , “Requigetts Engineering for Time-to-Market
Projects” Ninth Annual IEEE International Confererand Workshop on the Engineering of

Computer-Based Systems. 2002

31 Ruhe, G., Saliu, M.O. “The Art and Science of @aite Release Planning”, IEEE Software, vol 22,
no 6, November/December 2005, pp 47-53

%2 suzanne Robertson, James Robertson, “Masteringtfugrements process”. ACM press book.
1999

¥ Glnther Ruhe. “Software release planning”. Hawitb&oftware Engineering and Knowledge
Engineering - Vol. 3. 2005

3 Marjan van den Akker and Han Hoogeveen. “Minimigthe number of late jobs in case of
stochastic processing times with minimum succesbabilities”. UU technical report
UU-CS-2004-067. 2004

Omfr, A, “HPEESE B ARMAEAL, 2003 Pp 313

% Wolsey L.A.  “Integer programming”. Wiley-Interssice Series In Discrete Mathematics and
Optimization. 1998

37 Marjan van den Akker, Sjaak Brinkkemper, Guido RiepJohan Versendaal. “Software product
relese planning hrough optimization and what-iflgsia”

% Bjorn Regnell, Lena Karlsson, Martin Host. “An Ayiical Model for Requirements Selection
Quality Evaluation in Product Software DevelopmeRE'03 - IEEE 11th International Conference on
Requirements Engineering, September 8-12, MontagyCalifornia USA, 2003

%9 s.Martello and P.Toth. (1990) “Knapsack Problefigorithms and computer Implementations”.
Wiley-Interscience Series In Discrete Mathematiod @ptimization.

40 Jung, H.-W. (1998), “Optimizing Value and CostRequirements Analysis.” IEEE Software,
July/August 1998 pp 74-78

41 Crescenzi P. and V.Kann, eds. “A compendium ofolgfimization problem”.
https://www.nada.kth.se/viggo/wwwcompendium/wwwcamgium.html

“2 Yeh, A., “Requirements Engineering Support Techaig(REQUEST) — A Market Driven
Requirements Management Process”, ProceedingsSexfond Symposium of Quality Software

Development Toolspp. 211-223, New Orleans USA, IEEE Computer Sgdieess, May 1992.

43 sawyer, P., Sommerville, 1., Kotonya, G., “ImpnegiMarket-Driven RE Processes”, Proceedings of
International Conference on Product Focused SoftwRrnocess Improveme(RROFES’'99), Oulu
Finland, June 1999.

4 Novorita, R., Grube, G., “Benefits of StructurecedRirements Methods for Market-Based
Enterprises”, Proceedings riternational Council on Systems Engineering Shaimual International

Symposium on Systems Engineering: Practice ana TddCOSE’'96), Boston USA, July 1996.

> Emile Aarts, Jan Karel Lenstra. “ Local SearciCbmbinatorial Optimization”. Wiley 1997. pp 361
—415.

6 Aristide Mingozzi, Vittorio Maniezzo, Salvatore ®iardelli, Lucio Bianco. “An Exact Algorithm

107



for the Resource-Constrained Project SchedulinglPno Based on a New Mathematical Formulation”.
Management Science, Vol. 44, No(May, 1998), pp. 714-729.

47 Blazewicz, J., J. K. Lenstra, and A. H. G. Rinndn, "Scheduling Projects Subject to Resource
Constraints: Classification and Complexitiiscrete Applied Math5 (1983), 11-24.

“8 Balakrishnan, R, and W. J, Leon, ,"Quality and pu@dility of Problem-Space Based
Neighborhoods for Resource Constrained Schedulivgptking Paper, Department of Industrial
Engineering, Texas A & M University, College Statid X, 1993.

4 Demeulemeester, E, and W. Herroelen, "A Branch &udind Procedure for the Multiple

Resource-Constrained Project Scheduling Probléfayiagement Scienc&8 (1992), 1803-1818.

%0 Marjan van den Akker, Sjaak Brinkkemper Guido RiepJohan Versendaal, “Software product
release planning through optimization and whatdlgsis”

*1 par Carlshamre, “Release Planning in Market-DriSeftware Product Development: Provoking an
Understanding”. Requirements Engineering, VolumédsSue: 3 (September 1, 2002), pp: 139-151

®2 R.A., S.C. Myers, A.J. Marcus: Fundamentals of @cae Finance. McGraw-Hill/lrwin, New
York, 2004, 4th edition

*% Thomas H.Cormen, Charlse E. Leiserson, Ronald\ergt, Clifford Stein . Introduction to
algorithms “, second edition. MIT Press, 2001, gp 551

108



