

An Integer Linear Programming
Approach to Product Software Release
Planning & Scheduling

C. Li
J.M. van den Akker
S. Brinkkemper

Technical Report UU-CS-2006-065
August 2006
Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

 1

An Integer Linear Programming Approach to

Product Software Release Planning &

Scheduling

Chen Li

Master Thesis

Master program of Business Informatics

Department of information & computing science

Utrecht University

August 10, 2006

 2

Index

INDEX ...2

0. INTRODUCTION ..5

0.1 PROBLEM STATEMENT...5

0.2 RESEARCH QUESTION..6

0.2.1. Information science:...6

0.2.2. Algorithms & Computational model: ...6

0.2.3. Prototype design: ...7

0.3 THESIS STRUCTURE...7

THE FACTORS & PROCESSES OF RELEASE PLANNING...9

1. RELEASE PLANNING FACTORS.. 10

1.1 INTRODUCTIONS..10

1.2 IMPORTANCE OR BUSINESS VALUE...10

1.3 PERSONAL PREFERENCE OF DIFFERENT STAKEHOLDERS.. 11

1.4 COST OF DEVELOPMENT..12

1.5 QUALITY ...12

1.6 RISK ..13

1.7 REQUIREMENT DEPENDENCY...13

1.8 TIME TO MARKET...14

1.9 RESOURCES OF THE COMPANY...15

2. SOFTWARE RELEASE PLANNING PROCESSES.. 16

2.1 INTRODUCTION..16

2.2 THE THREE CASES..16

2.2.1 The requirement management processes at Baan..16

2.2.2 The requirement engineering process at Ericsson Radio Systems AB...................................17

2.2.3 Requirement engineering for Time-to-Market Project...18

2.3 THE COMPARISON & CONCLUSION..18

THE MATHEMATICAL MODELS OF RELEASE PLANNING... 21

3. THE MATHEMATICAL MODELING ... 22

3.1 THE QUANTITATIVE REPRESENTATION OF THE FACTORS...22

3.2 INTRODUCTION TO LINEAR PROGRAMMING...25

3.2.1 The standard form ...25

3.2.2 The algorithms to solve ILP problem ..26

 3

4. THE KNAPSACK MODEL FOR RELEASE COMPOSITION ... 27

4.1 PROBLEM DESCRIPTION...27

4.2 ONE POOL OF DEVELOPERS..28

4.3 DEVELOPMENT TEAMS..29

4.4 TEAM TRANSFERS..29

4.5 EXTERNAL RESOURCES..32

4.6 DEADLINE EXTENSION...32

4.7 REQUIREMENT DEPENDENCIES..33

4.7.1 Six types of requirement dependencies ..33

4.7.2 The ILP model for requirement dependencies ...33

4.8 DEPENDENCY GENERALIZATION..36

4.8.1 Construct a package..36

4.8.2 Requirement and Package...37

4.8.3 Penalty package ..38

4.9 MODEL PERSONAL DIFFERENCES...40

4.9.1 Problem statement...40

4.9.2 The basic model...40

4.9.3 Working in different teams (team transfer) ..42

4.9.4 Personal preferences ...44

4.10 CHAPTER CONCLUSION..45

5. SCHEDULING THE REQUIREMENTS .. 46

5.1 PROBLEM STATEMENT...46

5.1.1 Precedence constraints..46

5.1.2 No precedence constraint ..47

5.1.3 One pool of developer ...48

5.1.4 Schedule with team and precedence constraint...49

5.2 SCHEDULING WITH TEAM & PRECEDENCE CONSTRAINTS...51

5.2.1 Four basic assumptions: ...51

5.2.2 The RCPSP model ...52

5.2.3 Problem description ..52

5.2.4 Precedence constraints..53

5.2.5 The upper bound..54

5.2.6 The time window ...55

5.2.7 The (0,1) integer programming model ..55

6. SELECT AND SCHEDULE THE REQUIREMENTS ... 57

6.1 INTRODUCTION..57

6.2 THE INTEGER LINEAR PROGRAMMING MODEL...58

6.2.1 Problem description ..58

6.2.2 Precedence constraints..58

6.2.3 Compute the earliest start and the latest start...59

6.2.4 The Objective function & the constraints..59

6.2.5 The explanation of the model ..60

 4

6.2.6 Transformation:...61

6.2.7 Requirement dependencies:...61

6.3 THE DIFFERENT TIME AVAILABILITY FOR DIFFERENT TEAMS..66

6.4 MODEL THE HOLIDAY SEASONS...67

6.4.1 The model ..67

6.4.2 Explanations of the constraints ...69

7. DYNAMIC ADJUSTMENT OF THE RELEASE ... 71

8. RELATIONSHIPS BETWEEN THE MODELS... 74

8.1 STRUCTURE OF THE MODELS...74

8.2 PROCESSES TO USE THE MODELS...76

8.3 THE COMPARISON OF THE MODELS..77

APPENDIX 1: SETS, VARIABLES AND PARAMETERS:... 79

THE TOOLS AND THE TEST RESULTS ... 81

9. THE TOOLS ... 82

9.1 GENERAL INFORMATION..82

9.2 SOFTWARE STRUCTURE...83

9.3 SCREEN SHOTS..84

9.4 THE ACTIVITY DIAGRAM OF “SCHEDULER” ...86

9.5 THE ACTIVITY DIAGRAM OF “PLANNER”..87

10. SIMULATION TESTS... 89

10.1 TEST PURPOSE...89

10.2 TEST METHODS..89

10.2.1 Test tools..89

10.2.2 Test data ..90

10.2.3 The requirement dependency...90

10.2.4 Rounding ...93

10.2.5 The results format..93

10.3 TEST RESULT...96

10.3.1 The first group of results ...96

10.3.2 The second group of result ..99

11. CONCLUSION & FUTURE RESEARCH...102

11.1 CONCLUSIONS..102

11.2 FUTURE RESEARCHES..103

APPENDIX 2 THE EXPERIMENT RESULT BASED ON OTHER SAMPLE...........................105

REFERENCES ...106

 5

0. Introduction

0.1 Problem statement

The development processes of product software can be categorized into four phases: Requirement

management� Architecture/Design development � Deliver � Implementation Services1. In

requirement management phase, the main activities are to generate requirements and to select

requirements. Release planning is one of those activities- which refer to the process of selecting

the right requirements for the coming release. This thesis is built around this topic of release

planning.

“Release planning—the definition of upcoming releases in a product roadmap—fulfils a strategic

role. Making incorrect choices for a release definition may significantly impact the

competitiveness of software intensive companies in a market driven environment”2.

It is always a challenge for software companies to determine the upcoming release due to the fact

that the wish list of requirements gathered from different parties is so big that exceeds the

capability of the company. Other constraints like time to market, cost, etc also restrict the scope of

the coming release into a limited range. So how to select or prioritize the requirements becomes

very important and can even play a strategic role.

Several techniques have been published for requirements selection and prioritization. Firesmith

(2004) has presented a list of dimensions, and the priority of a requirement is determined by the

average value of each dimension 3.Leffingwell and Widrig (2000) 4 has designed a voting

mechanism to determine the average weight of each requirement through the voting of different

stakeholders. Suzanne Robertson and James Robertson used a method called ‘quality gateway’ to

determine on each requirement’s go or not go 5. ������������	��
��	���	
��� (2004)7 used a very

intriguing selection method using Integer linear programming (ILP) ���	�	���
�	�	���	��	�	����

��	����	�
������	�
�
������	���This thesis will address some of those questions.

Firstly, most of the releases planning methods try to balance the trade of between values and cost,

for example, obtaining the maximal revenue with limited amount resources. However, whether

these two factors—cost and value—are sufficient enough to determine a good release plan remains

uncertain. This provides us the first opportunity to find out which factors should be considered in

making a release planning.

Secondly, Marjan van den Akker et al (2004) have provided a knapsack model for requirement

selection and some management steering mechanism for making a release plan, however, more

functions are demanded. These functions include setting dependencies, modeling personal

differences scheduling requirements, etc. These demands require us to enrich and extend the ILP

model so as to include more functions for making a release plan.

 6

At last, prototype tools for the new functions should also be implemented. Besides the technical

issues, like the design, the implementation and integration, using these tools, we can not only test

the mathematical models for the additional functions, but also check for how much the release

planning factors can influence the final result. We can also search for whether there are

opportunities for further process improvement with the help of the tools.

0.2 Research question

To address the problems mentioned above, my main research question will be:

How to define a profitable and practical release definition which can fulfill the different interests

of stakeholders in the release planning context?

In this research question, three issues are specially emphasized:

• First, the key point is still to maximize the anticipated revenue of the requirements

composition, that’s why “profitable” is addressed.

• Second, “practical” means the release definition should not conflict to the external and

internal constraints. For example, the resource and time are limited; the requirements are

interdependent, etc.

• Third, “fulfill different interests” means it should provide more functions or management

steering mechanism to fulfill the wishes from different stakeholders.

This research question can be divided into several sub-questions categorized into three scientific

fields—Information science, Algorithms & Computational model, as well as Computer science.

0.2.1. Information science:

• What are the factors for release planning?

• What are the key activities and processes to make a release plan?

In this field, the research goal is to find which factors should be included in release planning, and

what are he processes and key activities for release planning. The factors will be included in the

later chapters as input parameters, and the key processes will guide the modeling and be integrated

with other process supporting models.

0.2.2. Algorithms & Computational model:

Here, the basic assumption is the number of requirements is restricted within 200, and ILP model

is capable enough to solve the problem 6 [8]. Based on this assumption, the research questions

are:

 7

• How to model the functional extensions of the current linear programming model i.e.

what-if analysis?

• How to model each type of requirement interdependency using ILP?

• How to schedule the requirements development exactly in time?

• How to integrate the new models with the original knapsack model?

After we determined the factors for release planning and the key activities, we will focus on the

mathematical modeling. As stated above, we will still use ILP for the modeling. We will try to

include more management steering mechanisms in the model and solve at least the requirement

dependency issue and the requirement scheduling issue. Needless to say, these new models should

be compatible with the original knapsack model and it extensions.

0.2.3. Prototype design:

• How to implement the computational mode?

• How to integrate it with the prototype of the knapsack model?

• How to adapt the tool with J2EE environment?

• How much can the release planning factors influence the result?

• Is there any possibility for process improvement?

After the computational models are determined, the following issue is how to implement them.

The new prototype should not only be capable of solving new problems, but also compatible with

the prototype of the knapsack model. An additional constraint is the new prototype should work in

J2EE (Java 2 Enterprise Edition) Environment.

After we implement the prototype, we will try to find out how much the release planning factors

can influence the result, and also search for the opportunities for process improvement.

0.3 Thesis structure

Same as the sub-research questions, the thesis can be divided into three main parts. The first part

includes chapter one & two, which is the information science part of the thesis. Chapter one

discuss the factors needed for release planning, and chapter two discuss the processes and key

activities for release planning.

The second part is the mathematical modeling part which includes the chapter three to chapter

eight. Chapter three gives a general introduction to the mathematical modeling problem and some

basic information on integer linear programming. Chapter four is based on the knapsack model for

requirement selection and also presents several management steering mechanism for requirement

selection. After the requirement selection, we present the requirement scheduling model in chapter

five using integer linear programming. Based on the fact that the scheduling result may not always

keep the deadline, we present a combined model for requirement selection and scheduling in

chapter six. We also include two more extensions for the combined model, i.e. holiday seasons,

 8

and different time availability in this chapter. In chapter seven and eight, we will talk about how to

dynamic adjust release plan and the relationships between each mathematical models.

The third part—the prototype and tests—includes chapter nine and ten. In chapter nine, we discuss

two prototypes for requirement scheduling and the combined model. It includes the general

information, the software structure and the activity diagram of the two prototypes. Using these two

prototypes, we will present two simulation tests in chapter 10. The first simulation test is to find

how much the dependencies can influence the requirement scheduling. And in the second

simulation, we will compare the two release planning processes i.e. whether one should select

requirements first and then schedule them or select and schedule requirement at the same time.

Chapter 11 provides the lucid answer to the research questions and draws conclusion of the

thesis .This section also accounts the limitations of the research and proposes some of the possible

future dimension of research in this context.

 9

The factors & processes of release planning

In this section, we will discuss the factors involved for release planning and the processes to

conduct a release planning. There are two chapters. In the first chapter, we will discuss which

factors should be involved in release planning and what are the relationships between them. In the

second chapter, based on three case studies, we will discuss the general processes to determine

which requirement should be in the next release.

Discussions in these two chapters refer to the information science part of this thesis and should be

considered as the foundation of the “mathematical modeling” part. The factors mentioned here

will be modeled in the mathematical modeling section, and the release planning processes will

guide the relationships between the mathematical models. We also propose several questions in

this section, and will try to find the results in later “tools and tests” section.

 10

1. Release planning factors

1.1 Introductions

Software release planning is a complex process and includes many factors. In this chapter, we will

discuss what factors should be involved in release planning, and what’s the relationships between

these factors.

The purpose of release planning is to find the suitable requirements for the next release given the

constraints like time-to-market and limited available resources. Obviously, available time, and

resources are two main factors. To evaluate requirements, we have identified six factors from

literatures, which are: 1) importance or business value, 2) personal preferences of different

stakeholders; 3) cost of development, 4) quality, 5), risk 6) requirement dependency. The

following table shows the relationship among these factors:

���������

�	�
��
��

	����
�����

�����

����

��

��
���

��
�

��
�
���

	�
�

�������

����������

	����
�

��������

Figure 1.1: release planning factors

1.2 Importance or business value

Different requirements will have different values to the business. Some requirements will be

critical, whereas others will be less important though still mandatory. Some potential requirements

are not requirements at all but merely desirable though not necessary features or characteristics,

and others will be merely characteristics that would be nice to have or items on someone’s wish

list. Also, some requirements have a tactical usefulness, whereas others have a more long-term

 11

strategic value to the business.

A revenue value can be tangible (like estimated return on investment or estimated revenue) or

even intangible (like user satisfaction). Two main categories of revenue value calculation are

recognized: absolute value determination, and relative value determination7. In absolute value

determination, the product manager of a company developing standard software products could

determine and estimate value for the revenue. As for relative revenue value calculation, Karlsson

and Ryan provide a useful approach through AHP8 : each requirement can be assigned a value

between for example 0-100. Ruhe and Saliu9 used take the stakeholders’ opinions into account,

and assign each stakeholder its weight of importance. All the stake holders need to estimate the

value of a requirement, and the final value of a requirement is computed as the average weighted

value from different stakeholders.

1.3 Personal preference of different stakeholders

Different stakeholders (e.g., customers, users, marketing, operators, maintainers, and architects)

will prefer certain requirements over others. This is especially true when practical reasons such as

schedule and budget mean that all of the requirements cannot be implemented and released during

the current build of an incremental development cycle.

Both internal and external stakeholders are identified10. The internal stakeholders include:

1. The Company board is responsible for the definition and communication of strategy, vision

and mission to the rest of the company. It can occur that a requirement is sent directly to the

product manager.

2. The Research & innovation has two core responsibilities: (1) doing research to new

opportunities for product innovations and (2) finding ways to incorporate improvements or

new features into the existing products. The first one results in requirements in the form of

technology drivers that are communicated to the product manager

3. The Service department is responsible for the implementation of the software product at the

customer organization. They need to be aware of new release features and they gather new

requirements from the customers

4. The Development has as main responsibility the execution of the release plan. The release

definition also includes functional explanation of the product requirements that serve as input

for the functional and technical design. It may occur that during the development process

new requirements can arise, due to more complex requirements than was anticipated

5. The Support stands for the helpdesk to answer questions (1st line support) and for small

defect repair unit (2nd line support). Large defect repair is usually performed by

Development.

6. The Sales & marketing is the first contact with a potential customer. Through these contacts

new requirements can be gathered.

There are also some external stakeholders like:

1. The Market is an abstract stakeholder, standing for potential customers, competitors and

analysts.

 12

2. The external partners: the implementation partner, the development partner and distribution

partner etc.

3. The Customers often have new feature requests in the process of closing the deal or during

the usage of the product. These requests can be communicated to Services, Sales &

marketing, Support, but also directly to the product manager

The opinions of stakeholders can influence the value of a requirement. Ruhe and Saliu11 took the

stakeholders’ opinions into account by assigning each stakeholder a weight of importance. All the

stake holders need to estimate the value of a requirement, and the final value of a requirement is

computed as the average weighted value from different stakeholders.

1.4 Cost of development

The cost of a requirement can be presented by monetary cost and/or labor cost. Briand et al12 have

summarized and compared the common methods on software cost estimations. The typical

variables includes: System type, organization type, application type, target platform, productivity

factors and so on.

When use labor cost as the cost unit, i.e. the cost is presented by man days or man hours. A

benchmarking number linking the cost and the line of code is : one man day = 20 line of codes13.

When a requirement is transferred to software models and conceptual solutions, the top down

resource calculation or bottom up calculations may provide a useful estimation for the costs7.

Although the cost unit may be the same for different resources, the cost of labors is not the same.

A software company may have specialists in different fields, for example, it may have Java

developers and C++ developers. When record the cost of a requirement, we need to make clear

which types of resource are needed. To make a clear estimation of the cost, we need to know not

only how many but also which kind of resources are needed.

1.5 Quality

Quality is a complex and multifaceted concept14. From the user’s view, the quality is the product

characteristics that meet the user’s needs. From the product point of view, the quality is more

focused on the internal product properties that will result in improved product behavior. It is also

difficult to evaluate the quality; in general, software quality includes the following attributes:

1. Functionality: a set of attributes that bear on the existence of a set of functions and their

specified properties.

2. Reliability: a set of attributes that bear on the capability of software to maintain its

performance level under stated conditions for a stated period of time.

3. Usability: a set of attributes that bear on the effort needed for use and on the individual

assessment of such use by a stated or implied set of users.

4. Efficiency: a set of attributes that bear on the relationship between the software’s

performance and the amount of resources used under stated conditions.

 13

5. Maintainability: a set of attributes that bear on the effort need to make specified

modifications.

6. Portability: as set of attributes that bear on the ability of software to be transferred from one

environment to another.

The quality of a requirement also influences its attractiveness. For example, if a requirement is

highly reusable within a product line, then it might be wise to give it a higher priority so that no

system within the product line has to wait for its implementation.

1.6 Risk

Software industry is risky: 80% of software project are late or over budgeted15. Shown in the

financial market, software industry is one of the industries which have the highest expected rate of

return16. For release planning, it may well make sense to prioritize requirements by the risks

associated with their implementation. For example, one can attempt to implement those

requirements having the highest risk first so as to deal with the resulting problems during

development. On the other hand, it may make sense to implement the lowest risk requirements

first in order to maximize the amount of the system implemented by ensuring that limited

resources are not wasted on trying to implement high risk aspects of the system that may be

impossible to successfully implement. Postponing the implementation of high risk requirements

can also maximize the time available to research the risks and determine appropriate risk

mitigation approaches.

It is also important to balance the overall risk of the whole release. Ruhe has provided a method

based on generic algorithm to balance the risks of different releases17. A tool called EVOLVE+ is

developed for decision support. It can help to determine which requirement in which release so

that the trade of between risk and revenue are balanced. When determining only on release,

Ruhe18 consider risk in a way similar to how we consider cost: one requirement is associated with

a number between 0 to 1 which stands for its risk, and the average risk of the selected

requirements should be lower than a certain bound. When dealing with the risk of project plan

issues, the risk reflects the uncertainty or probability of a value, for example the expected duration

of a job. It is then very complex because a stochastic system is in need For example see , Marjan

van den Akker (2004) 19 When there are task divisions to develop a requirement, which means

the project are running concurrently in several groups, we can consult the stochastic model of

resource constrained scheduling model20.Research about Stochastic systems on planning are very

new and so far models developed have found to be no practical application in the field of release

planning.

1.7 Requirement dependency

Requirements are not isolated islands but have complex relationships within them. These

relationships are requirement dependencies. In the filed of software release planning, Carlshamre21

has found about 80% of requirements are interdependent, and only a few requirements are singular.

 14

This practical data suggests that requirement dependencies play an important role for release

planning. In the same paper, six types of requirement dependencies have been identified, which

are

1. Combination. A printer requires a driver to function, and the driver requires a printer to

function.

2. Implication. Sending an e-mail requires a network connection, but not the opposite.

3. Time-related. The function Add object should be implemented before Delete object. (This

type is doubtful, which is discussed in section 3.1)

4. Revenue-based. A detailed on-line manual may decrease the customer value of a printed

manual.

5. Cost-based. A requirement stating that "no response time should be longer than 1 second"

will typically increase the cost of implementing many other requirements.

6. Exclusion. In a word processor, it can be either provided as integrated drawing model or a

link of external drawing application.

Multiple types of relationships can be found between two particular requirements. For example,

R1 may require R2 to function, and R2 also increase the value of R1. It is suggested to priority the

dependencies and only consider the dependency with the highest one. The priority order is as

follows: 1. Combination, 2, Implication, 3, Time-related, 4 Revenue-based & cost-based, 5,

exclusion. For the above case, we may only consider the Implication dependency.

Not all the types of dependency appear equally frequent. Implication and cost-based are the most

common types, which can take up 80% of the total dependencies. The least common one is the

time-related dependency. Some papers 22 suggest ignoring this type of dependency, and leaving

it to the project plan phase; some23 specially picks this type as Implementation dependencies. A

comparison of the two will come in later chapter.

1.8 Time to market

For software product, although the pressure of time to market is evident24 25 1, 80% of software

project are late or over budgeted26. From a former survey27, the average time-to-market a new

release is about 6 weeks, and within this period, the company can expect receiving around 80

requirements on average.

There are normally two ways to determine the time-to-market of a new release: internally and

externally. When the project is budget or quality/scope oriented, the release date is normally

internally defined, and the release date is the time when the requirements in the project scope are

complete. When the project is market oriented, the release date is normally on the pressure of the

external market condition. The focus of this thesis is on product software, so we will use the

second method: the release date determined by market condition and not on company situations.

 15

1.9 Resources of the company

The most valuable resource of a software company is the human resource or its specialties. For the

release planning problem, to evaluate how many resources are available in the period includes two

steps:

� What kinds of resources are available? Everyone has its own specialty, for example someone

is good at system analysis, and someone is good at programming. A good understanding of

what kind of skills are available is the first step to evaluate the resource of the company.

� How many resources are available? After knowing who are available for the new project, we

need to know how long can they work for the project. Each developer may have different

time availability, or need to go to holidays, or need to work for other projects. A clear

understanding of how much resources are available for different type of resources is

important.

 16

2. Software release planning processes

2.1 Introduction

When developing software for a market-place, rather than for a single customer, the pressure on

short time-to-market is evident. Market-driven Requirements Engineering processes have a strong

focus on requirements prioritization and often deliver incremental releases of a continuously

evolving product.

It takes several processes to determine which requirement to be included in the next release. In

This chapter, we want to find processes that are typically included in release planning. As to the

scope of the problem, we will consider the processes from the time when new requirements are

issued until the time when requirements are ready for development.

Based on literature, we will compare three requirement engineering or release planning processes,

and try to identify the common processes for release planning. The three cases are:

1. Requirement management process at Baan28

2. Requirement engineering process at Ericsson Radio Systems AB29

3. Requirement engineering for Time-to-Market Project30

2.2 The three cases

2.2.1 The requirement management processes at Baan

The requirement management processes at Baan is shown in the following chart:

When a customer wish related to future product comes into the company, it is recorded as a market

requirement. Then the product managers need to link the market requirement to the business

requirement, while the business requirement is a product requirement covered by Baan’s product,

and described in Baan’s way. Then a conceptual solution is designed and linked for a business

requirement. When the company’s manager decided to start a new release, a release initiation

document triggers the writing of the corresponding VD and CS. These are then used as input for

the development processes, which include writing design documents and actual coding.

 17

Figure 2.1: requirement management processes at Baan

2.2.2 The requirement engineering process at Ericsson Radio Systems AB

The requirement engineering process at Ericsson Radio Systems AB is as follow:

Figure 2.2 The requirement engineering process at Ericsson Radio Systems AB

The RE process at Ericsson is called RDEM model. After a requirement is captured by the product

committee, the requirement goes to the specification stage when all information needed to proceed

with implementation and verification from a narrow, system-oriented perspective is analyzed.

However, in this stage , it does not yet hold any production-oriented information, e.g., when and

 18

how the requirement is best implemented from a customer or product management perspective. If

a requirement can be elevated to the planned stage, it will be implemented and verified, and after

this is done, the requirement is the done and configured to the product.

2.2.3 Requirement engineering for Time-to-Market Project

The requirement engineering process for time-to-market project is as follow:

Figure 2.3: Requirement engineering for Time-to-Market Project

The RE process consists of four main activities: elicitation, analysis, specification, and validation.

Elicitation is the activity of gathering the requirements from stakeholders. After gathering the

requirements, they are analyzed to determine areas requiring clarifications, logical groupings, etc.

After being analyzed, the requirements are documented and validated with the stakeholder to

ensure that the product developed from the requirements will meet the needs of the stakeholder.

Small development increments and formal requirement documentation or experimental prototype

are also of high importance.

2.3 The comparison & conclusion

From the cases, we can conclude that:

There are two similarities of the models:

1. The processes “issued” and “specified” appear in the three models. In the Baan’s model,

market requirement is the “issued” requirement and it is later refined into the business

requirement. The same process to refine the raw requirement into a more structured, and more

understanding way is in all the three models.

2. All the three models emphasize on building conceptual models. The Baan’s model has one

process for it, the Ericsson’s model build the model on the “specification” phase, and the last

 19

model do it in the “develop/modify requirement specification” phase.

There are also three differences in the model:

1. All the three models have the process to select requirement, but in different ways. The Baan’s

case has a special process to select requirement based on release initiation, the Ericsson model

select requirement every time when elevating and the last model do it in an iterative way. So,

the selection must be a process in the release planning model, but how to do it is not clear yet.

2. The Baan’s model is not an iterative model, while the rest of the models are. The Ericsson

model is an iterative model while the third model emphasize on quick iteration.

3. For the Ericsson model, in the “planned” stage, the project plan issues are mentioned, but not

in the rest of the model. It is not a big problem because, when the requirements go to the

constructed model, normally the first step is to make the project plan. It is only a matter of

choice whether we should consider project planning as an issue in the release planning or we

leave it when we construct the requirements. In later chapters, we will discuss this question in

details.

To sum up, a requirement may goes through the following steps to turn a market wish in to a

software product component:

Figure 2.4: different stages for a requirement in release planning

A requirement is only called as a requirement when it is “issued”. The customer, the product

manager or any stakeholders inside or outside of the company can issue requirements. For every

issued requirement, if it is feasible and clear, further researches will be conduct to specify the

requirement into a highly conceptual model or solution. When it is done, we can call this

requirement as a “specified” requirement. All the “issued” requirements and “specified”

requirements are stored in database for further re-use. When determining the next release, the

company will find the suitable requirements for the new release against the available resource in a

certain period. If a requirement is selected in this process, it is elevated to the phase of “Accepted”.

 20

The next step is to make a project plan to implement them. In this process, it is also possible to

drop some requirements because of the implementation dependencies within the requirements. If a

requirement also fits the project plan, then this requirement is “planned”. When the project plan is

accepted, the requirement will go to the final step for implementation.

The process is very much like the combination of Baan and Ericsson model. The main differences

are: 1) we specially designed a process to select requirement against available resources in a given

period of time and 2) make several processes iteratively. There are two reasons for it:

� First, when confronting hundreds or even thousands of requirements, without a proper

selection, it is very difficult to conduct the succeeding processes. So, we designed a special

process to reduce the scope of the problem.

� Second, in later chapters, we will try to find ways for tooling support. This provides

opportunities to repeat some complex and tedious jobs, like select requirement or schedule

requirement. Making the processes repeatable can help us to determine whether doing it

iteratively can improve the result or not.

 21

The mathematical models of release planning

In this section, we develop and demonstrate an optimization technique based on integer linear

programming (ILP), to support software vendors in determining the next release. As with the

approach of Jung40 and Carlshamre51, our technique is based on the assumption that a release’s

best set of requirements is the set that has maximum projected revenue against the constraints like

available resources, planning period, dependencies, etc. In this section, we demonstrate how to

include the factors for release planning in the linear programming model and present several

models to realize different functions, like requirement selection, requirement scheduling, etc.

The first chapter gives a brief introduction to the integer linear programming. A simple example

representation of the release planning problem is depicted afterward. The second chapter shows

the knapsack model and its extensions for requirement selection. The third chapter shows the ILP

model to schedule the requirement exactly in time. The Fourth chapter presents a new model

which can select and schedule requirements at the same time. Its extensions, like holiday seasons,

different time availability, etc are presented afterward. The fifth chapter shows how to

dynamically adjust the release plan. The last chapter shows the relationships between the different

models.

 22

3. The mathematical modeling

3.1 The quantitative representation of the factors

In the former section, we have discussed the factors and processes of release planning. We have

identified eight factors: the requirement’s value, cost, priority, risk, quality, dependency, and the

time to market as well as the available resources in the company. We have also identified two main

processes: selection and scheduling, after the requirements are specified.

To present a general idea of the domain, the following table depicts a simplified example

representation of a release planning problem.

Release Definition 3.1

Nr. Requirement Revenues Total Team A Team B Team C

12 Authorization on order cancellation and removal 24 50 5 45

34 Authorization on archiving service orders 12 12 2 5 5

63 Performance improvements order processing 20 15 15

25 Inclusion graphical plan board 100 70 10 10 50

43 Link with Acrobat reader for PDF files 10 33 33

75 Optimizing interface with international Postal code system 10 15 15

35 Adaptations in rental and systems 35 40 20 20

66 Symbol import 5 10 10

67 Comparison of services per department 10 34 9 25

 Total 226 279 42 77 160

 Available team capacity 180 60 60 60

Table 3.1: an example of a release planning problem (Source from Marjan van den Akker, et al (2004))7

For the nine requirements in the datasheet, the factors are estimated. Each requirement has

expected revenue (in euros) and expected cost (required man days per team) associated to it. In

addition, the priority of the model is also evaluated. Suppose for instance that the total amount of

available man days in the three teams is 60, then we note that team ‘A ‘has some free capacities

while team ‘B’ and team ‘C’ are overloaded. Then the set of requirements that brings the

maximum revenue has to be determined.

Several scholars have discussed the trade off between the cost and revenue. A very famous model

is to use the Integer Linear Programming (ILP). This ILP model is also adopted and extended in

this thesis. We will give a clear introduction of ILP in the next chapter and propose the detail

model afterwards.

The table (3.1) does not include all the factors we identified before. The factors: the requirement’s

 23

value and cost, the time to market and the team capacity are explicitly presented. We can also

include the other four factors in the following way.

For the stake holder’s opinions or priorities, Ruhe and Saliu31 modeled it by assigning each

stakeholder a weight of importance. For each requirement, all the stake holders need to estimate

the value of it, and the final value of a requirement is computed as the average weighted value

from different stakeholders. For example, stake holder ‘A’ has the weight of 0.4, and estimate

value of requirement is 10; stake holder ‘B’ has the weight of 0.6, and assume the requirement has

the value of 15, so the weighted value of this requirement is 0.4 10 0.6 15 13× + × = .

Figure 3.1: relationships between value, priority and the weighted value

The above figure shows the relationships between the value, the priority and the weighted value.

When considering the value of a requirement, we can integrate the two factors: value and priority

together as the weighted value.

As to the requirement dependency, we have identified six types of requirement dependencies in

the former chapters, they should also be included when composing release plan. Theoretically, we

need to consider the relationship between every pair of requirements, which is (1) / 2n n× −

times if we have n requirements to consider. In later chapter, we will show the detail model of

requirement dependency.

The factor quality is very difficult to quantify. When a requirement requires a certain level of

quality, like reliability or reusability, we can model it by issuing a new none-functional

requirement32 to show the influences (for example additional revenue or additional cost) and link

the new none-functional requirement with the original one by setting dependencies between them.

Clearly, it is an implication dependency, because this non-functional requirement for quality

requires the original one to work.

Another important factor for release planning is risk. Unfortunately, the ILP model is a

deterministic system which does not allow variances of the input data. In the former release

planning tools, most of them do not include the attribute of risk; Ruhe33 consider risk in a way

similar to how we consider cost: one requirement is associated with a number between 0 to 1

which stands for its risk, and the average risk of the selected requirements should be lower than a

Value

Priority

The
weighted

value

 24

certain bound. In fact, the risk reflects the uncertainty or probability of a value, for example the

expected revenue or expected man days in our case. If we want to handle risk in this way, we have

to introduce a stochastic system in which all the values have a certain level of uncertainty (for

example see Marjan van den Akker34).For the sake of simplicity, when the input data is not risk

free, we can use the following empirical formula35 to compute the expected value of a job’s

duration:

For a jobk , we evaluate the optimistic timeka , the pessimistic timekb , and the most possible

time km . Then the expected value of the job’s duration is:

4

6
k k k

k

a m b
d

+ += (3.1)

We can then use kd as a risk free value in the model so that we still can solve the problem in a

deterministic system.

To sum up, We can use the value and priority to determine the weighted value of a requirement.

Using the empirical formula, we can show the risk influence on the value and cost. The quality of

a requirement can be modeled as an additional none-functional requirement as well as a

dependency. We can show the relationship in the following chart.

Figure 1.2: the factors and their relationships for release planning

After pre-solve some factors, we can reduce the input factors of the linear programming model.

These factors include the weighted revenue, the cost (represented in expected man days) and the

dependency for each requirement, the time to market and the available resource. The rest factors,

like quality, priority and risk are indirectly included in the model. In the later chapters, we will

present how to build the integer linear programming models using these factors.

 25

3.2 Introduction to linear programming

For the sake of completeness, we present a small introduction of linear programming in this

chapter. For more background information, we refer the readers to the book of Wolsey36 (1998) as

a reference book.

In mathematics, linear programming (LP) problems are optimization problems in which the

objective function and the constraints are all linear.

Linear programming is an important field of optimization for several reasons. Many practical

problems in operations research can be expressed as linear programming problems. Certain special

cases of linear programming, such as network flow problems and machine scheduling problems

are considered important enough to have generated much research on specialized algorithms for

their solution. A number of algorithms for other types of optimization problems work by solving

LP problems as sub-problems. Historically, ideas from linear programming have inspired many of

the central concepts of optimization theory, such as duality, decomposition, and the importance of

convexity and its generalizations.

3.2.1 The standard form

Standard form is the usual and most intuitive form of describing a linear programming problem. It

consists of the following three parts:

A linear function to be maximized

e.g. maximize

Problem constraints of the following form

e.g.

Non-negative variables

e.g.

The problem is usually expressed in matrix form, and then becomes:

Maximize

Subject to

 26

Other forms, such as minimization problems, problems with constraints on alternative forms, as

well as problems involving negative variables can always be rewritten into an equivalent problem

in standard form.

3.2.2 The algorithms to solve ILP problem

In general, integer linear programming problems are NP-hard. This implies that it is very unlikely

that there exists an algorithm that is guaranteed to find the optimal solution in a time that is

polynomial in the input size. Finding the optimal solution requires an amount of time which in the

worst case grows exponentially with the problem size.

We can first obtain a linear program which is called the LP-relaxation. If in a given ILP we relax

the integrality conditions, i.e. ‘x integral’ is replaced by 0x ≥ and { }0,1x∈ by0 1x≤ ≤ , we

obtain a linear program which is called the LP-relaxation. This problem can easily be solved by

e.g. the simplex method. The simplex algorithm, developed by George Dantzig, solves LP

problems by constructing an admissible solution at a vertex of the polyhedron, and then walking

along edges of the polyhedron to vertices with successively higher values of the objective function

until the optimum is reached. Although this algorithm is quite efficient in practice, and can be

guaranteed to find the global optimum if certain precautions against cycling are taken, it has poor

worst-case behavior.

The first step to solve an ILP is to solve the LP-relaxation. If the solution of the LP-relaxation is

integral, it is done. If not, we start with a branch-and bound tree. The ILP is split into several

sub-problems corresponding to two or more nodes of a tree. The algorithm starts evaluating one of

the nodes. First the LP-relaxation in the node is solved. If the solution is integral, the node is

finished and the best-known integral solution is updated, if necessary. If there is not feasible

integral solution, obviously, then the node is finished. If the value of LP-relaxation is lower than

the best known integral solution (in case we are searching the maximal value), the node can be

skipped. Otherwise, new nodes are generated by branching.

Since we maintain the best known integral solution and we have an upper bound from the

LP-relaxation, we have a solution with a quality guarantee from the moment at which an integral

solution is found. This allows us to stop if the solution is guaranteed to be within a certain margin

from the optimum.

This method is used in most of the ILP software packages.

 27

4. The knapsack model for release

composition

In this chapter, we introduce the knapsack model for release planning. Van den Akker37 et al have

presented a linear programming model in this field. For the sake of completeness, we repeat the

models from section 4.2 to 4.6 and extend the models in later sections.

4.1 Problem description

In this chapter, we can formulate selecting requirements for the coming release as a combinatorial

optimization problem. In such a problem, we have to find the best from a finite but very large

number of solutions. From a former survey38, a product software company gets minimal from 0 to

20 and maximum from 5 to 500 requirements a week. The most probable values range from 1 to

50 with a mean of 13.6 requirements/week. The survey also reported that the mean-time-to-market

is about 6 weeks. So, we can expect to handle around 80 requirements every time for a new

release. Given the time to market and the fixed resource in the company, it is not possible to

develop all of these requirements. A selection is necessary here to determine the coming release,

and this is a typical combinatorial optimization problem.

In the former chapter, we have introduced the Integer Linear Programming technique. We will use

it to model release planning problem in the later chapters. Although ILP in general are NP-hard,

using advanced algorithms and software, we can expect to find an (near-) optimal solution within

a reasonable time.

We can model the problem i.e. selecting requirements for the next release as follow. We are given

a set of n requirements{ }1 2 nR R R� . For each requirementjR , we can estimate its

revenue as jv . The cost for a requirement is expressed in the number of man days required in

different teams. We assume the time-to-market is given; hence we have to deal with a fixed

planning period with limited resources. Therefore, we have to make a selection of requirements to

be included in the next release, preferably, with maximal possible revenue. This can be considered

as the following optimization problem: find the sub-set of requirements for the coming release

such that the revenue is maximal and the available capacity is not exceeded.

We firstly present the basic selection model with team division and without team division. In the

later sections, we present three managerial steering mechanisms: team transfer, hiring external

team capacity and deadline extension. At last, we show the models to handle requirement

dependencies.

 28

4.2 One pool of developers

When there is no team division in the company, we only deal with the total amount of man days in

the company. The planning period is T and available working days are ()d T in the planning

period. Moreover, let Q be the number of persons working on the release in the company. The

available capacity then equals ()d T Q man days.

Moreover, we estimate ja as the amount of man days needed to implement requirement jR .

Such estimation could come from project managers (top-down) or developers (bottom-up). We

model the requirements selection problem by defining binary variables jx (1,2,)j n= � .

Where:

1jx = if requirement jR is selected;

0jx = otherwise.

We can model this problem as an integer linear programming model in the following way:

1

max
n

j j
j

v x
=
∑

Subject to:

1

()
n

j j
j

a x d T Q
=

≤∑ (4.1)

 { }0,1jx ∈ For (1,2,)j n= �

This problem is known as the binary knapsack problem39. We want to include as much as

requirement in the “knapsack” to get maximal value. Jung in 199840 has presented the

application on requirements analysis. If the company decides that some of the requirements have

to be included in the new release in any case, we can add one more constraint that 1jx = if

requirement jR is fixed.

In this model, ()d T Q is the total available man days in the periodT . We assume every

 29

developer has the same available working days ()d T in the period. If the number of working

days in the planning period is different from persons, the total capacity is given by ()pd T∑ ,

where ()pd T is the number of working days of person p in period T and the sum is over all

persons in the company.

4.3 Development teams

In the previous model we have been too optimistic by not considering the team divisions. In

practical usually, there are different development teams in the company with their own

specialization. There are other reasons to form teams in the company, like geographic reasons or

management reason. We can include the team-differences in the following way. Let m be the

number of teams and suppose team iG (1,2,)i m= � consists of iQ persons. We assume that

the implementation of requirement jR needs a given amount ija of man days from team

iG (1,2,)i m= � . Now we can replace capacity constraint (4.1) by:

1

()
n

ij j i
j

a x d T Q
=

≤∑ , for (1,2,)i m= � (4.2)

Note that when 1m= , this model is the same with model for one pool of developers. This model

is known as binary m-dimensional knapsack problem41. Same as the model for one pool of

developer, this model can be adapted to the situation with different amounts of man days in the

planning period T . We can replace the team capacity () id T Q by ()pd T∑ where ()pd T

is the number of working days of person p in team iG in the period T .

4.4 Team transfers

When some teams are overloaded and some team’s capacity is not fully occupied, we can consider

transferring people to the overloaded team. This may result in additional revenues. We call this

team transfers. A transfer will probably result in a decrease of efficiency because the person is not

experienced in the new working environment. When a person is working in his own team, we

assume he can perform 100% of his capacity, but when a person is transferred from team iG to

team kG , his contribution in the new team turns to be ikα per day. The factor ikα also

reflects the feasibility of a transfer:

 30

0ikα = if a transfer from iG to kG is infeasible, for example, because the specialization of

the teams differ too much of geographical reasons.

1ikα = if persons from team iG can do the work in team kG without any reduction in

performance, e.g. if the work in the two teams is very similar.

0 0ikα< < if person from team iG can work in team kG . However, their productivity will

reduce because of the new working environment.

Note that ikα does not necessarily equal kiα , for example if the work in teams iG and kG is

in similar areas, but the work in iG is more difficult than that in kG . Then ikα is larger than

kiα . It is also clearly that when i k= , ikα equals one. Because then the transfer is in the same

team.

We assume that the amount of time for which a person can be transferred is a multiple of the

so-called Capacity Unit which is denoted by capU . This value ranges from 1 to ()d T . If people

can be transferred per day then 1capU = , or if, on another extreme, a person can only be

transferred the whole period, then ()capU d T= . If people can only be transferred for a number

of complete weeks, then capU equals five.

Besides the variablejx , we now define a new group of variable iky as the number of capacity

units transferred from team iG to team kG . We can compute the number of capacity unitsim in

team iG equals:

()
i i

cap

d T
m Q

U
=

New we can present the model with team transfers:

1

max
n

j j
j

v x
=
∑

Subject to:

 31

1 :

[]
n

ij j cap ii ki ki
j k k i

a x U y yα
= ≠

≤ +∑ ∑ for , (1,2,)i m= � (4.3)

1

m

ik i
k

y m
=

=∑ for , (1,2,)i m= � (4.4)

{ }0,1jx ∈ for (1,2,)j n= �

iky non-negative and integral, for (1,2,)j n= �

Constraint (4.3) shows the re-distribution of the capacities in the company. The team iG ‘s actual

capacity equals the capacity of its own plus the capacity obtained from other teams. Equation (4.4)

ensures that total capacity in a team does not get lost.

Note that if only full-time transfers are allowed, then iky is just the number of persons from

team iG working in team kG . By deleting the integrality constraints on the variables iky

persons can get any fractional division over teams.

In the above model it is possible that for example 2 persons are transferred from team A to team B

and 1 person from team B to team C, i.e. team B is extended by transfers and sends persons to

other teams simultaneously. This situation is inefficient but will possibly occur in an optimal

solution. However, it is not desirable and we can exclude it in the following way. Define a binary

variable iz which equals 1 if people from team iG are transferred to other teams and 0

otherwise. Now we can add for each team iG the constraints:

:
ik i i

k k i

y m z
≠

≤∑ (4.5)

:

()(1)ik i i
k k i

y M m z
≠

≤ − −∑ (4.6)

where
1

n

i
i

M m
=

=∑ Constraint (4.5) ensures that team iG can only send capacity to another team

when 1iz = and inequality (4.6) ensures that other teams can only transfer capacity to team iG

if 0iz = One can think of situations where the restrictions (4.5) and (4.6) are not desirable.

Suppose that transfers from team ‘A’ to ‘B’ and from team ‘B’ to ‘C’ are feasible, but transfers

 32

from ‘A’ to ‘C’ are not. If there is lack of capacity in team ‘C’, this can be solved by transferring

form ‘B’ to C. When this leads to lack of capacity in team ‘B’, these can be compensated by

transfers from ‘A’ to ‘B’.

4.5 External resources

When the teams are overloaded, the company may consider hiring external personnel in some

teams. This decision will not only increase the teams’ capacity, but also bring in a certain cost.

We assume the cost of external capacity is linear in the number of man days. We define iq as the

daily cost of hiring external capacity in team iG , i.e. if iu is the amount additional man days

hired in team iG , then the cost are i iq u . Please note that iq can be different from team to team.

Similar to the case of team transfers, we assume that the contribution of iu external man days is

given by ei iuα , where 0 1eiα< < .Given the maximal budgetE for hiring external personnel.

This results in the following model which is an extension of the model from Section 4.3:

1 1

max
n m

j j i i
j i

v x q u
= =

−∑ ∑

Subject to

1

()
n

ij j i i
j

a x d T Q uα
=

≤ +∑ for , (1,2,)i m= � (4.7)

1

m

i i
i

q u E
=

≤∑ (4.8)

 iu non-negative and integral, for , (1,2,)i m= � ,

 { }0,1jx ∈ for (1,2,)j n= �

When 1m= , this model is also available. So, this extension also applies to the case with one

pool of developers.

4.6 Deadline extension

When the deadline allows a bit range of variance, we can consider postponing the delivery date if

 33

it is profitable to do so. Suppose the delivery date is postponed by Tδ working days, and the

estimated additional costs are C per day. We can define Tδ as a (integer) variable in the

integer linear program model. We will change the revenue function to
1

n

j j T
j

v x Cδ
=

−∑ and the

()d T on the right-hand side of constraints to by ()() Td T δ+ .

4.7 Requirement dependencies

4.7.1 Six types of requirement dependencies

In an industrial survey 21 above of requirement dependencies in software product release planning,

six types of dependencies have been identified and prioritized. They are:

Example 1: Combination. A printer requires a driver to function, and the driver requires a printer

to function.

Example 2: Implication. Sending an e-mail requires a network connection, but not the opposite.

Example 3: Time-related. The function Add object should be implemented before Delete object.

(This type is doubtful, which is discussed in section 3.1)

Example 4: Revenue-base. A detailed on-line manual may decrease the customer value of a

printed manual.

Example 5: Cost-based. A requirement stating that "no response time should be longer than 1

second" will typically increase the cost of implementing many other requirements.

Example 6: Exclusion. In a word processor, it can be either provided as integrated drawing model

or a link of external drawing application.

The detail of the requirement dependencies and the prioritization of them have been discussed in

former section.

4.7.2 The ILP model for requirement dependencies

Combination

iR requires jR , and jR requires iR . So, we should select either both of them or none of them.

This can be done by add one more constraint:

i jx x= (4.9)

Implication

 34

iR requires jR to function, but not vice-versa. So, we should only select iR when jR is

selected. This can be done by adding one more constraint:

i jx x≤ (4.10)

Time-related

Either iR has to be implemented before jR or vice-versa . As this type of dependency is purely

for requirement scheduling not selection, ILP will not model Time-related dependency. In later

chapter, we will present a new model which can include this type of requirement dependency.

Revenue based

iR affects the value of jR . In this case, if iR is selected, the value ofjR will change, either

positively, or negatively. The following table shows when this dependency will take effect:

iR jR
Will it influence the value?

Not select Not select NO

Not select Select NO

Select Not select NO

Select Select YES

From the truth table above, you can see only if both iR and jR are selected in the coming

release, you can obtain a certain amount of bonus, saying ijB (if iR decrease the value of jR ,

then ijB will be negative). To model this, we need to introduce a new integer variable ijc which

equals 1 when both of the requirements are selected.

We also need to add the following constraint:

() / 2ij i jc x x≤ + when ijB is positive (4.11A)

1i j ijx x c+ − ≤ when ijB is negative (4.11B)

The truth table for the upper inequality is:

ix jx 1i jx x+ − () / 2i jx x+ ijc

0 0 -1 0 0

0 1 0 0.5 0

1 0 0 0.5 0

1 1 1 1 1

 35

Which is inline with the truth table of the revenue-based dependency.

Moreover, we also need to change the target equation from
1

max
n

j j
j

x v
=
∑ to:

1

max()
n

j j ij ij
j

x v B c
=

+∑ (4.12)

{0, 1}jx ∈ for j = 1, . . . , n.

Cost-based

The ICOST dependency meanskR influence the cost of jR . In the linear programming

framework, the cost is represented by man days. Same with revenue-based, this influence can

either be positive or negative. The following table shows when this dependency will take effect:

kR jR
Will it influence the cost?

Not select Not select NO

Not select Select NO

Select Not select NO

Select Select YES

Here, we can say if both kR and jR are selected in the coming release, we can save some man

days, saying ,i j kS → ,(if kR increase the man days needed for jR , then ,i j kS → is negative). To

model it, we first need to introduce a new variable jki . Same as revenue-based, a new constraint

for jki will be added:

() / 2jk k ji x x≤ + when ,i j kS → is positive (4.13A)

1k j jkx x i+ − ≤ when ,i j kS → is negative (4.13B)

We also need to adjust the original constraint for man days from
1

()
n

ij j i
j

a x d T Q
=

≤∑ to:

,
1

()
n

ij j jk i j k i
j

a x i S d T Q→
=

− ≤∑ for (1,2,)i m= � (4.14)

 36

Exclusion

OR dependency means we need either iR or jR but not both. It is also possible that we need

neither of them. To model this type of dependency, we can set one additional constraint as follow:

 1i jx x+ ≤ (4.15)

4.8 Dependency generalization

So, far, we only apply the dependencies between pairs of requirements, however, the dependencies

mentioned above can be generalized to the situation with larger sets of requirements which we call

a package. For example, if we develop a complete package for marketing, we can obtain some

extra value besides the revenues from individual requirements in the package. We can use the

value-based dependency to model all the requirement pairs, but it is very difficult to determine:

first, which requirement influences which, and second: how to divide the package bonus into each

requirement pairs.

4.8.1 Construct a package

This problem can be represented in the following way:

The packagetP consists of a set of requirements jR , 1, ,j l= � and tl n≤ (the package

contains at most all the requirements). If we implement all of them, we can obtain the bonus value

of tB from the package. To model this, we need a binary variable ty to determine whether we

have the package or not.

Now, we need to add the constraints:

1

tl

j
j

t
t

x

y
l

=≤
∑

 for 1, , .tj l= � (4.16)

At last, we can add:

t tB y (4.17)

to the revenue function.

When the value of a package is shown as cost-reduction rather than additional values, we can

 37

model it in the following way. If implementing the package tP can reduce the work in team

iG for ita , we can include the cost reduction effect by changing constraint 4.2 into:

1

()
n

ij j t it i
j

a x y a d T Q
=

− ≤∑ (4.18)

4.8.2 Requirement and Package

4.8.2.1 Dependencies

So far, we know how to construct a requirement package. Same as each requirement, a package

also has its expected revenuetB and its decision variablety . So, a package can be considered as a

“special requirement”. If we do so, the requirement dependencies mentioned above then can be

generalized to the dependencies between requirements and packages or even between packages.

Similar to how we use the binary variable jx to model dependencies, we can use the binary

variable ty as well. For example, If the package tP requires requirement jR to function, it is

typically an implication dependencies, then we can set t jy x≤ to model this dependency.

4.8.2.2 Package relationships

However, because a package is a group of requirements, it is actually a set not a basic element as

requirement is. So, there are more issues to discuss about. Think of the following three packages,

A, B, C. Each package contains several requirements. Package A include all the requirements that

package C has, and package A also share some requirements with package B.

We would expect all the packages are like C and B, where the packages are disjoint. In this case,

we can use the package freely, just like a requirement, and no further constraint is needed.

Another case is like A and C, where package A includes package C. For example, package C is a

basic package of marketing, where only key requirements are selected; on another hand, package

A is an extended version of marketing package, where we have not only the key requirements but

also some supporting requirements. The packaging is nice and common, but this situation leads to

 A

B
C

 38

a problem. Because package C is just a part of package A, if we finally select package A, we

actually automatically select the package C, and you will get the bonuses from both A and C. This

should not be the case, because package C are in fact counted twice. We can solve this problem by

adding a new exclusion constraint:

1a cy y+ ≤ (4.19)

If the condition is satisfied for both packages, the ILP can automatically select the higher bonus

package, which is normally the one with more requirements.

The third case is like A and B, where two packages share some requirements together and have

some others for their own. For example, one package focuses on route planning, another focuses

on inventory management, and both package contain some requirements on saying handling of

customer orders. If both the two packages are selected, it seems not reasonable to have all bonuses,

because a part of the two packages is overlapping. We can deduct some of the value by using

negative revenue-based dependency. For example, If this overlapping make a lose of abw , we

need to:

� First, introduce a new variable aby

� Second, subtract ab abw y to the revenue function

� Third, set a new constraint 1ab a by y y≥ + −

If the two packages share large amount of requirements, it is also possible to set exclusion

dependency between them. This is a management decision. Hereby we suggest using

revenue-based dependency because it has a higher priority.

4.8.3 Penalty package

In requirement dependency, the revenue/cost-based dependency can model both positive and

negative influence on revenue or cost. In the section above, we introduced the package with

additional values or decreasing cost; in this section, we will introduce the package with negative

values or additional cost which we call as a “penalty package”. This package is useful when

overlapping happens. For example, a group of requirements have the similar function of providing

user manual, but doing in different ways like through website, or electronic document or paper

version. Having three of them may have some overlapping so as to reduce their overall values.

Another case regarding to cost is when having the whole package requires additional work. For

example, when the dependencies between the requirements in the package are very complex,

implementing the whole package may needs additional cost to handle these dependencies. In these

two situations, we need to construct a penalty package to show the value reduction or additional

works. Unfortunately, we can not use the method in section 4.8.1 to construct penalty package.

 39

When we use constraint 4.16 to construct a package, the selection variable ty still has the

freedom to be zero even when all the requirements in the package are selected. When then value

of the package is positive or the package can reduce the implementing cost, the ILP model will

turn ty to one so that to obtain additional value or cost reduction. But when the package value is

negative, the ILP model will let ty to zero so that not to lose values or have additional cost. This

problem requires us to construct a “penalty package” in a different way.

A penalty package can be constructed in a similar way as a bonus package, the differences are:

First the constraint 4.16

1

tl

j
j

t
t

x

y
l

=≤
∑

 for 1, , .tj l= � (4.16)

Should be replaced by:

1

1
l

t j t
j

y x l
=

≥ − +∑ for 1, , .tj l= � (4.20)

Second, we can not set compulsive requirements in the package, because these compulsive

requirements are in fact modeled as implication dependencies between requirements and package.

The reason is because the ILP is searching for good results. If it is a bonus package, the system

will automatically go for it when the condition is satisfied, because it increases the value. So, we

only need to set an upper bound as a lunching condition, like in inequality (1). However, fulfilling

the condition does not compulsively launching the package. The decision variablejp still has the

freedom to 0, because the condition is an upper bound. That is why we can set additional

dependencies for the package. On the contrary, ILP system will not go automatically for penalty

package, because it decreases the revenue. So we need to set the condition in (5) as a lower bound,

which means if the condition is satisfied, the penalty will compulsively lunch. In this way, we can

not set additional dependencies for a penalty package, because immediately after we construct the

penalty package i.e. when the condition is fulfilled, the decision variable jp will turn into a

constant which is 1.

The conclusion for penalty package is although we can construct penalty package if necessary, we

can not set additional dependencies for penalty package, neither between it with other

requirements, nor within itself.

 40

4.9 Model personal differences

4.9.1 Problem statement

So far, the ILP model is based on team capacity rather than individual members. So, it has made

two assumptions to eliminate the difference between each team member. First, every team member

has the same productivity; second, all team members work in the same period, from the beginning

of the project to the end. In addition, as mentioned in former chapter, the personal preference is

also an important issue for release planning. In order to show the personal differences in capability,

available time, and preference, we need to extend the current team based model to a people based

model.

One of the important scenarios in the knapsack model is team transfer. However, one important

parameter is ikα , which shows the contribution of a person in team iG when moved to team kG .

This parameter is needed between every pair of team. However, when consider personal difference,

this parameter is very difficult to evaluate. Considering the following case:

developer Own team Other team

Alice 1 0

Bob 1 1

Carol 1 0.6

David

(team leader)

1 1.5

As shown in the table, Alice can not work in the another table; Bob works as well in his own team

as in other team; Carol works only 60% when transferred to another team while David works even

better in another team, but unfortunately, he is the team leader, and not allowed to move. In such

situation, it is very difficult to evaluate the team transfer rate between these two teams, or not

possible to get a precise one. There is a need of a new model to solve the problem.

4.9.2 The basic model

Let mbe the number of teams and each team is(1, ,)iG i m= � . Assume there are npersons in

the company, and each person is(1, ,)kH k n= � . The next to do is to create a m n× matrix

showing each person’s performance rate in each group. Lets use ikβ reflect the performance rate

of the person kH in the team iG . There are several possibilities:

 41

� 0ikβ = If the person kH is not capable of working in the teamiG . It can be technical

reasons, geographic reasons, management reasons or something else.

� 1ikβ = If the person kH works in the team iG at the standard performance rate. This

standard rate can be the number of lines per person per day1, or other standard the

organization use. In this model, it should be available within the whole organization. Please

also note that this standard is also the standard rate to estimate the development man days for

a requirement.

� ik othersβ = If the person kH ’s performance in the teamiG is considered to be better or

poorer. If it is less than one, it means this person works poorer than the company’s wish. It

can also be higher than one, which means this person can do a better job there.

We can then assign our developers by introducing a new binary variableikz (1, ,i m= �),

(1, ,k n= �), where:

1ikz = if the person kH works in the team iG

0ikz = if the person kH does not work in the teamiG

If we assume one person must work full time and can only work in one team in the whole

development period, we can add a group of constraints:

1

1
m

ik
i

z
=

=∑ for 1, ,k n= � (4.21)

This constraint makes sure that one person can only work in one team, and it applies for all the

team members.

The team’s capacity is the sum of the capacity of all the team members. Then, instead of using a

fix numberQ , the team iG ’capacity is:

1

()
n

ik ik
k

d T zβ
=
∑ for 1, ,i m= � (4.22)

Now, we can replace team capacity of ()d T Q by
1

()
n

ik ik
k

d T zβ
=
∑ , then the original model will

be extended to a model based on people rather than teams.

1 In Sjaak’s information business course, the standard rate is 20 line of code per person per day. But this is the
figure for the whole development process. I don’t know whether this can also be the benchmarking figure here.

 42

4.9.3 Working in different teams (team transfer)

Till now, we have built a fundamental people-based model. This model has taken members’

different capacity into account. However, there are still some management issues to think about,

for example scheduling people more flexibly, or modeling working periods for different members.

They will come in this chapter as the extension of the basic model.

4.9.3.1 Working in different teams (team transfer)

Sometimes, a developer needs to work in different teams due to various reasons. For example, the

team capacities are not in balance; delay in other teams or for management reasons. We can model

this by introducing a new group of integer variable iky which is the number of days the person

kH works in the team iG .

No, instead of using (4.21), we need to add a new group of constraints:

1

()
m

ik
i

y d T
=

=∑ for 1, ,k n= � (4.23)

These constraints make sure that one developer will assign all his/her working days to at least one

of the groups. Please note that ()d T can differs from person to person.

Please note now iky is the number of days a developer works in a group. So, the total group

capacity is now:

1

n

ik ik
k

yβ
=
∑ for 1, ,i m= � (4.24)

We can then replace ()d T Q by
1

n

ik ik
k

yβ
=
∑ in the team based model and it will turn to be a

people based model then.

In section 4.4, we introduced the concept of Capability Unit for team transfer. This concept is also

applicable here. We can define the variable iky is the number of Capability Unit a developer

works in a certain team. To include this, we need to replace the constraint 4.23 by :

1

()m

ik
i cap

d T
y

U=

=∑ for 1, ,k n= � (4.25)

And the team capacity (4.24) by::

 43

1

n

cap ik ik
k

U yβ
=
∑ for 1, ,i m= � (4.26)

4.9.3.2 Management issue for team transfers

More often, a team member is not willing to transfer or only accept a limited times of changes. For

example, a team member is not will to work for more than 2 teams within the development period.

Sometimes, it is also necessary to set a lower bound for the number of days one developer works

in a team. Like we only transfer a person to another group if he/she needs to work more than 5

days there. We also need to deal with personal reasons, for example two developers always want

to work together or do not want to work together. All these management issues will be discussed

in this section.

4.9.3.3 Basic constraint

Before we model the management issues, we first need to set a new group of constraints to link

two variables ikz and iky together. The definition of ikz and iky can be found in 4.9.2 and

4.9.3.

()ik iky z d T≤ × for 1, ,k n= �

for 1, ,i m= � (4.27)

This constraints means: if a person works in a certain group, he can work no more than the whole

project period there. The constraints on ikz and iky will be explained next depending on

management choices. Even though it might seem unnecessary here, however, we will need it for

all the further extensions.

4.9.3.4 Limit the number of transfers

If we want to limit the number of teams one person works in, we need to use the variableikz

again. (The definition of ikz can be found in section 4.9.1) If we only want a developer kH

works in no more than N teams. We can add the following constraint:

1

m

ik
i

z N
=

≤∑ (4.28)

Please note that N can be different from person to person.

4.9.3.5 Lower bound of working days

We can also set the lowest working days a developer works in a team. If a developerkH need to

work more than M days in a team, we need to set a new group of constraints:

 44

ik ikM z y× ≤ for 1, ,i m= � (4.29)

4.9.4 Personal preferences

4.9.4.1 Preference to team

A developer may only want to work in a few teams. To model this, we can only define the

variables ikz and iky for the teams iG where person kH prefer to work.

4.9.4.2 Working with others

When a developer has person preference to other developers, like he/she wants to work with

someone else or he/she does not want to work with another one. We can use the variable ikz to

model his preference. When developer kH ′ only want to work with kH , we can add the a group

of constraints that:

ik iky y ′= for 1, ,i m= �

Or when developer kH ′ does not want to work with kH , we can add the a group of constraints

that:

1ik iky y′ + ≤ for 1, ,i m= �

4.9.4.3 Key team members

Some team members are very important for a team, for example the team leader. When make the

people planning, it is better to fix these people in the team. If we want to fix the person kH in the

team iG , we can set the decision variableikz to 1.

4.9.4.4 Different time availability

In the team based model, every team member has the same working period which is equal to the

planning period ()d T . In the people based planning model, it is possible to assign each people a

different working period. This will be represented as ()kd T (1, ,j n= �) for the developer kH .

Then you need to replace ()d T by ()kd T in the constraint (4.23) and (4.27).

 45

4.10 Chapter conclusion

In this chapter, we introduced the knapsack model for release planning. Based on the knapsack

model, we also introduced several management steering mechanism as the extensions of the

knapsack models. The relationships between these models are depicted in the following table.

Use case chart of release planning

As shown in the picture, the heart of the model is the knapsack model. And all the other models

are the extensions of this one. The combinational use of any of the models is applicable except

only one case: when we need to include personal preferences, we introduced a new model for

transferring people and this one has the same function as team transfer described in section 4.4.

These two models are not compatible, and it is only possible to use one based on whether the

personal preference model is included. In the picture, this conflict is shown as an OR constraint

between the two models.

 46

5. Scheduling the requirements

5.1 Problem statement

After we select the requirements, a very important process in the release planning is to schedule

the activities exactly in time. In this chapter, we will discuss what will influence the scheduling

process, and how to make a project plan with minimal time span.

5.1.1 Precedence constraints

In the former chapter, we have indicated five types of requirement dependencies. These

requirement dependencies will continue influencing the schedule of the development processes.

When schedule the requirement, we should take two out of five types of requirement dependencies

into consideration—implication and cost-related. They are considered as implicitly mentioned

precedence constraints 51. If requirement jR influences the implementation cost of

requirement jR ′ , or if requirement jR ′ requires jR to function, it is better to start developjR ′

after jR is finished. Let us denote this precedence constraint by j jR R ′� .

According to a former survey21, implication and cost-related dependencies take up a great portion

in practice: three out of five cases reported them as the most common dependencies and took up to

about 80% of the total requirement dependencies. After influencing the requirement selection,

these dependencies are inherited and will also influence the project schedule.

Besides the inherited precedence constraints, it is also possible to set time-related dependencies

for project plan purposes. This dependency express project plan issues like: “we need to

develop jR ′ after jR ”. For example, it is better to develop the function “delete an item” after

develop “add an item”.

Although Carlshamre21 suggested only taking one type of requirement dependency between a pair

of requirements, but in fact in his discussion he interpreted more than one. For example, if

requirement jR ′ requires jR to function, this Implication dependency means not only that jR ′

logically require jR to function, but also that jR ′ need to be developed after jR . So this

relationship is in fact an implication plus a time-related. Theoretically, there can be more

relationships between a pair of requirements, for example, jR ′ requires jR to function and

influences its cost, then, they have implication and cost-based dependencies.

 47

If it is allowed to set multiple dependencies between a pair of requirements, not all combination of

the six are valid. The first exception is that: exclusion is not compatible to any other dependencies,

because we can at most have one of the two requirements, so building more relationships between

them is not necessary. The second exception is Combination and Implication, because

Combination means jR ′ require jR , and jR also requires jR ′ . The rest of the types can work

together without any problems.

We can divide the requirement dependencies into three groups-

� The functional dependency including Combination, Implication and Exclusion;

� The value-related dependency including revenue-related and cost-related dependency

� The time related dependency.

The following table shows how the requirement dependencies influence the requirement selection

and requirement scheduling. The functional and value-related dependencies can influence the

requirement selection, while the implication, cost-related and time-related dependencies will

influence the requirement scheduling. For simplicity reason, we can define these three types of

requirement dependencies as precedence constraints. A precedence constraint is denoted as

j jR R ′� , if jR need to finish before requirementjR ′ starts.

Dependency
group

Dependency
type

Influence

requirement

selection

Influence

requirement

scheduling

Combination �

Implication � �
Functional

dependency
Exclusion �

Revenue-related � Value-related

dependency Cost-related � �

Time-related

dependency

Time-related �

Table 5.1: the influence of requirement dependencies on requirement selection and scheduling

It is clear that the precedence constraint can influence the development sequence in a team.

However, the question is: as we have already selected requirement based on our capability, why

should we still consider scheduling activities as an important issue in release planning? Can the

precedence constraint also influence the deadline of the project?

5.1.2 No precedence constraint

It is not a problem if there are no precedence constraints between the requirements. As each team

works independently, they just need to randomly give a permutation of all the jobs, and develop

 48

them one after another. In this way, we can guarantee that the project will be on time.

Proof: We have selected requirements based on the constraint
1

()
n

ij j i
j

a x d T Q
=

≤∑ for all the

teams iG (1, ,)i m= � . So, in the release plan, we can get ()ij ia d T Q≤∑ for all the

team iG . The development time for requirement jR in team iG equals the man days ija

divided by the number of developers iQ . Because each team work independently and

continuously, the total development time is ij

i

a

Q
∑ in team iG . Given the constraint

()ij ia d T Q≤∑ we can get that ()ij

i

a
d T

Q
≤∑ .

5.1.3 One pool of developer

If we have time-related requirement interdependencies, when there is only one team i.e. the

requirements are developed by one pool of developers, scheduling the activities is also not a

difficult issue. We can first draw a Directed Acyclic Graph (DAG) by setting the requirements jR

as vertexes and setting the precedence constraint j jR R ′� as a directed edge(,)j jR R ′ . Then the

schedule of the development is the topological sort of the directed acyclic graph. A topological

sort of a DAG is a linear ordering of all its vertices such that if G contains an edge (,)j jR R ′ ,

then jR appears before jR ′ in the order. The topological sort algorithm is as follow:

Topological-Sort (G):

1. Call depth-first search (G) to compute finishing times []jf R for each vertex jR .

2. As each vertex is finished, insert it onto the front of a linked list.

3. Return the linked list of vertices

We can compute this sort in ()O V E+ time where V equals the number of requirements and

E equals the number of dependencies53. We can also prove that the project will finish on time.

Proof: Let π be a topological sort of the requirements based on the precedence constraint.

Because the team can develop requirements continuously, the total time span to finish them is

 49

ja

Q
∑ . As we selected requirements based on

1

()
n

ij j i
j

a x d T Q
=

≤∑ , we will get that

()ja d T Q≤∑ . This yields the conclusion that ja

Q
∑ is less or equal to ()d T .

The following figure shows one example of topological sorting. In the chart, the nodes are the

requirements and the arrows represent the precedence constraints, which point to the immediate

successor of the requirements.

Figure 5.2 example of topological sorting

The topological sorting gives a linear sequence order of the requirements so that when there is a

precedence constraint between jR and jR ′ then jR appears before jR ′ . Using the algorithm

above, we can get the order of 7,5,11,2,3,8,9,10. Please note that the topological sorting of a chart

is not necessary to be unique, and does not have to be depth-first search. The following two orders

are both valid topological sorting of the chart:

� 7,5,3,11,8,2,9,10 (width-first search)

� 7,5,11,2,3,10,8,9

This order can be used as the schedule for development.

5.1.4 Schedule with team and precedence constraint

When there are precedence constraints and there are multiple development teams in the project.

The scheduling problem becomes very complex.

Let’s have a look again at the small release sample:

 Release Definition 5.1

Prio Nr. Requirement Revenues Total
Team

A

Team

B

Team

C

1 12 Authorization on order cancellation and removal 24 50 5 45

1 34 Authorization on archiving service orders 12 12 2 5 5

1 63 Performance improvements order processing 20 15 15

 50

1 25 Inclusion graphical plan board 100 70 10 10 50

1 43 Link with Acrobat reader for PDF files 10 33 33

1 75
Optimizing interface with international Postal

code system
10 15 15

1 35 Adaptations in rental and systems 35 40 20 20

1 66 Symbol import 5 10 10

1 67 Comparison of services per department 10 34 9 25

 Total 226 279 42 77 160

 Available team capacity 180 60 60 60

If we use the knapsack model, the solution with maximal revenue is to select, requirement 34, 63,

25, 43 and 66 for the next release. In this way we can compose a release plan with the highest

revenue of 147.

If there is a precedence constraint between them, for example, between Requirement 25 and

Requirement 34, what will happen?

In this chart, the blue bar shows the time for Requirement 34, and the yellow bar represents the

time for Requirement 25. We can see from the chart that actually at day two, Team ‘A’ has already

finished their work for Requirement 34, however, because Team ‘B’ and Team ‘C’ still need

another three days to finish their job, so the Requirement 34 does not finish at day 2, but actually

finish at day 5, when Team ‘B’ and Team ‘C’ finish their jobs for this requirement. So, if

Requirement 25 needs to be development after Requirement 34, the earliest start time is at day 5.

So, here comes a problem - Team ‘A’ has wasted three days on waiting Team ‘B’ and Team ‘C’ to

finish their jobs. It is possible that during these days, team ‘A’ can do something else, for example,

developing some other requirements which do not depend on Requirement 34. However, the risk

of waiting others still exist, and this risk raises an important issue that how shall one design a

schedule which make teams do not waste time on waiting others or if this problem can not be

 51

eliminated, how should one minimize such waiting time and also minimize the total project span

of the whole release project?

Another issue is: if we need to spend too much time on waiting others, is that possible to re-select

the requirements so that the release plan fits a predetermined deadline? For example, if

Requirement 43 depend on Requirement 25. Even if requirement 25 starts at the first day, it takes

Team ‘C’ 50 days to finish their job, and even if we immediately start to develop Requirement 43,

it will still take Team ‘B’ another 33 days to complete this requirement, so the project span will

not be less than 50 + 33 = 83 days. If we still want to keep the 60 days as the deadline, we then

need to re-select the requirements. This issue is even more important than to schedule the selected

requirements, because it is a more market orientated approach42 and the pressure on

time-to-market is evident43 44.

In this chapter, we will focus on solving the two problems mentioned above: under the

circumstances that there are both development teams in the company and precedence constraints

between requirements:

1. How should we schedule the selected requirements to minimize the total development time

span when there are precedence constraints between the requirements?

2. Given a predetermined release date, how should we select requirements with precedence

constraints to maximize the revenue of the new release?

In addition, the assumption so far is that all the teams are available for the whole development

period. However, what if some teams have other activities to do or what if there are pre-arranged

holidays during the development time? How should we synchronize them? It may be highly

relevant and normal for international companies, because the public holidays in each country are

significantly different.

5.2 Scheduling with team & precedence constraints

In this section, we will try to answer the question that if there are precedence constraints between

requirements, how can we make a schedule with minimal project time span?

5.2.1 Four basic assumptions:

1. Each development team works independently on one requirement. If one requirement needs

the efforts in several teams, there are no predefined sequences between the jobs in these

teams.

2. One requirement is available to use only after all its components are finished. If one

requirement needs the effort for multiple teams, it is considered ready to use only after all the

teams finish their jobs for this requirement.

3. One team can only develop one requirement at one time. If a team wants to parallel develop

requirement, we can divide the team into several sub-teams, where in these sub-teams, they

work on just one requirement.

 52

4. One team will continue its work until it is done, we do not allow a team to switch to develop

another requirement before finishing the current one. However, it does not mean that the

development can not be interrupted, the team can go to holidays or be interrupted for other

reasons, but after the break, they still need to continue with the unfinished requirement.

5.2.2 The RCPSP model

This schedule problem is so unique that it does not fall into any traditional machine scheduling

problem. It is not a multi-stage problem because there is no predefined sequential order in a

requirement. It is hardly a parallel-machine problem because the jobs for a development team

have already been given. It is not a single machine problem as the schedule of a team also depends

on that of other teams. Most likely, it is a relaxed job shop problem with no prescribed route, but it

is not very efficient to model it as a job shop problem, because it is regarded as one of the hardest

in combinatorial optimization45.

One widely used technique to solve precedence constraints is PERT (program evaluation and

review technique). We can compute the minimal project span by identifying the critical path 35 ,

and also compute the earliest start and latest start for each job. However, one problem in PERT is

that it does not consider the resources it use at a time, in our case, the resource is our team capacity,

and a team is only capable of development one requirement at a time. So, the result of PERT is not

very practical since it can plan a team to develop a couple of requirements at a time. To include

both resource constraint and precedence constraint, the Resource Constrained Project Scheduling

Problem (RCPSP)46 is a good reference to use.

The RCPSP model is often used when a project plan is given limited amount of resources

available at a time. Normally, the amount of resource is not necessarily fixed at one like modeled

in our case. Here, we model the requirement scheduling problem as a special case of RCPSP

problem because it is too unique to fit in a machine scheduling problem category.

RCPSP is an NP-Hard problem47. The problem complexity caused many scholars to development

heuristics method48 or exact algorithms49. One such was proposed by Aristide Mingozzi et al

(1998), and gave solution to the problem with hundreds of jobs46.

5.2.3 Problem description

We can now model the problem in the following way:

We are given a set of n requirements{ }1 2 nR R R� . Let m be the number of teams iG

(1,2,)i m= � . We denote ija is the man days needed for Requirement jR in team iG .

We can consider the development process in team iG for requirement jR as one individual job.

Because for most of the time, one team does not need to develop all the requirements and one

 53

requirement normally only need a few teams to develop, correspondingly, we can find lots of ija

are zero, which means teamiG is not involved in the development of requirement jR . So, we

can simplify the model by only considering the jobs with positive man days.

Let us define a set (1,2, ,)X k= � of all the jobs with positive development time and there are at

most k (k m n≤ ×) jobs in the set.

Because each job belongs to only one requirement, use this attribute, we can partition the set X

into n disjoint subsets{ }1 2 n�R R R where jR = { k | job k is for requirement

jR } , (1,2,)j n= � . So, now we consider a requirement is a set of jobs to do in different teams.

And we can get that j
j

X=�R .

Similarly, one job only belongs to one team, so we can partition the set X into m disjoint

subsets { }1 2 m�G G G where iG = { k | job k is in team iG } (1,2,)i m= � . We

consider a team is a set of jobs to do for different requirements. And we also can get that

i
i

X=�G .

Assuming the number of developers in team iG is iQ , we can determine the development time

kd is equal to ij

i

a

Q
 for job k where job j ik ∈ �R G .

5.2.4 Precedence constraints

To show the precedence constraint, we also need to introduce two virtual jobs, the start of the

project and the end of the project. The job START must start before starting the jobsX , the job

END can only start when all the jobsX are finished. We consider the processing time of these two

virtual jobs is 0. And the new job set with the two additional virtual jobs isX ′ .

The precedence constraints are set between two requirements, not between tasks. According to our

former definition, the precedence constraint j jR R ′� is considered as precedence constraint

between two sets of jobs jR and j ′R . We can model them in the following way.

 54

With each job k is associated with a set 1 /{ }k X k− ′Γ ⊆ of immediate successors: jobs that can

only start after the completion of job k .

We set the precedence constraint one after another, If j jR R ′� ,

For jk∀ ∈ R , { }1 1
k k j
− −

′Γ = Γ �R .

In this way, we set all the jobs for requirementjR ′ as the successors of the tasks for

requirement jR . In this way, we can make sure that any jobs in requirement jR ′ can only start

after all the jobs for requirementjR is done.

We can define a set { }(,)j j j jA R R R R′ ′= � which contains all the precedence constraints.

After we set all the precedence constraints, if
,()j j

j
R R A

k X
′ ∈

∈ � R , it means job k does not

have any successor, then we set 1 { }k END−Γ = . Or if
,()j j

j
R R A

k X
′

′
∈

∈ � R it means job k

does not have any predecessor then we set
,

1

()j j

start j
R R A

k k X
′

−
′

∈

  Γ = ∈ 
  

� R .

The precedence constraints can be represented by a directed acyclic graph (,)G X H′= where

{ }1(,) , kH k l k X l −′= ∈ ∈Γ

In this graph, the nodes are the jobs and the directed edges show the precedence constraint

between jobs. This graph G is different from the graph we presented in section 5.1.3, because this

graph shows the relationships within jobs while the chart in section shows the relationships

between requirements.

5.2.5 The upper bound

Let maxT be the upper bound of the completion time. We can set the upper bound as

1

max()
n

k j
j

d k
=

∈∑ R . It happens if we process requirement one by one.

 55

5.2.6 The time window

For each job k , we can compute kes (earliest start) kls (latest start) as its time window. Before

we compute the time interval, we can first topological sort the jobs, so that job j is before job

k in the order if (,)j k H∈ .

Compute kes :

1) Set the earliest start 0STARTes = .

2) Use critical path algorithm (forward recursion) to compute the kes for the rest jobs.

Critical path algorithm (forward recursion):

1. ()
(,)
maxk j j
j k H

es es d
∈

= +

2. Perform 1 from the START to the END according to the topological order of the

jobs.

Compute kls :

1) Set maxENDls T= .

2) Use critical path (backward recursion) to compute the kls .

Critical path (backward recursion):

1. ()
(,)
minj k j
j k H

ls ls d
∈

= −

2. Perform 1 from the END to the START according to the topological order of the

jobs.

5.2.7 The (0,1) integer programming model

Let ktξ be a (0-1) binary variable that is equal to 1 if and only if activity k starts at the

beginning of period t. We can formulate the problem as:

min
END

END

t ls

ENDt
t es

t ξ
=

=
∑ � (5.1)

Subject to:

 56

1
k

k

t ls

kt
t es

ξ
=

=

=∑ , k X∈ (5.2)

k k

k k

t ls t ls

kt k k t
t es t es

t d tξ ξ
′

′

= =

′
= =

⋅ + ≤ ⋅∑ ∑ for (,)k k H′ ∈ (5.3)

(,)

1
i

t

k
k t k

τ
τ σ

ξ
∈ =

≤∑ ∑
G

()max0,1,t T= � , (,) max(0, 1)kt k t dσ = − +

1, ,i m= � (5.4)

The (5.2) means one job must be selected once. It also shows that each job has the same priority

and there is no preemption between them.

The (5.3) is the precedence constraint—one requirement can only start after its predecessor is

finished.

The (5.4) means a development team can only develop at most one job at one time.

 57

6. Select and Schedule the requirements

6.1 Introduction

Given a fixed release date T , we know the available amount of working days ()d T within the

period, and if during this period the number of developers in team iG is fixed to iQ , we can

compute the available team capability equals ()iQ d T man days in team iG . We set this figure

as the capability constraint in our knapsack model. However, using the method of resource

constrained project scheduling problem (RCPSP), it is possible that the project needs more

working days than ()d T and finishes after the release deadline T . If this happens, we will face

a new problem: namely how to modify the original plan?

It is not difficult to think of using the knapsack model for selection and RCPSP model for

scheduling iteratively until a good solution is found. In fact, this method is used in most of the

software engineering methods. However, doing it iteratively is not only difficult but also

time-consuming.

To use the two models iteratively, we need to repeat the 3 steps until a satisfied solution is found:

1. Drop some requirements so that the project plan is fit.

2. Re-fill in some requirements to take up the freed capacity.

3. Make project plan for the new group of requirements.

Because RCPSP problem is NP-Hard, it is difficult to find a fast solution to determine which

requirements to drop in order to make the deadline. More importantly, if we drop some

requirements to fit the project plan, we actually will free some capabilities. It is very wasteful to

ignore these free capabilities because there are still large piles of requirements waiting to be

developed in our repository. So we need to re-fill in some requirements using the knapsack model.

Then we need the RCPSP model to schedule them again to see whether they fit. The problems of

doing it iteratively are: first of all, this searching method is difficult to find, and secondly, even if

we find one, the knapsack model and RCPSP model are both NP-hard, which means we need to

spend lots of time on solving them. A better method is demanded to solve this problem.

This results in the following research question: is it possible to find a method to select and

schedule requirements at the same time so that we can define a profitable and practical release

plan? In this release plan, we still want to have the maximal revenue, but we also want the project

to finish before the fixed given deadline. To achieve these two goals, this model should not only

be able to include functional and value-related requirement dependencies, but also include the

 58

precedence constraints. In the following section, we will present the model to select and schedule

the requirements when a fixed project deadline is given.

6.2 The integer linear programming model

6.2.1 Problem description

The first step is to mathematically define the requirement, the team, the job, etc. These definitions

are exactly the same as what stated in section 5.2.3. For the sake of conciseness, we will not repeat

the definitions here. Please refer to section 5.2.3 for details.

6.2.2 Precedence constraints

The precedence constraints are set between two requirements, not between tasks. According to our

former definition, the precedence constraint j jR R ′� is considered as precedence constraint

between two sets of jobsjR and jR ′ . We can model them in the following way.

We can define a set { }(,)j j j jA R R R R′ ′= � which contains all the precedence constraints.

With each job k is associated with a set 1 /{ }k X k−Γ ⊆ of immediate successors: jobs that can

only start after the completion of job k .

We set the precedence constraint one after another, If j jR R ′� ,

For jk∀ ∈ R , { }1 1
k k j
− −

′Γ = Γ �R .

In this way, we set all the jobs for requirementjR ′ as the successors of the tasks for

requirement jR . In this way, we can make sure that any jobs in requirement jR ′ can only start

after all the jobs for requirementjR is done.

The precedence constraints can be represented by a directed acyclic graph (,)G X H′= where

{ }1(,) , kH k l k X l −′= ∈ ∈Γ

 59

6.2.3 Compute the earliest start and the latest start

For each job k , there is a time window (kes , kls) associated to it. This time window defines

the possible time interval for this job to start. We can compute the time window in the following

way:

(2) Compute kes :

� Set the earliest start 0kes = for all the jobs k which do not have predecessor.

� Use critical path algorithm to compute the kes for the rest jobs.

Critical path algorithm:

1. Give a topological sort of all the jobs, so that if (,)j k H∈ , then j appears

before k in the order.

2. ()
(,)
maxk j j
j k H

es es d
∈

= +

3. Perform 2 from the start to the end according to the topological order of the

jobs.

(3) Compute kls .

� For each job k , kls is equal to () kd T d− . We can not lower this upper bound

because we do not know whether its successor will be selected or not.

(4) If k kls es< , which means this job k can not fit in the time span of the project, and the

requirement jR which contains this job will not be the candidate of the coming release, so

/ jX X′′ = R .

6.2.4 The Objective function & the constraints

6.2.4.1 Define the variables:

� For each requirement j X ′′⊂R , we define a binary decision variable jx associated to it,

1jx = if and only if requirement jR is selected.

� For each job k X′′∈ , there is a binary decision variable ky associated to it. 1ky = if

and only if job k is selected in the new release.

 60

� For each job k X′′∈ , we define a group of binary decision variable ktξ where

[,]k kt es ls∈ . 1ktξ = if and only if job k starts at time t .

6.2.4.2 The objective function

We can model it as follow:

1

max
n

j j
j

v x
=
∑ (6.1)

Subject to

 j

k
k

j
j

y

x
m

∈≤
∑

R
 for 1, ,j n= � (6.2)

k

k

t ls

kt k
t es

yξ
=

=

=∑ for k X′∈ (6.3)

j jx x′ ≤ for (,)j j A′ ∈ (6.4)

(1) ()
k k

k k

t ls t ls

kt k k t k
t es t es

t d t y d Tξ ξ
′

′

= =

′ ′
= =

⋅ + ≤ ⋅ + − ⋅∑ ∑

for (,)k k H′ ∈ (6.5)

(,)

1
i

t

k
k t k

τ
τ σ

ξ
∈ =

≤∑ ∑
G

(,) max(0, 1)kt k t dσ = − + for ()max0,1,t T= � ,

1, ,i m= � (6.6)

6.2.5 The explanation of the model

(6.1) is the objective function, we want to maximize the revenue of the requirement in the time

span. jv is the revenue of a requirement, andjx is a binary selection variable of that requirement.

 61

(6.2) means that a requirement is only selected when all the sub-jobs in related teams are also

selected. In the formula, ky is a binary selection variable for the jobs k for requirement jR .

Here jm is the number of jobs for requirementjR , which is a constant. Please note that

jm m≤ because we do not count the jobs with no development time.

(6.3) Means a job is only selected when it is planned. ktξ is a binary selection variable, which

equals 1 when the job k start at time t .

(6.4) and (6.5) deals with precedence constraint. (6.4) means a requirement is only selected when

its predecessor is selected. (6.5) means the jobs for the successor requirement can only start after

all the jobs for its precedent requirements finished. In this constraint, ()d T is the number of

available working days in the release plan project.

(6.6) is the resource constraint that one team is only able to develop one requirement at one time.

6.2.6 Transformation:

� If we ignore the precedence constraints (4) and (5), it is another way to represent the

multi-dimensional Knapsack problem which we used to solve the requirement selection

problem.

� If we ignore the resource constraint (6), the method will turn to be a normal project plan

problem without specific team capacities. Using Gantt Chart or Network Chart, we can

solve it in Polynomial-time.

6.2.7 Requirement dependencies:

In this model, we introduced a new group of variables which deal with the time issues. These

variables provide us the opportunities to include the time-related requirement dependencies. In the

knapsack model, we have introduced five types of requirement dependencies: 1) Implication, 2)

Combination, 3) Exclusion, 4) Revenue-based and 5) Cost-based50 . These five types of

requirement dependencies have been modeled in former chapter using the knapsack model.

Besides the functional and revenue-related requirement dependencies, there are also time-related

requirement dependencies: we have to implement requirement jR before requirement jR ′
21. The

standalone time-related interdependencies draw little attention when compose the release plan,

however, this dependencies usually come together with other dependencies like Implication and

cost-based51. For example, if we need requirement jR to implement requirement jR ′ , we

 62

probably need to implement jR before jR ′ . Similarly, if jR influence the implementation cost

of requirement jR ′ , we probably also need to implement jR before requirement jR ′ . We can

conclude that although the time-related dependency does not come alone, it is associated with the

implication and cost-based dependencies.

The time-related dependency expresses more process knowledge rather than product knowledge.

To fit the pressure on time-to-market, considering the time-related dependencies can help product

managers to deal with the project plan issues the same time as they select the requirements. This

model may sacrifice some revenue to fit the more strict constraints, but on return, the selection

result will be more practical to fit the release date, and a project plan for the coming release will

be made simultaneously.

The Implication, combination, exclusion, revenue-based dependencies are same in the knapsack

model, please refer to section 2.7 for details.

 cost based

In this model, we assume the development time for a certain requirement in a certain team is a

deterministic figure which equals the expected man days divided by the number of developers in

the team. The cost based requirement dependencies will change this assumption because then the

development time kd for job k is not deterministic but is influenced by other requirements. This

will turn the model into a non-linear one. To restrict the model in a linear way, we need to model it

differently.

If requirement jR influence the implantation cost of requirementjR ′ , after implement jR , the

development cost of the jobs k′ (jk ′′ ∈ R) for requirement jR ′ will change from kd ′ to kd ′′

man days. So we can virtually define a new requirement called jR ′′ , and this requirement is a copy

jR ′ only that this development cost has been influenced by requirement jR , and the durations of

the jobs k′ (jk ′′ ∈ R) change from kd ′ to kd ′′ . We can define these jobs as a group of new

jobs calledk′′ . So the newly created requirement jR ′′ has the same expected revenue as jR ′ ,

and the job k′ and k′′ belongs to the same team. Only the durations of the two tasks are different.

For the newly created requirement jR ′′ , there is a selection variable jx ′′ associated to it, and for

each jobs k′′ in jR ′′ , there are a selection variable kx ′′′ and the time variablesk tξ ′′ associated

 63

to it.

We can now analyze the relationship amongjR , jR ′ and the virtually created requirementjR ′′ .

a) If we want to obtain the cost benefit, i.e. to have requirement jR ′′ we must have requirement

jR selected first.

b) If we have selected requirementjR , then we can not select requirement jR ′ any more,

because the requirement jR will change the development cost of jR ′ , and actually turn

jR ′ to jR ′′ .

c) It is obvious that it is not possible to select both jR ′ and jR ′′ , because jR ′′ is not a real

requirement, but just another version of jR ′ which shows the influence of the cost-related

dependency betweenjR .

 .

It can be seen clearly from the following truth table:

jR jR ′ jR ′′ T/F Explanation

0 0 0 T It is possible to select neitherjR nor jR ′

0 0 1 F

Not possible, can not obtain the cost influence without selecting

jR .

0 1 0 T It is possible to select only jR ′ .

0 1 1 F Not possible, can not select both jR ′ and jR ′′ .

1 0 0 T Possible. We can just select jR .

1 0 1 T

Possible, when we selected jR , then we can get the cost influence

on jR ′ so as to select jR ′′

1 1 0 F

Not possible. When we selected jR , we can not ignore the cost

influence on jR ′ .

 64

1 1 1 F Not possible, we can not select both jR ′ and jR ′′ .

From the relations we analyzed amongjR , jR ′ jR ′′ and from the truth table we can get that:

1. Requirement jR ′′ has implication dependency on requirementjR .So, j jx x′′ ≤ .

2. Requirement jR has exclusion dependency on requirementjR ′ . So, 1j jx x ′+ ≤

3. Requirement jR ′ has exclusion dependency on requirementjR ′′ . So, 1j jx x′ ′′+ ≤ .

Based on the above result, we can model the cost-related requirement dependency by creating a

virtual requirement jR ′′ and adding three new constraints 1) j jx x′′ ≤ , 2) 1j jx x ′+ ≤ , 3)

1j jx x′ ′′+ ≤ in the model.

To model this dependency, we have created a virtual requirement jR ′′ . This has created a problem

-which one should we use if we need to model dependencies between jR ′ and other requirements,

if we do not know whether jR ′′ or jR ′ is actually selected. We can define a new variablej jx ′ ′′

where j j j jx x x′ ′′ ′ ′′= + . We can use this variable to model the dependencies between requirement

jR ′ and other requirements. For example, if requirement jR ′ exclusion requirement mR then

we can set 1j j mx x′ ′′ + ≤ .

 time-related

The time-related dependency always come along with implication or cost-based. If we

need to implement requirement jR before requirement jR ′ , we can set a time-related

dependency between them, denoted as j jR R ′� .

With each job k is associated with a set 1 /{ }k X k− ′Γ ⊆ of immediate successors: jobs that can

only start after the completion of job k . If j jR R ′� , we need to set:

For jk R∀ ∈ , 1 1{ }k k j
− −

′Γ = Γ �R .

 65

In this way, we set all the jobs for requirementjR ′ as the successors of the jobs for

requirement jR so that requirement jR ′ can only start after all the jobs for requirementjR is

done.

The precedence constraints can be represented as the edges in a directed acyclic graph

(,)G X H′= where 1{(,) , }kH k l k X l −′= ∈ ∈Γ .

At last, we add the constraints:

(1)
k k

k k

t ls t ls

kt k k t k
t es t es

t d t y Dξ ξ
′

′

= =

′ ′
= =

⋅ + ≤ ⋅ + − ⋅∑ ∑ (,)k k H′ ∈

to the model.

Please note that the time-related dependency can not work alone in the model. It has to associate

with either Implication or cost-based. As we modeled the cost-based dependency as one

implication plus two exclusions dependencies (see the section above), we need to associate the

time-related dependency on the implication relationship, i.e. between requirement jR ′′ and jR .

 66

6.3 The different time availability for different teams

So far, we considered all the teams are available for the whole project period. However,

sometimes a team iG is only available for a certain interval [],i ilb ub where ilb and iub are

the lower bound and upper bound of the time interval. For the new release project, which lasts

from day 0 until day ()d T , we assume, without loss of generality, that the time interval for each

iG (1,2,)i m= � , [] [], 0, ()i ilb ub d T⊆ .

When a team can not work full time on the project, it not only reduces its capacity on the project,

but also influences the schedule of other teams. It pops up a synchronization problem among

different groups and also changes the time interval[],k kes ls for a job. In the following chapter,

we will show how to calculate the new time interval[],k kes ls for the all the jobs.

The earliest start kes

A team iG is available for the project from the time ilb on. We can create a virtual requirement

1 2(, , ,)s mR lb lb lb= � as the start of the project. This requirement contains the jobs 1s , 2s …

sm where si id lb= (1,2,)i m= � . As the start of the project, sR is the predecessor of all

the requirements jR which does not have a predecessor. Let { }(,)j j j jA R R R R′ ′= � be the

set which contains all the precedence constraints. We can create a new

set ()
(,)

,
j j

s j i j
R R A

A A R R R X
′

′ ′
∈

   ′ = ⊆    
   

� � R , so that it also contains the precedence

constraints between sR and jR .

Instead of usingA , we now use the set A′ to construct the set H in section 5.3. Because the

virtual requirement sR is the predecessor of all the requirement, all the earliest starts of the jobs

sies , (1,2,)i m= � equal zero. In this way, this virtual requirement takes up the time interval

[0, 1]ilb − when the team is not available for the project. Please note that it is mandatory to

 67

select the virtual requirementsR .

The latest start kls

The latest start of job k is determined by the available time of the team where this job belongs.

So the latest start of job k equals i kub d− , where ik ∈ G . This day is the time when teamiG

has just enough time to complete job k before its last available day.

In the same way as we discussed before: if k kls es< , it means this job k can not fit in the time

span of the project, and the requirement jR which contains this job will not be the candidate of

the coming release, so / jX X R′′ = .

6.4 Model the holiday seasons

Sometimes, a development team is temporally unavailable while other teams are still working, for

example, one development team needs to work on another project for a while or simply because of

the holidays. This model is especially useful for international companies, since the holidays in

each country are significantly different.

Based on our assumption before, if a team goes on holiday before finishes the job at hand, this

team will continue to develop this job until it is complete. The holidays can influence in two

fields:

First, if holidays interrupt a job, the completion time of this job will be delayed and it will also

influence the start time of its successors (if there is any).

Second, if a team is on holiday, obviously, the team capacity is zero during this period. It is neither

possible to proceed a job nor to start a new one.

Without losing generality, we assume the holidays are in the team’s available time. i.e.

 i i i ilb Hs He ub≤ ≤ ≤ . (6.7)

6.4.1 The model

If we want to include the holiday period in a team, we need to set the following constraint:

0
i

i i

He

kt
k G t Hs

ξ
∈ =

=∑ ∑ (6.8)

 68

We also need to modify the development duration of job k from kd to kd′ :

1

(,)

()
iHs

k k i i k
i k

d d He Hs ρ
ρ π

ξ
−

=

′ = + − ∑�

ik G∈ and (,) max(0, 1)i ki k Hs dπ = − + (6.9)

We need to change kd in constraint (5) to kd′ .

In the resource constraint (6), we need to modify the model to:

(,)

1
i

t

k
k G t k

τ
τ σ

ξ
∈ =

≤∑ ∑

()0,1, it Hs= � , (,) max(0, 1)kt k t dσ = − +

1, ,i m= � (6.10A)

(,)

1
i

t

k
k G t k

τ
τ ϕ

ξ
∈ =

≤∑ ∑

(), ()it He d T= � ,

(,) max(0, () 1)k i it k t d He Hsϕ = − − − + if k it d He− ≤

(,) max(0, 1)kt k t dϕ = − + if k it d He− >

1, ,i m= � (6.10B)

The holiday will also influence the latest start of a job. The latest start kls of job k equals:

() kd T d− if () k id T d He− ≥

() ()k i id T d He Hs− − − if () k id T d He− ≤

If k kls es< , it means this job k can not fit in the time span of the project, the requirement jR

 69

which contains this job k will not be the candidate of the coming release, so / jX X R′′ = .

6.4.2 Explanations of the constraints

Constraint (6.8) means the team iG can not start to develop a new requirement when this team is

on holiday. In this constraint, iHs is the time when teamiG starts the holidays and iHe is the

end of the holidays

Constraint (6.9) deals with the jobs in the team iG if they are interrupted by the holidays. If job

k does not finish before the holiday starts, the team should continue its development job after the

holidays. If we count the holiday time in, the team needs to spend more time on job k and it will

influence the start time of its successors (if there is any).

The following picture depicts such situation:

iHs iHe

(,)i kπ
(,)

iHs

k
i k

ρ
ρ π

ρ ξ
=
∑ �

(,)

()
iHs

k k i i
i k

d He Hsρ
ρ π

ρ ξ
=

+ + −∑ �

k kiG

If the team iG starts to develop job k after the time (,)i kπ , it will not be able to finish its

development job before the holiday starts. We can use
(,)

iHs

k
i k

ρ
ρ π

ξ
=
∑ to determine whether it is the

case. kρξ is a binary decision variable which equals one only if the development job k starts at

time ρ . The formula
(,)

iHs

k
i k

ρ
ρ π

ρ ξ
=
∑ � can tell us when the development starts. And it will finish

at
(,)

()
iHs

k k i i
i k

d He Hsρ
ρ π

ρ ξ
=

+ + −∑ � . In this case, we can use kd′ which equals :

(,)

()
jHs

k k j j k
i k

d d He Hs ρ
ρ π

ξ
=

′ = + − ∑� as the development duration for job k instead of kd

The holidays also influence the resource constraints. Separated by the holiday, we can divide the

project into two parts, the one before the holiday and the one after it.

 70

Before the holiday starts, it has no influence on any of the jobs. So, the resource constraint before

the holidays (6.10A) remains the same as what we set in the original model.

After the holidays, however, a team also needs to deal with the left jobs before the holiday. At any

time t , a team is devoting its time on job k if and only if this job starts less than kd working

days ago. If kd working days ago is before the holidays start(k it d He− ≤), we need to include

the holidays time in. If not (k it d He− >) we can just ignore the influence of the holiday.

Please note that we do not set resource constraint within the holiday period. We can ignore it

because we have already set constraint (6.8) so that no team can start a new job within the holiday

season.

If we can not complete job k after the holidays end, i.e. () i kd T He d− ≤ , we have to start this

job somewhere before the holidays to keep the project deadline. So the latest start kls of job k

equals () ()k i id T d He Hs− − − if () i kd T He d− ≤ . The time () ()k i id T d He Hs− − − is

the time where you have kd working days left for the project.

In this way, kd′ is still linear to kd because iHs , iHe and (,)i kπ are constant for each

development job k .

 71

7. Dynamic adjustment of the release

Until now, our approach supports the release planning for a fixed given time period. In practice,

the revenue value of requirements may evolve over time, as the release is being developed in a

changing market. During the development phase, the expected working man days can be either

overestimated or underestimated. It can also happen that one very important customer places an

order after the release is determined, and some of the new features must be added in the coming

release. This section will answer how to deal with these changes i.e. how to modify these data, and

how to set up a new model.

The following picture depicts a general example of the problem. Team A and Team B were

assigned with a couple of jobs to do in the release period. After the project started, re-planning

was needed due to over/under-estimations or important new order. Then the product manager

needs to decide which jobs to continue and which to drop if necessary.

()d T

()d T′

0T

Figure 7.1 an example of release adjustment problem

Change release time

In our model, the planning period isT , and ()d T is the number of working days in the planning

 72

period. If the date of release changes, you need to modify the constantT . Please notice that the

new 'T will be the date between your release date and your decision date, (the date when you

change theT).

Change expected revenue

You can change the expected revenue of any requirement freely, even the ones which you have

already developed or under development. For example, if you want to change the expected

revenue of requirement jR from jv to jv′ , it is free to do at any time.

Change man days or dependency

When we need to change the expected man days for a requirement or want to add additional

dependencies, we first need to divide the requirements into third groups.

� The first group is contains all finished requirements, for example, the job A1 and B1 in figure

7.1

� The second group contains the requirements currently under development, for example, the

job A2, B2 in figure 7.1.

� And the third group contains all the rest requirements. For example, the job A3, B3, B4 in

figure 7.1.

First group

The requirements in this group have already been implemented. So it is not necessary to adjust the

expected man days for these requirements.. However, it is still meaningful for these requirements

to appear in additional dependencies. We just need to add one additional constraints that 1jx =

because these requirements have already been implemented.

Second group

For the second group of requirements, the expected man days should be the remaining days to

complete the requirement. jR . Please note that we do not deduct the revenue of jR although

we have already developed something for this requirement. It is because we believe the expected

revenue can only be obtained after the whole development is complete.

Using this method, it is possible to terminate a requirement which is under development at the

decision time. There are mainly three reasons why to model in this way:

1. First, from financial52 point of view, the effort put on the requirement before the decision

date is sunk cost. It should not influence the decision.

2. Second, the requirements under development have higher probability to be selected again

because we have already deduced a part of the development cost while the revenue remains

the same.

3. Third, The ILP model does not guarantee that the requirements currently under development

are better than the requirements in the waiting list. It is possible that the requirements in the

 73

waiting list have higher ROI than the ones under development, even when parts of the

development cost have already been deducted.

Still, it is a management decision. If a manager decide to continue with the current development in

terms of morale or other reasons, it is still possible. Then we just set the decision variablejx in

this group as 1.

If the requirements in this group are re-selected, we would rather continue the development. So

when defining the timing variables ktξ for the jobs in this group, we only define 0kξ instead of

within the whole interval. In this way, we guarantee we will continue with the undergoing

development if the requirements are re-selected.

Third group

The third group constrains all the requirements in the waiting list. The requirement in this group

has no difference with the requirements in the repository. There is nothing to worry about when

changing the requirement data or the dependencies.

Important new orders

It is possible that a very important customer places an order after the release plan has been made

and his order have to be included in the coming release. If it happens, we can set the decision

variables jx for these requirements as 1 and place these requirements in the third group.

Launch

After modifying the data and fixing several variables, put all the requirements in three groups back

into the requirement repository. Run the ILP model again, and it will decide which to drop or

which to add, and make a new project plan when it is necessary.

 74

8. Relationships between the models

8.1 Structure of the models

The ILP models are not isolated islands. The following use case diagram shows the relationships

among different models.

Figure 8.1: the structure of the models

 75

This use case diagram describes the interaction of different models. There are mainly four

functions in the system. The “manage requirements” is the part where requirements are issued and

the relationships between them are modeled. The second and third parts are ILP models for

requirement selection and requirement scheduling. The last part “adjust release plan” is used when

we need to adjust the release plan.

Requirement management

In the “manage requirement” parts, the factors for every issued requirements are estimated and the

requirement dependencies are set. In general, the factors include, expected man days, expected

revenue for each requirement, requirement dependencies, release date, priority, risk, personal

preference and so on. The details of these factors are discussed later in the section of “the

factors and process of release planning “

Requirement selection

The “select requirement” is based on the knapsack model. There are also several management

steering scenarios modeled as extensions of the knapsack model. We can “hire external personnel”,

“extend deadline”, “model dependencies”, “team transfer”, and “model personal preferences”. The

details and explanations of these models are discussed in the section of “the mathematical models

of release planning”. These extensions can work simultaneously only with one exception: If we

want to include personal differences, we have to use a new ILP model “work in different teams” to

handle team transfer, therefore the old “team transfer” model is not available any more. This

confliction is shown as an “OR” relationships in the use case diagram.

The input of the model is a collection of requirements with estimated factors and relationships,

after selecting the scenarios a product manager wants, the output of the model is as a group of

requirements for the next release.

.

Requirement scheduling

After the selection of the requirements, the next step is to schedule them. It is also possible to

consider them as consecutive processes, i.e. the output of the requirement selection part is the

input of the requirement scheduling part. Unfortunately, this connection is not seamless. In the

scheduling part, we assume the development time for job k is kd which equals the expected

man days divided by the number of developers in the team, i.e. ij
k

i

a
d

Q
= . So the iQ has to be a

constant number for the whole planning time. This adds additional constraints for the requirement

selection model:

1. If hire external personnel, he/she will have to work for the whole period in one

team.

2. If enable team transfer model, a person can only be transferred for the whole

period, i.e. ()capU d T= .

 76

If the above mentioned constraints are satisfied, we can link the two models together with no

worries.

It is also possible to only use the scheduling model. In that case, the input of the model is a

collection of the requirements as while as the requirement dependencies between them; the output

is a project plan with minimal project span.

Select & Schedule

It is also possible to select requirements and schedule them as the same time. In this way, we

introduced a new model “Select & Schedule”. This model combines the two processes together so

that the out put of the model is a group of requirements for the next release as well as a project

plan to implement them. This model has four extensions. Two of them, “extend deadline” and

“model dependencies”, are similar with the ones for knapsack model, it also has two more

extensions, “holiday seasons” and “different time availability”, specially used for timing issues.

All four of the scenarios are compatible with others.

Adjust release plan

After the release plan is set, it is also possible to adjust it due to the changes of external

environment. Mostly, there are two reasons for it: first, as the requirements are developed in a

dynamic environment, the estimated values of the factors are changing under market conditions.

So we need to handle over/under-estimations. Second, when an important customer proposes some

orders, it is also necessary to adjust the release plan to make time for these unexpected orders.

These two conditions are modeled as two use cases in the diagram. The input of the model is the

requirement dataset, as well as the changes of the factors, and the output of the model is a new

release plan.

8.2 Processes to use the models

The following picture shows how to use the models to make a software release plan. The first step

is to manage the requirements. In this phase, we try to gather requirements from different

stakeholders and estimate the values of requirement factors. These factors include business value,

cost, dependencies, priority, risk, quality and so on. In the first section, we will introduce several

methods to estimate them. These factors will then be used as the input of the optimization models.

Then the next step is to select the right requirement for the release. We introduced the knapsack

model and its extensions to compose a release plan so that to achieve the maximal revenue. Based

on different company preferences, we have provided several management steering mechanism to

improve the profitability, like team transfer and deadline extension. After the selection, we can

make a project plan of these requirements using the RCPSP model. Another way is to combine the

selection and scheduling processes together so as to find a group of profitable requirements with a

suitable implementation plan. Using this method can guarantee that the project will finish on time

but will lose some management steering mechanism, like hiring external people. No matter

choosing which processes, we can expect to find the best group of requirements for the next

release.

 77

When the market condition changes or the original estimation is not very precise, we need to

������� ���!�����

	����
�����

������

	����
�����

�������

	����
�����

��!�����

	����
�����

��"�
�

	����
�����

 Figure 8.2: the processes to use the models

Adjust the release plan. In this phase, we may need to change the original estimations or even set

more figures or relationships for a requirement. It is also possible to receive additional

requirements from other stakeholders. These adjustments require us to re-manage the requirements

and then re-optimize the selection. These processes will continue iteratively so as to find the best

choice for the next release.

8.3 The comparison of the models

The release planning model contains three main ILP models—the knapsack model, the RCPSP

model for scheduling and the model to combine these two processes together. Each of them has it

advantages and disadvantages.

The knapsack model is good at finding the most profitable solution and has the most management

steering mechanism options. These extensions provide additional way to find a profitable solution,

and, for most of time, will increase the value of the release plan. The disadvantage however, is that

the result of the model might appeared to be bit too optimistic, and this may lead to delays of the

project.

The RCPSP model can help us to find a project plan with the minimal project span. This model is

very much connected to the knapsack model, because the output of the knapsack model is

 78

normally the input of this model. This model is easy to use and follow, but the function of this

model is a bit limited.

The ‘Select & Schedule’ model can help us to find the requirement selection as well as the project

plan at the same time. This model focuses on the on time delivery and is very useful when the

release deadline is very strict. On the other hand, this model does not have as much extensions as

the knapsack model does. So from the functional point of view, this model has less functions then

the knapsack model. Without the help of hiring external persons, or team transfer, the result found

by this model might be not as reliable as the knapsack model.

 79

Appendix 1: Sets, variables and

parameters:

Name Description Type Note

jR
Requirementj . It is considered as a set which

contains all the jobs for this requirement

Set

iG
Teami . It is considered as a set which contains all

the jobs for in this team.

Set

iQ Number of developers in teamiG .
Parameter

ija Man days for Requirement jR in team iG .
Parameter

k Job k . We consider the development task for

requirementj in team i as an individual job.

 We only define a job when

0ija >

kd
The duration of jobk . Parameter

X The set of all the jobs. Set

A
The set of all precedence constraints ()j iR R�

Set

1
k
−Γ

The immediate successors of job k Set Every job is associated with one

set
1

k
−Γ .

H A set which contains all the precedence constraints

between dual jobs.

Set

kes
Earliest start time of job k Compute using critical path

algorithm (forward)

kls
Latest start time of job k Compute using critical path

algorithm (backward)

ktξ
Binary decision variable. Equals 1 if and only if job

k starts at time t

Variable
For each job k , ktξ is defined

from kes to kls

Scheduling the requirement

maxT
The maximal time of the project span

START A virtual job which is the predecessor of all the jobs

in X .

Job Duration is zero.

END A virtual job which is the successor of all the jobs in

X

Job Duration is zero.

 80

X ′ All the jobs X together with START and END Set

Select & Scheduling requirements

()d T
The deadline of the new release Parameter

jv The expected revenue of requirement jR
Parameter

jx
Binary decision variable. Equals 1 if and only if

requirement jR is selected for the release

Variable Every requirement is associated

with one jx

ky
Binary decision variable. Equals 1 if and only if job

k is selected for the release.

Variable Every job is associated with one

ky

jm The number of jobs for requirement jR
Parameter

X ′′ The set of jobs which are the candidates for the new

release

Set X X′′ ⊆

Requirement dependency

ijw
The additional value from the revenue-based

dependency between iR and iR

Parameter

ijx
Binary decision variable, equals 1 if and only if we

obtain the additional value from the revenue-based

dependency

Variable
1j i ijx x x+ − ≤

() / 2ij j ix x x≤ +

iR′
An artificial requirement. Created to show the cost

changes of requirementiR .

Requirement
Created when requirement jR

influence the cost of requirement

iR

Different time availability

ilb The time when iG starts to be available. The lower

bound of the team’s available time interval.

Parameter
0 ()i ilb ub d T≤ ≤ ≤

iub The time when iG is not available anymore. The

upper bound of the team’s available time interval.

Parameter
0 ()i ilb ub d T≤ ≤ ≤

Holidays

iHs The time when holidays start in teamiG .
Parameter

i i i ilb Hs He ub≤ ≤ ≤

iHe The time when holidays end in teamiG .
Parameter

i i i ilb Hs He ub≤ ≤ ≤

 81

The tools and the test results

We have developed two JAVA applications to test the ILP models proposed in the former section.

The first one is called “scheduler” which can schedule the development activities exactly in time.

The second is called “Planner” which can select and schedule the requirements at the same time.

In the first chapter, we present the general information and the structures of the two applications.

The source code and the detail model are not included in the thesis for the sake of brevity.

Using the tools we developed, we have conducted two tests. The first one is to examine how much

requirement dependencies influence the project plan. The second one is to compare the two types

of software development processes: i.e. Select�Schedule V.S Select & Schedule. The first type of

planning processes is common in most of the software development processes models, like RUP,

DSDM, Waterfall, etc. However, in the former chapters, we’ve shown that this model may have

some problems, and introduced a new ILP model to combine these processes. These two types of

software development processes are compared based on a simulation in chapter 10.

 82

9. The tools

Two tools have been developed to test the models. The first one is called “Scheduler”, which can

schedule the activities exactly in time based on the precedence constraints. The second one is

called “Planner”, which can select and schedule the requirements at the same time. This tool is

based on the linear programming model “schedule the requirement with fixed deadline” and the

out put of the result is a collection of requirements for the coming release as well as the project

plan to develop them.

9.1 General information

General Information

Name Scheduler, Planner

Developers Chen Li

Platform Linux

Languages Java 1.4.2

Lib. Used SWING, CPLEX 9.0, CSV

Interface SWING

Input/output

document format

CSV file

Table 9.1 the general information of the prototype

Both of the two prototypes are Java applications running in Linux environment. They use three

libraries. The SWING is used for interface, the CPLEX is used for solving the integer linear

programming model, and the CSV is used to read input document and write output document. The

input and output document format is CSV (coma separated value) file. The CSV document can be

easily transformed to an excel file.

 83

9.2 Software structure

Figure 9.1 The software structure of the prototypes

The user needs to first set requirement dependencies manually or automatically through

dependency management. The results then are sent to the Scheduler, which is the heart of the

program. The scheduler will model the scheduling problem and then sent to CPLEX. When

CPLEX get the results, it will send them to Scheduler and then to the Reporting system. The

hard-copy of requirement dataset is stored in requirement dataset in a CSV file, and data reader

will read all the information in the dataset.

The key functions of the models are described as follow:

� Interface: Give the program instructions and receive results

� Reporting: to report the result to the interface

� Dependency management: set dependencies among the requirements

� Data Reader: read date from the release planning dataset

� Requirement Dataset: Excel files or CSV files with all the requirement information

� Scheduler or planner: The heart of the program to process data and build up the ILP model

� CPLEX: the ILP library to solve the ILP models

The “Planner” and “Scheduler” are similar in structure. Only the heart of the program is different.

The differences of the integer linear programming models are presented in the former

chapters(chapter five & six). The following sections will show the software differences in activity

 84

diagrams.

9.3 Screen shots

The following screen shots show how the prototypes look like. These interfaces are designed

using Visio, so the final interfaces might look slightly different than what is shown here, but the

general structure will be the same.

9.3.1 Dependency management

������������������

�����������	
�
��	���

���� ���� ����

���������������������

��
�� �
��������
��

���

���
���	��������������������
���	��������

���
���	���������������� �����
���	��������
���
���	��������

���
���	��������

���������������

#����������

�����������

!�

$%%%

	��������&��!

!" 	����
�����
��
������
���������

#�$��
%�� ������

Figure 9.2 the interface of the dependency management

On this interface you can set requirement dependencies manually, or generate automatically. As

there is no requirement dependency in the requirement dataset, for testing purpose, we provide the

opportunity to automatically generate a certain amount of dependencies, for example, 5% of the

theoretical maximal number of dependency. (The detail for automatically generating dependency

will come in the next chapter).

9.3.2 Scheduler

 85

Figure 9.3 the interface for scheduler

The days needed for each requirement on each team comes from the requirement dataset. After set

the requirement dependency, and click lunch, the scheduler can present you with the result of

starting and finishing date of particular jobs.

9.3.3 Reporting

Figure 9.4 The interface for reporting system

 86

This reporting interface details schedule of each requirement and each team. By clicking the

requirement id or team name, we can get a clear schedule for each of the requirements.

9.4 The activity diagram of “Scheduler”

Figure 9.5 The activity diagram of “scheduler”

The function of “Scheduler” is to make a project plan of the selected requirements. So, the input

of the model is the requirements selected by the knapsack model, and the output of the model will

be the project plan to implement them.

The “Scheduler” first reads the requirement dataset through “data reader”; and set dependencies

through “dependency management”. Based on the requirements and the dependencies, it builds up

 87

a Directed Acyclic Graph to compute the lower bound (the maximal value of the critical path and

release date) and the upper bound (when requirements are fully dependent and need to develop

one after another) of the project span. The “scheduler” then checks the feasibility of every result

starting from the lower bound (the larger one of the critical path and the deadline) to the upper

bound (when fully dependent. i.e. serial one after another). Every time when checking the

feasibility, the model first computes the earliest start and latest start for each job and then builds

the linear programming model. When a feasible solution is found by the CPLEX library, the model

stops and reports the result. Because the model checks the feasibility of the results from the lower

bound to the upper bound, the first feasible result is the result with minimal project span.

9.5 The activity diagram of “Planner”

Figure 9.6 The activity diagram of planner

The function of the “planner” is to find the group of most profitable requirements as well as a

project plan for implementation. So the input of the model is the requirement dataset with all

candidate requirements, and the output is a selection of requirements and their project plan.

The “Planner” starts from reading the requirement data sets through “data reader”. It then gets the

 88

dependencies from “dependency management”. Based on the requirement datasets and the

dependencies, the model builds up a Directed Acyclic Graph and computes the earliest start and

the latest start of each job. When some jobs are not feasible to be selected, for example, when the

earliest start is larger than the latest start, the model can eliminate these none-feasible

requirements as well the dependencies among them. The “Planner” then builds the ILP model

based on the remaining requirements and dependencies. It is then solved by the CPLEX library

and the result is documented to a CSV file when a solution is found.

 89

10. Simulation tests

10.1 Test purpose

The purpose of this test is to answer the following two questions:

1. What’s the relationship between the number of time-related dependencies and the

possibility of running out of time in the project planning?

2. What are the differences when we select and schedule requirements at the same time,

and when we select and schedule sequentially?

Currently, we consider the release composition problem as a knapsack problem. However, if we

consider the precedence constraint (i.e. time-related dependency explicitly, and implication and

cost-related implicitly), it is possible that the release composed using the knapsack method results

in a schedule that exceeds the deadline. We want to find out how the time-related requirement

dependencies influence the project span by answering the first question. When there are more

dependencies, we would expect that the project stands a higher chance of being late, and the

project span will be longer. We also want to find the difference between the optimal result and the

lower bound. The lower bound of the model is the larger one of the maximal team workload or the

project span computed using critical path method.

For the second question, we want to find out how the precedence constraints influence the

requirement selection. In the knapsack model, we do not consider the time-related requirement

dependencies, while the new model does. Given the same set of dependencies, the requirements

selected by the original knapsack model are expected to have higher total revenue than the new

model, because it does not include the time-related issues. However, there is a possibility that the

release date will be delayed. So we will compare how much the project span may differ and how

much the revenue may differ.

This comparison is in fact a comparison between the two release planning processes i.e. shall we

follow the processes that we first Select requirement and then Schedule them or shall we combine

these two processes together.

10.2 Test methods

10.2.1 Test tools

In this test, we use three prototypes.

1. The first one is the knapsack model for requirement selection.

 90

2. The second one is requirement scheduling method based on RCPSP.

3. The third one is the prototype to select and schedule requirement at the same time.

The descriptions of the three tools can be found in chapter 9. In general, they are all Java

applications based on integer linear programming and running in Linux environment. They also

use the same library CPLEX to solve the ILP model.

10.2.2 Test data

For testing the program, different types of data sets were used. The different types were:

Small: 9 requirements and 3 development teams.

Master: 99 requirement and 17 teams.

All of the used data sets are available online for research purposes2.

10.2.3 The requirement dependency

Because there is no dependency in the requirement dataset, we have tested the result by generating

random dependencies.

10.2.3.1 PERT & DAG

We use the PERT (program evaluation and review technique) to model the time-related

requirement dependencies. The requirements are Vertexes in the graph, and the if requirement iR

REQUIRE requirement jR , then there is an directed edge (,)j iR R which shows that the

requirement jR must be done before iR . A basic requirement for PERT is that the PERT chart

must be a DAG (Directed Acyclic Graphs). The reason is because if there are cycles in the chart,

the jobs in a cycle can form a deadlock situation since they are always waiting for others to finish.

Like in the following situation, none of the job can ever start because they are inter-waiting for

each others.

2 http://www.cs.uu.nl/diepen/ReqMan

A

C

B

 91

Figure 10.1 the example of a deadlock situation

10.2.3.2 Topological sorting of DAG

For any directed acyclic graph, there is at least one topological sort of the DAG (,)G V E= . A

topological sort of a DAG is a linear ordering of all its vertices such that if G contains an edge

(,)u v , then u appears before v in the order53. We can get the sort of a DAG in ()O V E+

time by performing a depth-first search of G . (The details of topological sorting is shown in

section 5.1.)

In order to randomly generate a DAG, we can use the results above. Assume we have already got a

topological order, if we add a new edge (,)u v to G , where u appears before v in the

order, then new DAG G′ is still a directed acyclic graph and the original topological sort is still

a topological sort of G′ .

Proof: Assume G′ is not a directed acyclic graph, so the new edge (,)u v has created a cycle

in G′ . Then there must be a directed path in G from v to u so that to complete a cycle with

the new edge (,)u v . If this path exists in G , then vertex v is an ancestor of vertex u in the

depth-first forest, and should be place before vertex u in the topological order of G . This yield

a conflict, So G′ is a DAG.

We can repeatedly add new edge in the above mentioned method, which guarantee the new graph

is still a directed acyclic graph. If there are n vertexes, we can add maximally

2 (1) / 2nC n n= ⋅ − edges in the graph.

10.2.3.3 Randomly generate dependencies

1. First, give a random permutation of all the requirements as their topological sort. This can be

achieved by shuffling algorithm in ()O n time.

2. Use the above mentioned method to generate requirement dependencies. Maximally, we can

generate 2 (1) / 2nC n n= ⋅ − dependencies between the requirements.

Theoretically speaking, when we randomly generate n dependency, the actual number may be

more than n because of the implied dependencies. For example, if ‘A’ need to be before ‘B’, and

‘B’ need to before ‘C’, these two dependencies also implies one dependency that ‘A’ is before ‘C’.

So the actual number of dependency is larger than we may think. In this model, we do not count

 92

the implied dependencies. If this topic is an interesting issue for the readers, the following method

provides the possibility to find the total number.

The following chart shows an example:

Figure 10.2 An example of requirement dependencies

In the chart, the nodes represent the requirement and the arrows represent the dependency. We can

find the actual number of dependency in the following way:

1. Draw the conjunction matrix.

For the example graph, the conjunction matrix is:

G0 A B C D E F

A 0 1 1 0 0 1

B 0 0 1 0 0 0

C 0 0 0 1 0 0

D 0 0 0 0 0 0

E 0 0 0 1 0 0

F 0 0 1 1 1 0

In the matrix, if there is an edge pointing from one node to another node, then the corresponding

place is shown as 1, otherwise, it is zero. For example, there is an edge from A to C, then in the

matrix, you can find the number in the first row and third column is 1.

2. Compute the connectivity of graph.

The connectivity of a graph is shown as the matrix*G . Where
1

*
n

x

x

G G
=

=∑ and n equals the

number of node in the graphG . For the example case, the *G is:

G* A B C D E F

A 0 1 3 5 1 1

B 0 0 1 1 0 0

C 0 0 0 1 0 0

D 0 0 0 0 0 0

E 0 0 0 1 0 0

F 0 0 1 3 1 0

 93

The value in *G equals the number of paths from one node to another node. For example, the

number in the first row and third column is 3, which means there are three paths from A to C.

3. Count the number of none-zero numbers.

When we compare the difference between G and *G , we find three new non-zero unit,

(marked in blue). These dependencies are the implied dependencies.

10.2.4 Rounding

Because the duration of a job equals the expected man days divided by the number of developers

in the team, it is possible to get fractional numbers. The rounding is done in the following way:

1. When the duration is between 0 and 1, we round up to 1. Since when the duration of a job is

zero and will be removed from our calculation, rounding up helps protecting the loss of

valuable data (i.e. estimated value).

2. When the duration is larger than 1, it is rounded off.

10.2.5 The results format

The first test: What is the relationship between the number of time-related dependencies and

the possibility of running out of time in the project planning?

We can use the method of scheduling model based on RCPSP (Resource Constrained Project

Scheduling Problem) to test the result. This method can tell the minimal time span of the whole

release plan.

If we have n requirements selected in the release composition, theoretically, we can set at most,

(1) / 2n n⋅ − dependencies. In this test, we can find out as the number of dependencies grows,

how much and how often it will influence the time span of the release date?

The test datasets are the release plans selected by the knapsack model.

In this table, dependency ratio shows how many time-related interdependencies exist compared

with the maximal possible amount. For example for the Small dataset, there are five requirements

selected by the knapsack model out of 9, so theoretically, there are at most 5 (5 1) / 2 10× − =

dependencies possibly in the dataset. We can use the Dependency ratio * largest possible number

= Number of Dependencies exist in the dataset.

For the master dataset, we have selected 76 requirements out of 100. Using the same method we

 94

can compute that there are at most 76 (76 1) / 2 2850× − = dependencies.

The project span The difference between

lower bound

Data Set Dep

ratio

Number

of Dep

Max

days

Min

days

Average

days

Times

of

delay Max

diff

Min

diff

Average

diff

10% 1

20% 2

30% 3

Small-result

(5 Reqs, 60

days)

40% 4

0.5% 14

1% 29

2% 57

Master-result

(76 Reqs, 30

days)

5% 142

Table 10.1 the result format of the first test

For each row, we will run 100 times based on 100 sets of random dependencies. For every run, we

can compute the time span of the project. The Average finishing time is the average time span of

the 100 tests, and the Times of delay shows how many times the project is late in the 100 runs. The

Maximal and Minimal days record the largest project span and the minimal project of the

simulation, and the Difference from the lower bound shows how much the result is different from

the lower bound.

The second test: what are the differences when we select and schedule requirements at the

same time, and when we select and schedule sequentially?

We will also use the Small requirement dataset (9 requirements) and Master requirement (99

requirements) data set for this test. Using the method mentioned in section 10.1, the theoretical

maximal number of interdependencies in the requirement dataset are 36 for the Small data set and

4851 for the Master dataset.

For each row, we will run 100 times based on 100 groups of randomly-generated dependencies.

The following activities diagram shows the processes of every run.

 95

Figure 10.3 the activity diagram for model comparison

For every run, we use the combined model to select and schedule the requirement at the same time.

For the dependencies, we not only consider their logical relationships, but also the timing

relationships. For example, if jR requires jR ′ , then we need to first selectjR ′ then jR , and

secondly schedule jR after jR ′ is done. We will document the revenue of every run and compute

the average revenue of the hundred samples in the average revenue of the combined model.

 96

Table 10.2: the result format of the second test

Based on the same dependencies, we will also compute the average revenue using the original

knapsack model. But in the knapsack model, we only consider that the implication dependency

have logical meanings so that if jR requires jR ′ , then j jx x ′≤ . We will leave the time related

issues to the project plan phase. After selecting the requirements, we will compute the time span of

them using the scheduling method—“schedule the requirement with RCPSP”, and compute the

average time span of the 100 samples, and how many time the project is late.

Based on the simulation results, we will do two statistics. The first one is the statistics for the 100

runs, like the average revenues of the two models and the average of the project span. But in the

100 runs, it is possible that in same cases, the two models will select the same group of

requirements, then these runs will not be of no interest because the revenue difference and time

difference will be both zero. It is more interesting to see the difference for the projects which can

not finish on time, so we will make the second statistics only based on the projects that run out of

time.

10.3 Test result

10.3.1 The first group of results

The first test is to find how the time-related requirement dependencies influence the project span.

The computational results are shown in the following table.

The project span The difference between lower

bound

Statistics for the 100 cases Statistics only for the delayed cases Data Set Dep

ratio

No.

of

Dep
Average

revenue

(combin

ed)

Average

revenue

(knapsac

k)

Averag

e

project

span

Times

of

delay

Average

revenue

(combine

d)

Average

revenue

(knapsack)

Average

project

span

Average

revenue

difference

Average

time

difference

3% 1

10% 3

15% 5

Small

(9 Reqs,

60 days)

20% 7

0.5% 24

1% 48

2% 97

Master

(99 Reqs,

30 days)

5% 242

 97

Max

days

Min

days

Average

days

delay Max diff Min

diff

Average

diff

10% 1 83 55 58.80 16 0.00% 0.00% 0.00%

20% 2 93 55 63.70 40 27.27% 0.00% 0.93%

30% 3 103 55 70.42 62 27.27% 0.00% 2.64%

Small-result

(5 Reqs, 60

days)

40% 4 108 55 75.32 76 14.55% 0.00% 2.12%

0.5% 14 40 30 30.93 33 30.00% 0.00% 2.70%

1% 29 46 30 31.38 27 8.57% 0.00% 0.22%

2% 57 69 30 36.92 76 22.58% 0.00% 2.13%

Master-result

(76 Reqs, 30

days)

5% 142 84 38 56.15 100 19.23% 0.00% 3.47%

Table 10.3 The test result of the first test

The following four figures visualize the result.

schedule result based on small dataset

0

20

40

60

80

100

120

10% 20% 30% 40%

precentage of possible dependency

p
ro

je
ct

 s
p

a
n

average t ime

Figure 10.4 the schedule result based on small dataset

0%

20%

40%

60%

80%

100%

precentage of over
time

10% 20% 30% 40%

precentage of possible dependency

Posibility of overtime based on small dataset

on t ime

over t ime

Figure 10.5 the possibility of overtime based on small dataset

For the small data set, we can find that as the number of requirement dependencies increases, the

 98

maximal project span, the average project span and the number of overtime project keep on

increasing (see figure 10.4 and 10.5). The average project span grows from 58.8 to 75.32, the

number of delayed projects grows from 16 to 76 and the maximal project span grows from 83 to

108 days. However, the minimal project span remains at 55 days, which means even there are a

large number of dependencies, it is still possible to keep the project on time, but the chance of

meeting the deadline keep reducing. From the last column, we can find the computed result is not

far away from the lower bound. The difference is within 3%.

schedule result based on master dataset

0

20

40

60

80

100

0.50% 1% 2% 5%

precentage of possible dependency

p
ro

je
ct

 s
p

a
n

average days

Figure 10.6 the schedule result based on master dataset

0%

20%

40%

60%

80%

100%

precentage of over
time

0.50% 1% 2% 5%

precentage of possible dependency

posibility of overtime based on master dataset

on t ime

over t ime

Figure 10.7 the possibility of overtime based on master dataset

The same trend can also be found in the master dataset (see figure 10.6 & 10.7). Special attention

is needed for the last row. When there are 142 dependencies, which are only 5% of the maximal

feasible number, the result explodes. The minimal time to finish the project is at 38 days, and the

project is 100% late. The average project span is at 56.15, which is almost twice as much as in the

project plan. Theoretically, it is still possible that the project can be completed on time, but

 99

unfortunately, it did not happen within 100 time of computation in our case.

We have also used other dataset for this test. For example, for the small dataset, if the release

planning period is 50 days or 70 days instead of 60days, what will be the scheduling result? We

also modified the planning date for the master dataset, and schedule them. Based on the

simulation, the figures are stable and very similar to this group of result. For the sake of

conciseness, these results are documented in Appendix 2.

From the result, it is clear that the requirement dependencies greatly influence the project plan of

the release. When there are only a few dependencies, the delay is not significant and does not

happen often. As the number of requirement dependencies increases, the chance that the project

will be delayed is very high. Unfortunately, how many dependencies can exactly exist between the

requirements remains unknown, however, from a former survey21, about 80% of the requirements

are interdependent, and most of the requirements dependencies are precedence constraints

(Implication or cost-related dependencies). We can expect the number of dependencies is at least

higher than the second row of the small or master data set. (To set dependencies between 80% of

requirements, we need at least 0.8 / 2n× dependencies, where n equals the number of

requirement)

We can also find that the difference between the actual project span and the lower bound is not

significant. From our computation, the difference is just about from 0% to 3.47%. This figure may

trigger the interest of a new searching algorithm for this problem, since the project span is very

close to the lower bound which can be found in polynomial time.

10.3.2 The second group of result

The second test is to compare the requirements selection using the knapsack model and the

combined model. We will compare first: the revenue difference between the two models; second:

the time difference to completely implement these selected requirements.

Statistics for the 100 cases Statistics only for the delayed cases Data Set Dep

ratio

No.

of

Dep
Average

revenue

(new)

Average

revenue

(knapsac

k)

Averag

e

project

span

Times

of

delay

Average

revenue

(new)

Average

revenue

(knapsack)

Average

project

span

Average

revenue

difference

Average

time

difference

3% 1 139.17 141.27 56.62 9 123.67 147 73 15.87% 21.67%

10% 3 128.06 132.53 58.15 17 110.53 136.82 76 19.15% 26.67%

15% 5 114.81 121.45 59.25 22 99.27 129.45 76.59 22.92% 27.65%

Small

(9 Reqs,

60 days)

20% 7 105.59 110.87 57.72 24 104.02 126.14 76.07 16.84% 26.78%

0.5% 24 40420.1 40429.5 30.48 17 40442.1 40493.5 32.82 0.13% 9.41%

1% 48 39275.5 39479.1 32.62 45 38965.7 39400.9 35.82 1.15% 19.41%

2% 97 35581.6 36103.1 36.41 68 35351.8 36118.7 39.43 2.11% 31.42%

Master

(99 Reqs,

30 days)

5% 242 26947.7 29127.3 45.61 95 26804.5 29098.8 46.43 7.84% 54.77%

 100

Table 10.4 the result of the second test

The test data is documented in the above table. It can be divided into two parts: the statistics for

the whole 100 cases (from the fourth column to the sixth column), and the statistics only for the

delayed projects (from seventh column to the twelfth column).

The following 2 charts present the results.

model comparison based on small dataset

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

10% 20% 30% 40%

precentage of possible dependency

0

5

10

15

20

25

30

average revenue
difference

average time
difference

times of delay

Figure 10.8 the model comparison based on small dataset

In the small data set, it is clear that the average revenue of the knapsack model is lower than the

new model. We can also find both the revenue of the two models decreases as the number of

dependencies increase. In the delayed projects, as we expected, following the Select� Schedule

processes, the more dependencies we have, the more the possibility of the project being delayed.

However, this trend does not appear for the average project span, and although the average

revenue difference is lower than the average time difference, they do not differ too much.

 101

model comparison based on master dataset

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0.50% 1% 2% 5%

percetage of possible dependency

0

10

20

30

40

50

60

70

80

90

100

average revenue
difference

average time
difference

times of delay

Figure 10.9 the model comparison based on master dataset

In the master data set, it is also clear that the revenue of the new model is lower than the revenue

of the knapsack model. As the number of dependencies increase, following the Select� Schedule

processes, the average project span extends and the chance that the project is delayed becomes

higher and higher. The same trend exists on the average revenue difference and the average time

difference, but this time, the difference between these figures are significant (see figure 10.9). For

example when there are 48 dependencies, the revenue in the new model is only 1.15% lower than

the knapsack model, but to implement the requirements selected by the knapsack model, we need

to spend 19.41% more time than planed. Because there are more requirements in the master

dataset, we consider the result is more representative than the result from the small dataset.

We can draw two conclusions from this test:

� First: the precedence constraint significantly influence the requirement selection &

scheduling and it is more efficient to consider the project plan issues when select the

requirements. From the test result, when ignore the timing issues on the requirement selection,

the project stand a high change of being delayed. The simulation result also suggests that it is

more efficient to take the project plan issues into account when selecting the requirements,

because the revenue loss of the new model is significantly less than the additional time we

would spend on the implementation.

� Second, in a market oriented approach, the original Select�Schedule processes are

challengeable. In order to fulfill the pressure on time to market, we also need to consider the

project plan issue when we select the requirements. When the processes are separated the

project stands a higher chance of being late, and from the above conclusion it is quite evident

that this process is also not quite efficient. So far, none of the release planning process or

software engineering process takes selection and timing as a joint process. A new approach in

release planning process is therefore needed and more research, attention and time will be

required to achieve considerable results.

 102

11. Conclusion & future research

11.1 conclusions

This thesis has investigated software release planning from the perspective of three different

scientific fields—the information science part on the factors and processes for release planning;

the methodical modeling part on Integer Linear Programming models; and the computer science

part on prototype design and testing. The following figure shows the components and relationships

within the three parts.

Figure 11.1 relationships within the three fields

In the field of information science, we searched for what are the factors and processes for making

a software release plan. We have identified eight factors: value, cost, priority, risk, quality and

dependency for each requirement, and the time to market and the company resources based on the

market and company’s current situation. Regarding to the release planning processes, it follows

 103

five key processes issue�specify�select�schedule�construct to determine whether a

requirement should be constructed. The factors are estimated during the “specify” phase and will

be used as selection and scheduling criteria in the follow two processes.

Mostly, a product manager needs to deal with hundreds or even thousands of requirements.

Without proper tooling support, it will be a tedious job and almost impossible to find the best

solution. The complexity of the problem requires us first to model the problem properly through

mathematical means. The second part of the thesis has been devoted to this issue. Using integer

linear programming, we have presented three main models: the knapsack model for requirement

selection, the RCPSP model for requirement scheduling and a combined model for requirement

selection and scheduling at the same time. We have also modeled some management steering

mechanisms as extensions of the basic models, like requirement dependencies, different time

availability the holiday seasons, etc. Because all the models are based on integer linear

programming, most of the models and extensions are compatible with others, only with few

exceptions. The details of the relationship between each model can be found in chapter 8.

Based on the mathematical models in the second part, we have implemented two prototypes using

Java programming language—the requirement scheduling models based on RCPSP and the

combined model for requirement selection and scheduling. Using these two prototypes, we ran

two simulation tests. The first test is how much the requirement dependencies can influence the

project. Based on the simulation result, we found out the requirement dependencies that have

significant influence on the project span. The second simulation test was to compare the result

when we select and schedule the requirement separately or when we select and schedule

requirement simultaneously. The simulation result suggests combining the two processes together,

can not only guarantee the project to finish on time, but will also increase efficiency.

The simulation results have suggested an opportunity for process improvement on release

planning. So far, the requirement selection and requirement scheduling are separated in most of

the release planning process models and the marketed oriented software development models. In

fact, combining these two processes appears to be better. It can guarantee the completion of the

project within the set deadline as well as will increase efficiency. This may trigger more

investigations on the market oriented software development processes model.

11.2 future researches

As the thesis has investigated in three scientific fields, the future research also includes three parts.

� In the information science field, more attentions are required on the release planning process

optimization. The simulation results in this thesis show convincing figures to combine the

requirement selection and scheduling together. This has suggested a potential field for

process improvement in the future.

� In the mathematical modeling field, there are still two possibilities for improve the models.

First, ILP is not a very efficient way for scheduling. Some other techniques like Constraint

Satisfaction Problem (CSP) and local search method may appear to be more efficient. The

simulation results also suggest using some searching mechanism for scheduling, because the

 104

optimal value found by ILP does not differ too much from the lower bound, which can be

computed on polynomial time. Another opportunity is to better integrate the different models.

The scheduling model and the combined model for selection and scheduling do not fully

integrated with the knapsack model at this moment. For example, we need to set restrictions

on hiring external personnel if we want to use the scheduling mode later. Better models, or

additional extensions are required to enrich the functionality of the models and the

compatibility of the models.

� In the computer science field, we can try to find better tools for release planning support. For

example to show the results in the Gantt chart is a good extension to visualize the result. It is

also better to design and database system for requirement management instead of using

hard-copy data.

 105

Appendix 2 the experiment result based on

other sample

Schedule result (Small)

Schedule result (Master)

3 The last two rows (2% & 5%) are based on 20 runs each.

Data Set

Small-result

Dep ratio Number

of Deps

Max

days

Min

days

Average

finishing

time

Times

of

delay

Difference

from the

lower bound

10% N/A

20% 1 83 50 57.78 45 0.00%

30% N/A

(4 Reqs, 50

days)

40% 2 98 50 69.24 84 1.72%

10% 1 83 55 58.80 16 0.00%

20% 2 93 55 63.70 40 0.93%

30% 3 103 55 70.42 62 2.64%

Small-result

(5 Reqs, 60

days)

40% 4 108 55 75.32 76 2.12%

10% 1 83 70 72.21 17 0.00%

20% 2 103 70 75.06 34 2.48%

30% 3 118 70 81.62 59 2.64%

 (5 Reqs, 70

days)

40% 4 118 70 87.17 65 4.33%

Data Set

Master-result

Dep ratio Number

of Deps

Max

days

Min

days

Average

finishing

time

Times

of

delay

Difference

from the

lower bound

0.5% 9 20 20 20 0 0.00%

1% 19 29 20 21.17 32 5.85%

2% 39 31 20 21.41 39 3.27%

 (63 Reqs,

20 days)

5% 97 51 22 33.76 100 8.11%

0.5% 14 40 30 30.93 33 2.70%

1% 29 46 30 31.38 27 0.22%

2% 57 69 30 36.92 76 2.13%

 (76 Reqs, 30

days)

5% 142 84 38 56.15 100 3.47%

0.5% 17 44 40 40.18 13 0.32%

1% 34 50 40 40.52 13 0.30%

2% 69 50 40 43.95 14 2.12%

(84 Reqs,

40 days) 3

5% 174 90 52 71.7 20 4.93%

 106

References

1 Xu, L., & Brinkkemper, S. (2005). Concepts of Product Software: Paving the Road for Urgently
Needed Research. In J. Castro & E. Teniente (Eds.), The first International Workshop on
Philosophical Foundations of Information Systems Engineering (PHISE'05) (pp. 523-528). FEUP
Press
2 The Slide of MBI colloquium—ITEA project proposal
3 Donald Firesmith. “Prioritizing Requirements”. Software Engineering Institute, U.S.A.
JOURNAL OF OBJECT TECHNOLOGY Vol. 3, No.8, September-October 2004
4 Leffingwell, D., and Widrig, D. “Managing Software Requirements - A Unified Approach”,
Addison-Wesley, Upper Saddle River, NJ. 2000
5 Suzanne Robertson, James Rovertson. “Mastering the requirements process”. ACM Press, 1999
6 Michael R. Garey and David S. Johnson “Computers and Intractability: A Guide to the Theory
of NP-Completeness”, W.H. Freeman. 1979.
7 Marjan van den Akker, Sjaak Brinkkemper, Guido Diepen, Johan Versendaal. “Software product
release planning through optimization and what-if analysis” …
8 Karlsson, J and Ryan, K. “A cost-Value Approach for Prioritizing Requirements”. IEEE Software,
September/October 1997 pp 67-74.
9 Ruhe, G. , Saliu, M.O. “The Art and Science of Software Release Planning”, IEEE Software, vol 22,
no 6, November/December 2005, pp 47-53
10 Inge van de Weerd, Sjaak Brinkkemper, Richard Nieuwenhuis, Johan Versendaal, Lex Bijlsma “A
reference framework for software product management”. Utrecht UniversityTechnical Report
UU-CS-2006-014, 2006.
11 Ruhe, G. , Saliu, M.O. “The Art and Science of Software Release Planning”, IEEE Software, vol 22,
no 6, November/December 2005, pp 47-53
12 Lionel C. Briand, Khaled El Emam, Dagmar Surmann, Isabella Wieczorek, Katrina D. Maxwell
“An assessment and comparison of common software cost estimation modeling techniques” .
Proceedings of the 21st international conference on Software engineering, 1999 Pages: 313 - 322
13 Sjaak, Brinkkemper, : slides of “information business” course.
14 Kitchenham, B. Pfleeger, S.L. “Software quality: the elusive target”, Software, IEEE
Publication Date: Jan 1996,pp 12-21
15 Cusumano, M.A.: The Business of Software. Free Press (2004)�
16 Brealy, R.A, S.C. Myers, A.J. Marcus “Fundamentals of Corporate Finance.”
McGraw-Hill/Irwin, New York, 2004, 4th edition.
17 D. Greer, G. Ruhe. “Software release planning: an evolutionary and iterative approach” Information
and Software Technology 46 (2004) 243–253
18 Günther Ruhe. “Software release planning”. Handbook Software Engineering and Knowledge
Engineering - Vol. 3. 2005
19 Marjan van den Akker and Han Hoogeveen. “Minimizing the number of late jobs in case of
stochastic processing times with minimum success probabilities”. UU technical report
UU-CS-2004-067. 2004
20 Dimitri Golenko-Ginzburg, Ahron Gonik, Zohar Laslo, “Resource constrained scheduling
simulation model for alternative stochastic network projects”. Mathematics and Computers in
Simulation 63 (2003) 105-117
21 Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J. “An industrial survey of
requirements interdependencies in software release planning”. In: Proceedings of the 5th IEEE
international symposium on requirements engineering, 2001, pp 84–91
22 Pär Carlshamre, “Release Planning in Market-Driven Software Product Development: Provoking an
Understanding”. Requirements Engineering, Volume: 7, Issue: 3 (September 1, 2002), pp: 139-151
23 Donald Firesmith: “Prioritizing Requirements”, in Journal of Object Technology, vol. 3, no. 8,
September-October 2004, pp. 35-47
24 Novorita, R., Grube, G., “Benefits of Structured Requirements Methods for Market-Based
Enterprises”, Proceedings of International Council on Systems Engineering Sixth Annual International

 107

Symposium on Systems Engineering: Practice and Tools (INCOSE’96), Boston USA, July 1996
25 Sawyer, P., Sommerville, I., Kotonya, G., “Improving Market-Driven RE Processes”, Proceedings
of International Conference on Product Focused Software Process Improvement (PROFES’99), Oulu
Finland, June 1999
26 Cusumano, M.A.: The Business of Software. Free Press (2004)�
27 Björn Regnell, Lena Karlsson, Martin Höst. “An Analytical Model for Requirements Selection
Quality Evaluation in Product Software Development”. RE'03 - IEEE 11th International Conference on
Requirements Engineering, September 8-12, Monterey Bay, California USA, 2003
28 JN och Dag, V Gervasi, S Brinkkemper, B Regnell, “A Linguistic-Engineering Approach to
Large-Scale Requirements Management”. IEEE Software, January 2005, pp 32-39
29 Pär Carlshamre, Björn Regnell: “Requirements Lifecycle Management and Release Planning in

Market-Driven Requirements Engineering Processes” International Workshop on the Requirements

Engineering Process: Innovative Techniques, Models, and Tools to support the RE Process, 6th-8th of

September 2000, Greenwich UK, preceeding the DEXA Conference
30 Christopher McPhee, Dr. Armin Eberlein , “Requirements Engineering for Time-to-Market

Projects” Ninth Annual IEEE International Conference and Workshop on the Engineering of

Computer-Based Systems. 2002
31 Ruhe, G. , Saliu, M.O. “The Art and Science of Software Release Planning”, IEEE Software, vol 22,
no 6, November/December 2005, pp 47-53
32 Suzanne Robertson, James Robertson, “Mastering the requirements process”. ACM press book.
1999
33 Günther Ruhe. “Software release planning”. Handbook Software Engineering and Knowledge
Engineering - Vol. 3. 2005
34 Marjan van den Akker and Han Hoogeveen. “Minimizing the number of late jobs in case of
stochastic processing times with minimum success probabilities”. UU technical report
UU-CS-2004-067. 2004
35
樊耘，等。 “管理学” 陕西人民出版社， 2003。 Pp 313

36 Wolsey L.A. “Integer programming”. Wiley-Interscience Series In Discrete Mathematics and
Optimization. 1998
37 Marjan van den Akker, Sjaak Brinkkemper, Guido Diepen, Johan Versendaal. “Software product
relese planning hrough optimization and what-if analysis”
38 Björn Regnell, Lena Karlsson, Martin Höst. “An Analytical Model for Requirements Selection
Quality Evaluation in Product Software Development”. RE'03 - IEEE 11th International Conference on
Requirements Engineering, September 8-12, Monterey Bay, California USA, 2003
39 S.Martello and P.Toth. (1990) “Knapsack Problems: Algorithms and computer Implementations”.
Wiley-Interscience Series In Discrete Mathematics and Optimization.
40 Jung, H.-W. (1998), “Optimizing Value and Cost In Requirements Analysis.” IEEE Software,
July/August 1998 pp 74-78
41 Crescenzi P. and V.Kann, eds. “A compendium of NP optimization problem”.
https://www.nada.kth.se/viggo/wwwcompendium/wwwcompendium.html
42 Yeh, A., “Requirements Engineering Support Technique (REQUEST) – A Market Driven

Requirements Management Process”, Proceedings of Second Symposium of Quality Software

Development Tools , pp. 211-223, New Orleans USA, IEEE Computer Society Press, May 1992.
43 Sawyer, P., Sommerville, I., Kotonya, G., “Improving Market-Driven RE Processes”, Proceedings of
International Conference on Product Focused Software Process Improvement (PROFES’99), Oulu
Finland, June 1999.
44 Novorita, R., Grube, G., “Benefits of Structured Requirements Methods for Market-Based

Enterprises”, Proceedings of International Council on Systems Engineering Sixth Annual International

Symposium on Systems Engineering: Practice and Tools (INCOSE’96), Boston USA, July 1996.
45 Emile Aarts, Jan Karel Lenstra. “ Local Search In Combinatorial Optimization”. Wiley 1997. pp 361
– 415.
46 Aristide Mingozzi, Vittorio Maniezzo, Salvatore Ricciardelli, Lucio Bianco. “An Exact Algorithm

 108

for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation”.

Management Science, Vol. 44, No. 5. (May, 1998), pp. 714-729.
47 Blazewicz, J., J. K. Lenstra, and A. H. G. Rinnooy Kan, "Scheduling Projects Subject to Resource

Constraints: Classification and Complexity," Discrete Applied Math., 5 (1983), 11-24.
48 Balakrishnan, R, and W. J, Leon, ,”Quality and Adaptability of Problem-Space Based

Neighborhoods for Resource Constrained Scheduling,” Working Paper, Department of Industrial

Engineering, Texas A & M University, College Station, TX, 1993.
49 Demeulemeester, E, and W. Herroelen, "A Branch and Bound Procedure for the Multiple

Resource-Constrained Project Scheduling Problem," Management Science., 38 (1992), 1803-1818.
50 Marjan van den Akker, Sjaak Brinkkemper Guido Diepen, Johan Versendaal, “Software product
release planning through optimization and what-if analysis”
51 Pär Carlshamre, “Release Planning in Market-Driven Software Product Development: Provoking an
Understanding”. Requirements Engineering, Volume: 7, Issue: 3 (September 1, 2002), pp: 139-151
52 , R.A., S.C. Myers, A.J. Marcus: Fundamentals of Corporate Finance. McGraw-Hill/Irwin, New
York, 2004, 4th edition
53 Thomas H.Cormen, Charlse E. Leiserson, Ronald L. Riverst, Clifford Stein . Introduction to
algorithms “, second edition. MIT Press, 2001, pp 549 -551

