
INFOMFPLC – Functional Programming, Languages and Compilers

Java

Andres Löh

Deadline: 22 October 2009

The goal of this assignment is to write a code generator for a subset of Java. The
target language is the “Simple Stack Machine” (SSM), a virtual machine for which a
graphical simulator is available.

You are given a working framework. The task is to extend the compiler with new
functionality, as specified and explained below.

For this task, you are supposed to use the parser combinators from the lecture notes,
which are provided in a library called ParseLib.hs that is for download from the
course Wiki.

General remarks

Only solutions that type-check will even be considered. If running the compiler using
the command ghc --make -O Main.hs fails, your solution will not be graded. Further-
more, programming style has an impact on grading. It is not enough to submit a solution
that works. It should be readable, commented, and written in an idiomatic style that is
easy to understand for other Haskell programmers. Comments are necessary whenever
it is not obvious what the code does. Paraphrasing the code in comments is not helpful.
The use of existing library functions such as map, foldr, filter, zip – just to name a
few – is explicitly encouraged. The use of all existing libraries is allowed (as long as the
program still compiles with the above invocation). Copying solutions from the inter-
net is not allowed. Teamwork in teams with a maximum of 2 members is allowed and
encouraged.

Submission Submit a zip file containing the sources (not the compiled program) by
email. Important: Include a README text file that describes where you have changed
what, and what ecactly you did. Also make sure you document all your changes in the
sources at the appropriate places.

Acknowledgements

This assignment is heavily inspired and to a large extent copied from an assignment
Johan Jeuring has been using.

1

Structure

The main part of this assignment is a documentation of the given framework. In the
very end, several tasks are listed.

The following files/modules are given:

• ParseLib.hs: parser combinators.

• JavaLex.hs: a lexical scanner for Java that transforms flat input (a string) into a
list of tokens.

• JavaGram.hs: types and functions for parsing Java.

• JavaAlgebra.hs: an algebra for the Java grammar, and a corresponding fold

function.

• SSM.hs: types and utilities for representing SSM programs.

• JavaCode.hs: the code generator as an algebra, to transform Java abstract syntax
into SSM code. In its current form, the code generator does not yet work cor-
rectly. It will be one of your tasks to extend the algebra in order to make the code
generator more useful.

• Main.hs: main program that contains a driver calling the different phases in the
right order. The program reads a Java file and writes an SSM result.

• ssmui.jar: graphical simulator for the SSM. With this, you can run the generated
code and test whether your code generator is working correctly.

• ssm.bat/ssm.sh: wrapper script to call the Java interpreter with ssmui.jar.

SSM

The SSM architecture will be explained in more detail in the next lecture. Some instruc-
tions can also be found on the SSM homepage:

http://people.cs.uu.nl/atze/SSM/index.html

Lexical analysis

The goal of this phase, implemented in module JavaLex.hs, is to split the input into a
sequence of tokens, and to discard irrelevant information such as whitespace. Lexing is
a simple form of parsing, and while we could implement a DFA to perform the lexing,
we use the parser combinators because they are more convenient.

Tokens are given by the following Haskell datatype:

data Token == POpen | PClose -- parentheses ()
| SOpen | SClose -- square brackets []

2

| COpen | CClose -- curly braces
| Comma | Semicolon
| KeyIf | KeyElse
| KeyWhile | KeyReturn
| KeyTry | KeyCatch
| KeyClass | KeyVoid
| StdType String -- the 8 standard types
| Operator String -- the 15 operators
| UpperId String -- uppercase identifiers
| LowerId String -- lowercase identifiers
| ConstInt Int

| ConstBool Bool

deriving (Eq, Show)

There are 16 proper terminal symbols, for single symbols such as braces or keywords
such as “while”. There are also pseudo-terminals with extra information attached, such
as the name of a standard type, an operator, a variable or a literal.

To associate the proper nonterminals with their textual representation, we use an
association list:

terminals :: [(Token, String)]

terminals ==

[(POpen , "(")

, (PClose , ")")

, (SOpen , "[")

, (SClose , "]")

, (COpen , "{")

, (CClose , "}")

, (Comma , ",")

, (Semicolon, ";")

, (KeyIf , "if")

, (KeyElse , "else")

, (KeyWhile , "while")

, (KeyReturn, "return")

, (KeyTry , "try")

, (KeyCatch , "catch")

, (KeyClass , "class")

, (KeyVoid , "void")

]

This list is then used to create a parser that can choose between any of these terminals:

lexTerminal :: Parser Char Token

lexTerminal ==

choice (map (\(t, s) -> const t <$> token s) terminals)

3

For those pseudo-terminals that represent a list of possibilities (the 8 standard types
and 15 operators), we use a utility function that, given the constructor of the pseudo-
terminal and a list of possible strings, builds the parser:

lexEnum :: (String -> Token) -> [String] -> Parser Char Token

lexEnum f xs == f <$> choice (map token xs)

We can’t use the above function to handle the token types that can represent a wide
class of terminals such as identifiers. Here, we use an approach based on satisfy. We
also use greedy rather than many to make sure that a connected string of letters will
under no circumstances be interpreted as two separate identifiers:

lexLowerId :: Parser Char Token

lexLowerId == (\x xs -> LowerId (x:xs)) <$>

satisfy isLower <*> greedy (satisfy isAlphaNum)

lexUpperId :: Parser Char Token

lexUpperId == (\x xs -> UpperId (x:xs)) <$>

satisfy isUpper <*> greedy (satisfy isAlphaNum)

lexConstInt :: Parser Char Token

lexConstInt == (ConstInt . str2int) <$> greedy1 (satisfy isDigit)

where

str2int == foldl (\r c -> 10 * r + ord c - ord ’0’) 0

Finally, we can combine all the different functions to create a parser for a single token:

stdTypes :: [String]

stdTypes == ["int", "long", "double", "float",

"byte", "short", "boolean", "char"]

operators :: [String]

operators == ["+", "-", "*", "/", "%", "&&", "||",

"^", "<=", "<", ">=", ">", "==",

"!=", "="]

lexToken :: Parser Char Token

lexToken == choice [lexTerminal

, lexEnum StdType stdTypes

, lexEnum Operator operators

, lexConstInt

, lexLowerId

, lexUpperId

]

The order in which operators are mentioned in operators is important. For instance,
">=" must occur before ">", otherwise the sequence ">=" might be interpeted as the
operator ">" followed by the operator "=" rather than as a single operator. For similar

4

reasons, the keyword parser lexTerminal and the standard type parser must occur
before lexLowerId, because a keyword such as "class" or a type such as "int" could
also be interpreted as lowercase identifiers.

Now that we have a parser for a single token, we have to create a parser for a list
of tokens. Tokens may be separated by whitespace, so we define a parser to consume
whitespace:

lexWhiteSpace :: Parser Char String

lexWhiteSpace == greedy (satisfy isSpace)

The main lexical scanner then consumes a list of tokens, where each token may be
followed by whitespace, and additional whitespace may occur before the first token.
All the tokens are collected, the whitespace is discarded:

lexicalScanner :: Parser Char [Token]

lexicalScanner == (_ x -> x) <$>

lexWhiteSpace <*>

many ((\x _ -> x) <$> lexToken <*> lexWhiteSpace)

In this module, we also define a few functions that are useful for the actual Java parser.
In the context-free parser, that is run after the lexical scanner, the tokens play the role
of the symbols. For instance, a semicolon is lexed using symbol ’;’, but parsed using
symbol Semicolon. We define an abbreviation for this:

sSemi :: Parser Token Token

sSemi == symbol Semicolon

For pseudo-nonterminals we define abbreviations using satisfy. For example, here is
a parser recognizing any standard type:

sStdType :: Parser Token Token

sStdType == satisfy isStdType

where isStdType (StdType _) == True

isStdType _ == False

There are similar functions sUpperId, sLowerId, sConst and sOperator.

Context-free parsing

We are going to use the following grammar for Java, where class is the start nonterminal:

class ::= class upperid { member∗ }

member ::= decl ; | method
method ::= typevoid lowerid (decls?) block

decls ::= decl | decl , decls
decl ::= type lowerid

5

block ::= { statdecl∗ }

statdecl ::= stat | decl ;

stat ::= expr ;

| if (expr) stat else?
| while (expr) stat
| return expr ;

| block
else ::= else stat

typevoid ::= type | void
type ::= type0 ([])∗

type0 ::= stdtype | upperid

expr ::= exprsimple
| exprsimple operator expr

exprsimple ::= const | lowerid | (expr)

Terminals are written in typewriter font, nonterminals in italics. The nonterminals
upperid, lowerid, operator, and const are referring to the corresponding pseudo-tokens.

Convince yourself that the file JavaGram.hs contains an abstract syntax and parser
for the context-free grammar above.

Note that the names of classes, methods, variables etc. are stored as values of type
Token in the abstract syntax. For example, the abstract syntax for member is defined as

data Member == MemberD Decl

| MemberM Type Token [Decl] Stat

deriving Show

The single production for method has been inlined, and the lowerid is represented as
Token. This also means that for instance a variable "x" in an expression is represented
as ExprVar (LowerId "x"). The double constructors are in this case a bit superfluous,
but are useful in the case of constants, where integer and boolean constants can both be
handled via the constructor ExprConst.

Note also that in Member above, the nonterminal typevoid is represented as Type. The
distinction whether void is allowed or not is only checked by the parser, but not re-
flected in the abstract syntax. There are several such small simplifications in the abstract
syntax, for instance block is represented as Stat. The simplifications lead to a slightly
simpler algebra type and fold function. We will discuss these next.

Algebra and fold

For the semantic functions, we are going to use a fold over the abstract syntax of
Java. The definition of the algebra type and the function itself are given in the file
JavaAlgebra.hs. They are following the general scheme for the algebras and folds of
systems of datatypes. We let our algebra range over classes, members, statements and
expressions. We could easily include more nonterminals (declarations and types, for
instance), but these four are enough to get started.

6

Simple Stack Machine

In order to generate target code for the simple stack machine, we first have to know
the structure of its language. We represent the abstract syntax of SSM code as a Haskell
datatype, and create SSM code by producing values of that datatype, and then printing
that value.

The abstract syntax and the printer are defined in SSM.hs. The structure of an SSM
program is simple – it is a list of instructions:

type Code == [Instr]

There are 44 possible instructions, represented as constructors of the datatype Instr:

data Instr

== STR Reg | STL Int | STS Int | STA Int -- Store from stack
| LDR Reg | LDL Int | LDS Int | LDA Int -- Load on stack
| LDC Int | LDLA Int | LDSA Int | LDAA Int -- Load on stack
| BRA Int | Bra String -- Branch always (relative/to label)
| BRF Int | Brf String -- Branch on false
| BRT Int | Brt String -- Branch on true
| BSR Int | Bsr String -- Branch to subroutine
| ADD | SUB | MUL | DIV | MOD -- Arithmetical ops on 2 operands
| EQ | NE | LT | LE | GT | GE

-- Relational ops on 2 operands
| AND | OR | XOR -- Bitwise ops on 2 operands
| NEG | NOT -- Bitwise ops on 1 operand
| RET | UNLINK | LINK Int | AJS Int -- Procedure utilities
| SWP | SWPR Reg | SWPRR Reg Reg | LDRR Reg Reg -- Various swaps
| JSR | TRAP Int | NOP | HALT -- Other instructions
| LABEL String -- Pseudo-instruction for generating a label
deriving Show

Some instructions have parameters. This is either a number (Int), a register (Reg), or a
label (String). For registers, the datatype Reg is defined:

data Reg == PC | SP | MP | R3 | R4 | R5 | R6 | R7
deriving Show

For the case that you prefer to address all registers by number, abbreviations r0 to r7

are defined, in particular

r0 == PC

r1 == SP

r2 == MP

The branch instructions are parametrized by a relative offset, or by a label name.
Labels in the code can be specified using the pseudo-instruction LABEL. The final trans-
lation phase (the assembler) will resolve all labels and fill in addresses.

7

The printer for SSM code is given by the function formatCode. It uses the derived
show function as a basis, and postprocesses the resulting output a bit. Parentheses and
string quotes are removed, and all instructions except for labels are indented for better
readability.

In order to copmute the offsets for jumps, we have to be able to calculate the length
that a piece of SSM code takes up in memory. Because of the different numbers of pa-
rameters, not every instruction has the same size. For this purpose, we define codeSize
and instrSize as follows:

codeSize :: Code -> Int

codeSize == sum . map instrSize

instrSize :: Instr -> Int

instrSize (LABEL _) == 0 -- pseudo-instruction, removed by assembler
instrSize (LDRR _ _) == 3 -- two instructions of size 3
instrSize (SWPRR _ _) == 3

instrSize (BRA _) == 2 -- 20 instructions of size 2
...

instrSize (SWPR _) == 2

instrSize _ == 1 -- the rest has size 1

Code generation for Java

Everything is available now to generate code for Java. We define an algebra for this
purpose. In the beginning, we specify the types of the results we want to generate,
and we do so for each of the four types we included in the algebra: classes, members,
statements, and expressions. For the start symbol Class this is Code, because SSM code
is what we want to generate. For members and statements we also choose Code. For
expressions, we also want to generate code, but it turns out that sometimes we need
to know the value, and sometimes we need to know the address of an expression. We
therefore need some input of type

data ValueOrAddress == Value | Address
deriving Show

before we can produce code. Therefore, the type of our code generation algebra be-
comes

codeAlgebra :: JavaAlgebra Code -- result type for Class
Code -- result type for Member
Code -- result type for Stat
(ValueOrAddress -> Code)

-- result type for Expr

The algebra is a tuple of functions, so the algebra definitely has the following form:

8

codeAlgebra ==

((fClas)

, (fMembDecl, fMembMeth)

, (fStatDecl, fStatExpr, fStatIf, fStatWhile, fStatReturn, fStatBlock)

, (fExprCon, fExprVar, fExprOp)

)

where

...

The four datatypes that constitute the algebra have 12 constructors in total. We give
each of the associated functions a name, so that we can define them one by one.

Classes A class is translated by calling the label "main" and then halting execution.
The code for all the methods follows. The argument ms is of type [Code], i.e., the
methods are already available in translated form, so all we have to do is to flatten the
list and add the instructions at the end.

fClas k ms == [Bsr "main", HALT] ++ concat ms

Methods For methods, there are two constructors: declarations (of variables), and
method-definitions. Declarations provide information to the compiler, but do not gen-
erate code:

fMembDecl d == []

A method starts with a label that can be used to call the method via s subroutine-call
(Bsr). We then insert the code for the body of the method, and finally include a return
instruction that jumps back to the place where the method has been called.

fMembMeth t m ps s == case m of

LowerId x -> [LABEL x] ++ s ++ [RET]

The pattern match is unsafe, because we only check for LowerId. We use our knowledge
of the parser, where we accept only a lowerid, but decided to represent it as a token for
simplicity. Note also that we completely ignore the parameters ps for now – something
to be changed by you later!

Statements For statements, there are five constructors, hence five functions we have
to write. Again, a declaration does not generate any code:

fStatDecl d == []

If an expression occurs as a statement, we can in principle just include the code gener-
ated for the expression and execute it because of potential side effects. The expression

9

has a result, however, which is left on the stack, and a statement does not compute a
result. We therefore discard the top element of the stack after executing the expression
by adjusting the stack pointer:

fStatExpr e == e Value ++ [pop]

where

pop :: Instr

pop == AJS (-1)

Recall that expressions return results of type ValueOrAddress -> Code, hence we pass
Value here in order to get at the code that computes the value. It will become clear
below what the parameter affects the code generated for an expression.

For if- and while-statements, we have to join the different blocks and add jumps
around them. For this, we need codeSize to compute the correct jump offsets:

fStatIf e s1 s2 == let c == e Value

n1 == codeSize s1

n2 == codeSize s2

in c ++ [BRF (n1 + 2)] ++ s1 ++ [BRA n2] ++ s2

fStatWhile e s1 == let c == e Value

n == codeSize s1

k == codeSize c

in [BRA n] ++ s1 ++ c ++ [BRT (-(n + k + 2))]

We only partially implement return statements so far. Our functions cannot yet com-
municate results back to the caller, therefore we compute the result, but then discard it
using pop. Finally, we do of course return to the caller using RET:

fStatReturn e == e Value ++ [pop] ++ [RET]

A whole block gives us a [Code], which we flatten using concat:

fStatBlock ss == concat ss

Expressions As mentioned before, for expressions we need an extra parameter that
specifies whether we are interested in the address or the value of the expression. The
address is needed for the left hand side of an assignment. For example, when we write
the Java code

x == y;

we want to store the value of y in the address of x.

10

Not all expressions are valid on the left hand side of an assignment. For the time
being, we therefore ignore the extra argument in some places and assume we are inter-
ested in the value. One such case is integer constants, where we just push the constant
onto the stack:

fExprCon c va == case c of

ConstInt n -> [LDC n]

In the variable case, however, we pay attention to the argument. If we are interested
in a value, we use LDL to load a local variable; if we are interested in an address, we
use LDLA to load the address of a local variable – a small, but important difference!
The current code generator does not calculate the locations of local variables yet, and
always assumes the constant 37 as location for every variable:

fExprVar v va == case v of

LowerId x -> let loc == 37

in case va of

Value -> [LDL loc]

Address -> [LDLA loc]

For most of the operator expressions, we compute the values of the left and right
operands, and then use the instruction corresponding to that operator to compute the
result. The assignment operator is an exception: it computes the value of the right
operand and duplicates it using LDS 0, then the address of the left operand, and uses
STA in the end to perform the assignment. The duplication causes the assigned value to
be left on the stack as result of the assignment operation, such that for example y == x == 0;
works as expected.

fExprOp o e1 e2 va ==

case o of

Operator "=" -> e2 Value ++ [LDS 0] ++ e1 Address ++ [STA 0]

Operator op -> e1 Value ++ e2 Value ++ [opCodes ? op]

The table opCodes associates operators with their instructions, for instance "+" with
ADD.

The driver

The file Main.hs contains the main program. It reads the command line arguments,
interprets them as a list of java files, and compiles each of them using the functional-
ity we have just discussed. Each file is scanned, then parsed, then transformed using
foldJava codeAlgebra. As a final step, the resulting SSM code is printed to an .ssm

file. Such a file can be loaded into the simulator to see what happens. A valid source file
example.java is included. Without modifications to the file and/or the code generator,
however, not much can be seen when running the result.

11

Tasks

1. Extend the compiler so that not only integer, but also boolean and character constants
can be handled. The SSM language only knows integers, so internally, you will have to
map booleans and characters to integers.

2. Fix the priorities of the operators. In the starting framework, all operators have the
same priority.

3 (medium). Add the possitibility to “call a method with parameters” to the syntax of
expressions, and add the possibility to deal with such calls to the rest of the compiler.
Make sure that the parameters can be used within the function body. Hint: In the
algebra, you have to change the result types. You need to pass around an environment
that contains the addresses of available variables.

4 (medium). Extend the code generator such that methods can have a result. You may
choose whether you want to pass the result via register or via the stack.

5 (difficult). Adapt the code generator such that the declared local variables can be
used. Hint: This is tricky, because in Java, local variables do not have to be declared at
the beginning of a method body, but can be declared later as well. You should change
the result type for statements in the algebra to be a pair of two things: the generated
code, plus a list of variables declared. Due to lazy evaluation, you can use the variable
list for defining the code, by writing a “circular” program:

let (code, vars) == (... vars ... -- compute code using vars

, ... -- compute vars

)

in (code, vars)

Bonus tasks

Try to choose two of the following tasks. These are optional, but may improve your
grade.

6. In the lexer, discard Java comments.

7. In the parser and code generator, add assign/increment operators such as += and ++.

8. In the parser and code generator, add a for statement.

9. Next to the code generator, define a separate algebra that pretty-prints Java code
back in text form using a standard layout (indented bodies, aligned braces, etc.).

10. Change the code generator for the logical operators, so that they are computed
lazily, as is usual in Java. In other words, the right operand should only be evaluated if
necessary to determine the result.

12

11 (difficult). Add a possibility for variables declared in the class to be used in all the
methods, as a sort of global variables. Hint: find out for yourself how to allocate and
find these, for instance by using an additional register, or indirectly via the original
mark pointer that every method stores.

12 (medium). Modify the code generator so that it not only generates code, but also
error messages, for a number of non-syntactic errors. Examples: undeclared variables,
incorrect types of parameters, incorrect types of return values etc.

13 (very difficult). Modify class variables to be proper object variables, not static vari-
ables as before. Also add a new construct to create new objects. Hint: every method is
passed an implicit extra parameter, the pointer to the current object. Allocate objects in
a separate memory segment, and use an additional register to find them.

13

