\qquad

You must show all work.

What is the value of $\cot J$?

1) $\frac{\sqrt{3}}{3}$
2) 2
3) $\sqrt{3}$
4) $\frac{2 \sqrt{3}}{3}$
3. On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of $\sin 240^{\circ}$.

4. What is the value of $\tan \frac{\pi}{3}+\cos \pi$?
1) $\frac{\sqrt{3}+3}{3}$
2) $\frac{\sqrt{3}-3}{3}$
3) $\sqrt{3}-1$
4) $\sqrt{3}+1$
7. Expressed as a function of a positive acute angle, $\cot (-120)^{\circ}$ is equivalent to
1) $-\tan 60^{\circ}$
2) $\cot 60^{\circ}$
3) $-\cot 30^{\circ}$
4) $\cot 30^{\circ}$
. a. Express 160° in radian measure.
b. Express in degree measure, an angle whose radian measure is $\frac{7 \pi}{3}$.
4. If $\cos x=-\frac{4}{5}$ and $\tan x>0$, then $\angle x$ terminates in Quadrant
1) 1
2) II
3) III
4) IV
6. What is the value of $\sin \left(-240^{\circ}\right)$?
1) $\frac{1}{2}$
$\frac{1}{2}$
2) $-\frac{1}{2}$
3) $\frac{\sqrt{3}}{2}$
4) $-\frac{\sqrt{3}}{2}$
8. The expression $\frac{\sin x \cdot \cos x}{\tan x}$ is equivalent to
1) 1
2) $\sin ^{2} x$
3) $\cos x$
4) $\cos ^{2} x$

θ	0°	30°	45°	60°	90°
$\sin \theta$					
$\cos \theta$					
$\operatorname{can} \theta$					

