Improving Anti-Breast Cancer Vaccines by Overcoming Tumour Induced Immunosuppressive Factors

Kimberley Ann Stannard Bsc (applied biology)/ BHSc (Hons)

> School of Medical Science Griffith Health Griffith University

Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy

October 2011

Abstract

Cancers are a rapidly increasing source of morbidity and mortality for Australians. In 2005, there were over 100,000 new cases of cancer diagnosed and this number is projected to grow by over 3,000 extra cases per year in 2006–2010. Although traditional therapies such as surgery, chemotherapy and radiation therapy may extend the life of many patients, the treatments are associated with severe toxicities and are rarely curative for disseminated cancers. The idea of harnessing the immune system for the treatment of cancers represents an attractive treatment modality which should effectively complement current treatment methods. Immunotherapies, including cancer vaccines, are designed to re-train the immune system to recognise and destroy cancer cells and tip the balance from tumour acceptance toward active tumour immunity. However, many cancer vaccine approaches have failed to live up to their potential. Cancers employ many immunosuppressive factors which contribute nullifying anti-tumour immune responses during vaccination therapy. These to immunosuppressive factors include galectin-1, regulatory T-cells (Tregs) and inhibitory molecules such as CTLA-4, which are potential targets in the enhancement of immunotherapeutic strategies. This thesis aimed to investigate the role of these tumour derived immunosuppressive factors and to enhance the immune response towards an allogeneic whole cell breast cancer vaccine using a murine model of breast cancer.

Chapter 3 outlines the development of a highly immunogenic murine breast cancer cell line used in vaccination protocols throughout this study. Moderate increases in survival and slower tumour growth rates were observed both in prophylactic and treatment settings. The results demonstrated that factors involved in tumourigenesis may overwhelm the anticancer immune responses generated by vaccination. In Chapter 4, the role of galectin-1 was studied for its effects on T-cell subpopulations and the induction of CTL responses against breast cancer cells. Certain disaccharides that block galectin-1 from interacting with other carbohydrates and glycoproteins on cell surfaces were examined for their ability to enhance the potency of the cancer vaccine. These studies demonstrated that small carbohydrate molecules can be administered *in vivo* to inhibit the immunosuppressive activity of galectins and restore the immune environment, significantly inhibiting the growth of breast cancers to improve survival outcomes.

Chapter 5 investigated the role of Tregs and the CTLA-4 negative co-stimulatory molecule in inhibiting immune responses targeted toward murine breast tumours. Specifically, the administration of monoclonal anti-bodies (MAbs) which target Tregs was investigated. The results presented in this chapter clearly demonstrated that removing the immunosuppressive activity of Tregs by targeting their CTLA-4 surface receptor function is clearly preferable to broadly targeting Tregs through CD25 expression. This is demonstrated by enhanced the anti-tumour immune activity and increased survival in mice receiving anti-CTLA-4 MAb therapy. Furthermore, this chapter indicates that combining anti-cancer vaccination with CTLA-4 blockade induces increased CD8⁺ TIL, thereby inhibiting tumour growth and increasing survival above that of either approach used alone.

Chapter 6 investigated the effect of triple combination immunotherapy which combined the agents trialled in previous chapters to form an ultimate cocktail immunotherapy. Taking into account inter-experimental variability and control populations which were consistently ran in parallel, results in this chapter demonstrated that combination immunotherapy consisting of a whole cell cancer vaccine, an anti-CTLA-4 mAb and an anti-galectin disaccharide, provides a superior approach for enhancing anti-tumour immune responses than the use of stand-alone therapies. The role of galectin-1 and CTLA-4 in the appropriation of the Treg phenotype was also investigated. It was shown that both galectin-1 and CTLA-4 expression on naive CD4⁺CD25⁻ T-cell contributes significantly to the conversion of cells to the CD4⁺CD25⁺FoxP3⁺ Treg phenotype and that inhibiting these

molecules could significantly reduce this conversion with implications for altering the intratumoural ratio of CD8⁺ effector T-cells to the immunosuppressive CD4⁺CD25⁺FoxP3⁺ Tregs.

The results of this thesis highlight the fact that in order to improve current cancer therapies, including immunotherapies, a combinatorial approach must be used to combat as many evasion strategies as possible to tilt the balance back in favour of tumour elimination. This study demonstrates that a triple combination of a cancer vaccine with galectin-1 inhibition and the removal of negative co-stimulatory signals through CTLA-4 blockade can significantly improve outcomes for tumour challenged animals over any agent used alone, reinforcing the necessity for combination therapy to be applied in the current clinical setting.

Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

(Signed)_____

Acknowledgement of published papers included in this thesis

Section 9.1 of the Griffith University Code for the Responsible Conduct of Research ("Criteria for Authorship"), in accordance with Section 5 of the Australian Code for the Responsible Conduct of Research, states:

To be named as an author, a researcher must have made a substantial scholarly contribution to the creative or scholarly work that constitutes the research output, and be able to take public responsibility for at least that part of the work they contributed. Attribution of authorship depends to some extent on the discipline and publisher policies, but in all cases, authorship must be based on substantial contributions in a combination of one or more of:

- conception and design of the research project
- analysis and interpretation of research data
- drafting or making significant parts of the creative or scholarly work or critically revising it so as to contribute significantly to the final output.

Section 9.3 of the Griffith University Code ("Responsibilities of Researchers"), in accordance with Section 5 of the Australian Code, states:

Researchers are expected to:

- Offer authorship to all people, including research trainees, who meet the criteria for authorship listed above, but only those people.
- accept or decline offers of authorship promptly in writing.
- Include in the list of authors only those who have accepted authorship
- Appoint one author to be the executive author to record authorship and manage correspondence about the work with the publisher and other interested parties.
- Acknowledge all those who have contributed to the research, facilities or materials but who do not qualify as authors, such as research assistants, technical staff, and advisors on cultural or community knowledge. Obtain written consent to name individuals.

Included in this thesis is 1 published paper in *Chapter 4* which is co-authored with other researchers. My contribution to the co-authored paper is outlined at the front of the relevant chapter. The bibliographic details for this paper are:

Chapter 4: Stannard, K. A., P. M. Collins, et al. (2010). "Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model." <u>Cancer Lett</u> **299**(2): 95-110.

Appropriate acknowledgements of those who contributed to the research but did not qualify as authors are included in the published paper.

(Signed) _____

Name of Student

(Countersigned)

Supervisor: Name of Supervisor

Table of Contents

Abstract	2
List of figures	13
List of Tables	17
Acknowledgements	23
Chapter 1:	25
Literature Review	25
1.1 Introduction: Cancer	26
1.2 Breast cancer and murine models of the disease	27
1.3 Tumourigenesis -Four stages of tumour pathogenesis: Hyperplasia, Dyspl	asia, In situ
cancer, Invasive cancer	30
1.4 Immunosurveillance and immunoediting	34
1.5 Tumour Immune Evasion	38
1.5.1 Evasion from antigenic recognition	39
1.5.2. Tumour-induced immunosuppression	42
1.5.2.1 Interference with apoptotic signaling pathways 1.5.2.2 Down Regulation of the Major Histocompatibility Complex (MHC's). 1.5.2.3 Lack of co-stimulation 1.5.3 Cytotoxic T-lymphocyte antigen-4 (CTLA-4) expression	48 49
1.6 Regulatory T-cells (Tregs) and cancer	
1.6.1 Overview	
1.6.2 Treg markers and classification	
1.6.3 Tregs and cancer	
1.6.4 Immunotherapeutic strategies targeting Tregs	
1.7 The Galectins and their role in cancer and immunity	62
1.7.1 Overview of galectin production and function	62
1.7.2 Galectins and the immune response	
1.7.5 Galectin-1 inhibition	
1.8 Cancer Immunotherapy	80
1.8.1 Nonspecific immunotherapy	
1.8.2 Antigen specific immunotherapies	
1.9 Cancer vaccines	
1.10 Aims	

Chapter 2: Materials and Methods	
2.1 Materials	
2.1.1 Mice	92
2.1.2 Reagents and equipment used for flow cytometry and cell sorting	
2.1.3 Reagents and equipment used for molecular biological techniqu	es such as PCR,
DNA amplification and extraction and DNA transfection	96
2.1.4 Reagents and equipment used for immunohistochemical anal	
samples	
2.2 Methods	
2.2.1 Cell lines and culture conditions	
2.2.1.1 Cryopreservation and resuscitation of cells	
2.2.1.3 Cell viability assay by trypan blue dye exclusion	
2.2.1.4 In vivo tumour cell implantation	
2.2.1.5 Preparation and culture of lymphocytes and splenocytes from w	
lymph node, spleen and tumour tissue	
2.2.2 PCR and Gel Electrophoresis	
2.2.2.1 DNA isolation	
2.2.2.2 PCR	
2.2.2.3 Gel Electrophoresis	
2.2.3 Preparation of B7.1 DNA for Cell Transfection	107
2.2.3.1 Bacterial Transformation	
2.2.3.2 Plasmid DNA mini-preparations (Alkaline lysis method)	
2.2.3.3 Plasmid DNA maxi-preparations (alkaline lysis method)	
2.2.3.4 Caesium chloride density gradient centrifugation	
2.2.4 Cell Transfection	110
2.2.5 MHC class I induction	111
2.2.5.1 MHC class I receptor up-regulation by IFNs	
2.2.6 Flow Cytometry	
2.2.6.1 Fluorescent immunostaining for surface located antigens	
2.2.6.2 Intra-cellular immunofluorescence staining	
2.2.6.3 B7 Expression and MoFlo cell sorting	
2.2.6.4 Flow Cytometric Analysis of Apoptosis	
2.2.6.5 Flow cytometric analysis of CD8/CD4/CD25/FoxP3 T-cell Popul	
2.2.7 Vaccine Preparation and Vaccination Protocol	
2.2.8 Preparation of Splenocytes for mixed lymphocyte culture MLC a	
	-
2.2.9 In Vitro Addition of Galectin-binding disaccharides and recombin	
Gal-1 protein	
-	
2.2.10 Treatment of MOLT-4 cells with rhGal-1	120

2.2.11 Treg induction assay	120
2.2.12 Study protocols used in testing immunotherapies on animals mod	lels of breast
cancer	121
 2.2.12.1 In vivo anti-breast cancer vaccination study 2.2.12.2 Determining the effect of blocking Gal-1 with TDG in combination vaccine therapy 2.2.12.3 Determining the effect of Vaccine therapy combined with Treg in antibodies	n with 122 hibitory 122
2.2.13 Development of a CTE assay 2.2.13 DELFIA Cytotoxicity Assay 2.2.13.1 DELFIA Cytotoxicity Assay 2.2.13.1.1 Preparation of target cells for cytotoxicity assay 2.2.13.1.2 Preparation of Effector lymphocytes 2.2.13.1.3 DELFIA Cytotoxicity assay protocol 2.2.13.2 Europium Diethylenetriaminopentaacetate (EuDPTA) cytotoxicit 2.2.13.2.1 Preparation of Target cancer cells for cytotoxicity assay 2.2.13.2.2 Preparation of Effector lymphocytes 2.2.13.2.3 EuDPTA Cytotoxicity assay protocol	124 124 125 125 ty assay 127 127 127
 2.2.13.3 Development of a CTL assay based on luciferase enzyme activity released from lysed Target cells. 2.2.13.3.1 Preparation of Targets	being 129 129 129 129 130 130 131
 2.2.14.1 Antibodies, dyes and reagents. 2.2.14.2 Conjugation of antibodies to Alexa fluor[®] carboxylic acid, succini dyes. 2.2.14.3 Calculating Degree of Labelling (DOL). 2.2.14.4 Tissue sectioning and staining. 2.2.14.4.1 Tissue embedding. 2.2.14.4.2 Tissue sectioning. 2.2.14.4.3 Tissue staining. 2.2.14.4.3 Tissue staining. 	midyl ester 132 133 134 134 134 134 134

Chapter 3: Enhancing antigenicity of a breast cancer vaccine to increase CD8⁺ CTL immune responsiveness in a transgenic mouse breast cancer

model	137
3.1 Introduction	138
3.1.1 The HER-2/neu murine breast cancer model	138

3.1.2 Role of	the IFNs: increasing the ability of cancer cells to be	recognised by
immune killer	cells	139
3.1.3 Combine	ed effects of B7 expression and IFN treatment of tumour o	cells on the CTL
response		141
3.2 Results		143
3.2.1 Compari	ison of mitomycin C treatment and irradiation in the prep	paration of cells
used in vaccin	nation or MLC	143
3.2.2 Optimis	sation of IFN γ/β treatment to enhance the MHC o	lass I antigen
presentation	on cells for inclusion in a breast cancer vaccine	145
3.2.3 Product	ion of transfected NeuTL cell lines expressing increased s	surface levels of
B7-1		149
3.2.4 Increase	ed levels of MHC class I and B7-1 expression promote	the survival of
	in mixed lymphocyte culture (MLC)	
	ining the extent of production of splenic derived lyn	
	rith IFNγ48/β24 NeuTL B7-1 Hi cells	
	cal trial of breast cancer vaccine in preventative and there	
	of breast cancer vaccine to prevent or treat spontaneously (
	ours in the FVB/N c-neu transgenic mouse model	
	of a breast cancer vaccine to prevent or treat cancer in a tre	•
	del	
	st cancer vaccination reduces tumour progression and incr f tumour bearing mice	
	opment of CTL assays for monitoring immune cell responses	
	······································	
	Dissociation-Enhanced Lanthanide Fluorescent Immunoass	
Cytotoxicity	Assay	167
3.2.7.2 E	Europium Diethylenetriaminopentaacetate (EuDPTA) cytot	oxicity assay.
	Europium Diethylenetriaminopentaacetate (EuDPTA) cytot Bioluminescent cytotoxicity assay in Target Cells	oxicity assay. 168
 3.2.7.3 E		oxicity assay. 168 169
 3.2.7.3 E 3.2.7.3.1 E 3.2.7.3.2 I	Bioluminescent cytotoxicity assay in Target Cells Development of the luminescent target cells mproving bioluminescent target cell viability for CTL assay	oxicity assay. 168 169 169 s172
 3.2.7.3 E 3.2.7.3.1 L 3.2.7.3.2 Ii 3.2.7.4 Use o	Bioluminescent cytotoxicity assay in Target Cells Development of the luminescent target cells mproving bioluminescent target cell viability for CTL assay of fluorescent dyes as indicators of target cell death in CTL of	oxicity assay. 168 169 169 s172 assays177
 3.2.7.3 E 3.2.7.3.1 L 3.2.7.3.2 Ii 3.2.7.4 Use o 3.3 Discussion	Bioluminescent cytotoxicity assay in Target Cells Development of the luminescent target cells mproving bioluminescent target cell viability for CTL assay of fluorescent dyes as indicators of target cell death in CTL o	oxicity assay. 168 169 169 s172 assays177 182
 3.2.7.3 E 3.2.7.3.1 L 3.2.7.3.2 Ii 3.2.7.4 Use o 3.3 Discussion 3.3.1 Vaccine	Bioluminescent cytotoxicity assay in Target Cells Development of the luminescent target cells mproving bioluminescent target cell viability for CTL assay of fluorescent dyes as indicators of target cell death in CTL of	oxicity assay. 168 169 s169 s172 assays177 182 182

5.2.1 Size of breast cancers shows a direct correlation with levels of CD25 $^+$ T-
lymphocytes isolated from the tumours
5.2.2 Levels of Treg populations present in tumour bearing mice with either
spontaneous FVBN-MMTV rat C-neu or Wild Type NeuTL cell induced tumours214
5.2.3 Treatment with Treg inhibitory MAb does not affect the level of CD8+ T-cells, but
significantly reduces Treg populations
5.2.4 Single treatment with anti-CD25 MAb significantly reduces CD25 ⁺ T-cell levels
for prolonged time periods whereas anti-CTLA-4 MAb treatment does not significantly
affect this population
5.2.5. Combined therapy by vaccination with a whole syngeneic breast cancer vaccine
together with anti-Treg MAb increases levels of CD8+ cells in the spleen 221
5.2.6 Determining the optimal dose of anti-CD25 MAb to inhibit Treg cells for use in in
vivo cancer vaccination trials
5.2.7 Combination therapy with a breast cancer vaccine together with anti-CD25 MAb
promotes CD8 ⁺ TILs and reduces level of Tregs in tumours
5.2.8 Combined cancer immunotherapy using a breast cancer vaccine together with
anti-CD25 MAb treatment increases survival of mice with breast cancer 231
5.2.9 Anti-CTLA-4 MAb therapy used either alone or in combination with breast
cancer vaccination significantly increases tumour infiltrating CD8+ effector cells but
does not affect levels of CD4+CD25+FoxP3+ Tregs in tumours
5.2.10 Combining immunotherapy using a breast cancer vaccine together with anti-CTLA-
4 MAb therapy significantly increases survival in mice with tumour burdens 239
5.3 Discussion

Chapter 6:Enhancing cancer immunotherapy using a galectin inhibitor
combined with anti-CTLA-4 MAb therapy and a breast cancer vaccine 250
6.1 Introduction
6.2 Results
6.2.1 Combining anti-CD25 MAb therapy with CTLA-4 blockade and anti-breast cancer
vaccination does not further improve survival or tumour growth inhibition.254
6.2.2 Combination therapy incorporating Gal-1 inhibition significantly increases the
efficacy of an anti-cancer vaccine in the tumour burdened animals
6.2.4 Treatment with breast cancer cell supernatants or recombinant Gal-1 protein
promotes the conversion of CD4+CD25- naive T-cells to CD4+CD25+FoxP3+ Tregs
which can be prevented by TDG
6.3 Discussion 269
Chapter 7: Concluding remarks 276
References 296
Appendix 1 317

List of figures

		Page
Figure 1.1	The three phases of immunoediting.	37
Figure 1.2	Lymphocyte migration in normal tissue	40
Figure 1.3	Interactions of CTLA-4 and associated counter receptors	54
Figure 1.4	Architectural types of galectins	63
Figure 1.5	Diagram showing the reported intracellular and cell surface	67
	localization of several galectin family members	
Figure 1.6	Roles of galectins in tumourigenesis	73
Figure 1.7	Carbohydrate molecular structures of (a) N-Acetylglucosamine	75
	and (b) N-Acetylgalactosamine	
Figure 2.1	Annexin V (AV) P.I. staining for the analysis of cell death and	115
	apoptosis.	
Figure 2.2	General MLR scheme followed throughout this study	118
Figure 2.3	Related chemical structure of A. Lactobionic acid and B.	119
	Thiodigalactoside	
Figure 3.1	Mitomycin C successfully prevents cellular replication and	144
	prolongs cell viability post treatment	
Figure 3.2	Example of flow cytometric analysis of NeuTL cells	148
	immunostained for MHC class I expression	
Figure 3.3	Flow cytometric analysis of pB7.1 transfected versus wild type	150
	NeuTL breast cancer cells immunostained for B7-1 antigen	
	expression	
Figure 3.4	Isolation of highly positive B7.1 NeuTL cells after transfection	151
	on the MoFlo (Beckman Coulter) cell sorter	
Figure 3.5	Repeat flow sorting to enrich for highly B7-1 positive NeuTL	152
	cells	
Figure 3.6	Expression of the B7-1 antigen enhances the proliferation of	154
	naive splenocytes when expressed on feeder cells in MLC	
Figure 3.7	Vaccination with a syngeneic anti-breast cancer vaccine	156
	significantly increases immune responses in vaccinated mice	
Figure 3.8	Vaccination regime employed in pre-clinical trial 1	158
Figure 3.9	Statistical analysis of age of onset for spontaneously developing	159

breast cancer in the background population of the c-Neu transgenic mouse strain

Figure 3.10	Statistical analysis of age of onset for spontaneously developing	160
	breast cancer in c-Neu transgenic mice treated with	
	preventative vaccination with an anti-breast cancer vaccine	
Figure 3.11	NeuTL Wild Type cells grow and progress into solid tumours	163
	in 100% of mice	
Figure 3.12	Tumour growth and survival analysis of mice receiving	166
	prophylactic and treatment based vaccination regimens	
Figure 3.13	Detection of <i>Fluc</i> ⁺ target cells by CCD camera imaging	171
Figure 3.14	Analysis of luciferase release from decreasing numbers of lysed	173
	cells	
Figure 3.15	The effect of lysis buffer and tergitol on luciferase reporter	175
	activity	
Figure 3.16	Effect of IFN treatment on the levels of luminescent signal	177
	produced by target cells	
Figure 3.17	SYTOX [®] Green uptake profile of TritonX-100 treated dead and	180
	live viable NeuTL murine breast cancer cells	
Figure 3.18	Analysis of the effect of vaccination on the cytolytic activity of	181
	lymphocytes isolated from vaccinated and non-vaccinated	
	animals	
Figure 4.1	Detection of Gal-1 expression by tumour cells	198
Figure 4.2	Detection and inhibition of rhGal-1 binding	198
Figure 4.3	Crystallographic structures of Gal-1 in complex with	200
	disaccharides	
Figure 4.4	Detection and inhibition of rhGal-1 binding to whole MOLT-4	201
	cells by solid phase ELISA	
Figure 4.5	Addition of Gal-1 inhibiting disaccharides significantly	202
	increases MOLT-4 survival but has no effect on the growth of	
	NeuTL breast cancer cells	
Figure 4.6	Addition of galectin-blocking disaccharides enhances T-cell	203
	proliferation in splenic derived MLC prepared from vaccinated	
	mice	

Figure 4.7	The addition of rhGal-1 and galectin blocking TDG affects	204
	CD8, CD4 and CD25 subpopulations in MLC	
Figure 4.8	Effect of addition of rhGal-1 and galectin blocking TDG on the	204
	cytolytic activity in splenic derived MLC's from vaccinated	
	mice	
Figure 4.9	Intratumoural injection of galectin blocking TDG alone or in	204
	combination with a whole syngeneic breast cancer cell vaccine	
	significantly increases survival of tumour challenged mice	
Figure 5.1	Tumour size is directly correlated with levels of CD25 ⁺	213
	lymphocytes isolated from the tumour or spleens of tumour	
	bearing mice	
Figure 5.2	Levels of CD4 ⁺ CD25 ⁺ FoxP3 ⁺ T-cells in lymphocyte	215
	populations from spontaneously derived versus	
	induced/inoculated tumour burdened animals	
Figure 5.3	Treatment with Treg inhibiting MAbs does not affect levels of	218
	CD8 ⁺ T-cells but significantly Treg populations	
Figure 5.4	Treatment with anti-CD25 MAb significantly reduced CD25 ⁺	220
	T-cell levels for prolonged periods of time whereas anti-CTLA-	
	4 MAb does not	
Figure 5.5	Combined treatment with vaccination using a whole syngeneic	223
	breast cancer vaccine together with anti-Treg MAbs increases	
	the level of CD8 ⁺ populations in the spleen	
Figure 5.6	Determining the optimal dose of anti-CD25 MAb for tumour	225
	growth inhibition	
Figure 5.7	Combination therapy with a breast cancer vaccine together with	228
	anti-CD25 MAb promotes CD8 ⁺ TILs and reduced Tregs in	
	tumours	
Figure 5.8	Combination treatment with a whole cell breast cancer vaccine	233
	plus anti-CD25 MAb treatment significantly reduces tumour	
	growth in mice with tumour burden	
Figure 5.9	Anti-CTLA-4 MAb therapy used either alone or in	236
	combination with breast cancer vaccination significantly	
	increases tumour infiltrating CD8 ⁺ effector cells but does not	

affect levels of CD4⁺CD25⁺FoxP3⁺ Tregs in tumours

Figure 5.10	Combining immunotherapy with a breast cancer vaccine with	240
	anti-CTLA-4 MAb therapy significantly increases survival in	
	mice with tumour burden	
Figure 6.1	Efficacy of vaccine plus anti-CTLA4 MAb therapy is decreased	255

by the additional inclusion of anti-CD25 MAb therapy

- Figure 6.2 Triple combination immunotherapy with vaccine, anti-CTLA-4 259 and TDG most effectively inhibits tumour growth in mice with breast cancer
- Figure 6.3 Combination immunotherapy increases the ratio of effector T- 262 cells to T-regs in the treated breast cancers
- Figure 6.4 Tumour cell conditioned supernatant and/or rhGal-1 protein 267 mediate the conversion of CD4⁺CD25⁻ naive T-cells to CD4⁺CD25⁺FoxP3⁺ Tregs
- Appendix 1Intratumoural injection of galectin blocking TDG alone or in316combination with a whole syngeneic breast cancer cell vaccinesignificantly increases survival of tumour challenged mice.

List of Tables

Table 1.1	A partial list of immunosuppressive factors selected to	42
	demonstrate their diversity and wide spectrum of effects on	
	immune cells	
Table 2.1	Tumour and hybridoma cell lines	90
Table 2.2	Reagents for cell culture, tumour implantation, and the	91
	preparation of vaccine and adjuvant therapies	
Table 2.3	Equipment used for cell culture and vaccine preparation	92
Table 2.4	Antibodies and conjugates	93
Table 2.5	Reagents and equipment used for flow cytometry and cell	94
	sorting	
Table 2.6	Primers and plasmids used in PCR reactions and DNA	95
	transfections	
Table 2.7	Reagents used for molecular biological techniques	96
	including PCR, DNA amplification, purification and	
	transfection	
Table 2.8	Equipment used for DNA mini/maxi preparations, PCR	96
	and gel documentation	
Table 2.9	Antibodies and Alexa dyes used for immunohistochemistry	97
Table 2.10	Reagents used for immunohistochemistry	97
Table 2.11	Equipment used for immunohistochemistry	98
Table 2.12	PCR master mix	104
Table 2.13	PCR cycling conditions	104
Table 2.14	The different interferon treatments tested with incubation	110

Page

time and their combinations on MHC class I expression

Table 2.15	Definition of test samples analysed	125
Table 2.16	Definition of samples (DELFIA cytoxicity assay)	127
Table 2.17	Definition of samples (Luiferase release assay)	129
Table 2.18	Alexa Fluor [©] extinction coefficients and correction factors	132
Table 3.1	Fold increase in Mean Fluorescence Intensity (MFI) of	144
	MHC class I antigen expression on the surface of NeuTL	
	breast cancer cells treated over different time periods and	
	with different IFNs.	
Table 3.2	Schematic of treatment regimens to determine the effect of	172
	detergents on luciferase signal output	
Table 4.1	Crystallographic summary of galectin-1 structures with	197
	bound TDG and LBA (values in parentheses are for the	
	highest resolution shell)	
Table 4.2	MLC's with combined rhGal-1/TDG show significantly	203
	greater CTL responses	

Abbreviations

2-ME	2-mercaptoethanol
Ag	Antigen
AICD	Activation induced cell death
Amax	Absorbance maximum
APC	Antigen presenting cell
APC-conjugated	Allophycocyanin-conjugated
APM	Antigen processing machinery
BATDA	bis (acetoxymethyl) 2,2':6',2"- terpyridine-
	6,6"- dicarboxylate
BCG	Bacille Calmette-Guerin
BCL-2	B-cell lymphoma protein-2
BRACA1/2	Breast cancer gene 1/2
BSA	Bovine serum albumin
CAM	Cellular adhesion molecule
cAMP	Cyclic adenosine monophosphate
CCD	Charge-coupled device
CML	Chronic myeloid leukaemia
CRD	Carbohydrate recognition domain
CSC	Cancer stem cell
CTL	Cytotoxic T-lymphocyte
CTLA-4	Cytotoxic T-lymphocyte antigen-4
DC	Dendritic cell
DFS	Disease free survival
DMEM	Dulbeccos's modified eagle medium
DMSO	Dimethyl sulfoxide
dNTP	Deoxynucleotide Triphosphate
DOL	Degree of labelling
DR-5	Death receptor-5
DSMB	Data safety monitoring board
EDTA	Ethylenediaminetetraacetic acid
EGFR	Epidermal Growth Factor Receptor

ELISA	Enzyme linked immunosorbant assay
Erk	Extracellular Signal-Regulated Kinase
E:T	Effector:Target
FACS	Fluorescent activated cell sorting
FCS	Foetal calf serum
FDA	Food and drug administration
FITC	Fluorescein isothiocyanate
FI	Fold increase
Gal-1	Galectin-1
GE	Gastroesophageal
GITR	Glucocorticoid-induced tumor necrosis factor
	receptor
GM-CSF	Granulocyte Macrophage Colony Stimulating
	Factor
HER-2	Human epidermal growth factor receptor 2
HNC	Head and neck cancer
IBD	Inflammatory bowel disease
IC50	Inhibitory concentration of 50%
ICAM	Intracellular adhesion molecule
IDO	Indolamine 2,3-dioxygenase
IFN	Interferon
Ig	Immunoglobulin
IL	Interleukin
I.P.	Intra-peritoneal
I.T.	Intra-tumoural
I.V.	Intra-venous
LAK	Lymphokine-Activated Killer Cell
LN	Lymph node
MAb	Monoclonal antibody
МАРК	Mitogen-Activated Protein Kinases
MCP	Modified citrus pectin
MFI	Mean fluorescence intensity
MHC	Major histocompatibility class I/II

MLC	Mixed lymphocyte culture	
MMP	Matrix metalloprotease	
MMTV	Mouse Mammary Tumour Virus Long	
	Terminal Repeat Promoter	
mRNA	messenger ribonucleic acid	
NBCS	New bourn calf serum	
NKT	Natural killer T-cell	
OTC	Optimal cutting temperature	
OS	Overall survival	
PBMC	Peripheral blood mononucleocyte	
PBS	Phosphate buffered saline	
PCR	Polymerase chain reaction	
PD-1	Programmed cell death-1	
pDC	Plasmocytoid dendritic cell	
PE	Phycoerythrin	
PI	Propidium iodide	
РІЗК	Phosphatidylinositol-3-Kinase	
PTLD	Post Transplant Lymphoproliferative	
PTLD	Post Transplant Lymphoproliferative Disorder	
PTLD rhGal-1		
	Disorder	
rhGal-1	Disorder Recombinant human Galectin-1	
rhGal-1 rpm	Disorder Recombinant human Galectin-1 Revolutions per minute	
rhGal-1 rpm S.C.	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous	
rhGal-1 rpm S.C. SEM	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous Standard error of the mean	
rhGal-1 rpm S.C. SEM SPF	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous Standard error of the mean Specific pathogen free	
rhGal-1 rpm S.C. SEM SPF TAA	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous Standard error of the mean Specific pathogen free Tumour associated antigen	
rhGal-1 rpm S.C. SEM SPF TAA	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous Standard error of the mean Specific pathogen free Tumour associated antigen Transporter Associated with Antigen	
rhGal-1 rpm S.C. SEM SPF TAA TAP1/2	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous Standard error of the mean Specific pathogen free Tumour associated antigen Transporter Associated with Antigen Processing ¹ / ₂	
rhGal-1 rpm S.C. SEM SPF TAA TAP1/2	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous Standard error of the mean Specific pathogen free Tumour associated antigen Transporter Associated with Antigen Processing ½ T-cell receptor	
rhGal-1 rpm S.C. SEM SPF TAA TAP1/2 TCR TDG	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous Standard error of the mean Specific pathogen free Tumour associated antigen Transporter Associated with Antigen Processing ½ T-cell receptor Thiodigalactoside	
rhGal-1 rpm S.C. SEM SPF TAA TAP1/2 TCR TDG TGF-β	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous Standard error of the mean Specific pathogen free Tumour associated antigen Transporter Associated with Antigen Processing ½ T-cell receptor Thiodigalactoside Transforming growth factor-beta	
rhGal-1 rpm S.C. SEM SPF TAA TAP1/2 TCR TDG TGF-β Th	Disorder Recombinant human Galectin-1 Revolutions per minute Subcutaneous Standard error of the mean Specific pathogen free Tumour associated antigen Transporter Associated with Antigen Processing ½ T-cell receptor Thiodigalactoside Transforming growth factor-beta T-helper cell	

TRAIL	Tumour necrosis factor-related apoptosis-
	inducing ligand
Treg	Regulatory T-cell
UV	Ultraviolet
Vb	Vinblastine
VEGF	Vascular Endothelial Growth Factor

Acknowledgements

I would like to acknowledge first and foremost my supervisor Dr Steve Ralph, for giving me the opportunity to complete my studies in his laboratory, and for his supervision, guidance and support.

I express my sincere thanks to Pauline Low and Elwyn Gabutero for your encouragement, optimism and friendship. I would also like to thank my colleagues in the Ralph laboratory namely Sam Cutler, Ibtisam Ghazawi, Koichi Ito and Katie Powell for their help and support and for providing materials and protocols when needed.

I also wish to thank and acknowledge Danielle Jepson and Bevan Butcher for their participation in this research as part of their third year research project.

Thanks must also go to Ibtissam Abdul Jabba of the P.A. Hospital in Brisbane for her assistance with cell sorting and the Griffith University Animal Facility managers Simone Chmielewski and Anna Orthman for compiling invaluable detailed mouse records. I would also like to acknowledge Cameron Flegg for his assistance with imaging slides used in immunohistochimical experiments.

Heartfelt thanks to my family and friends for their unconditional love and support. Thank you to Mum, Dad, Adam, Ashlee and Aaron and all of my extended family for always being there whenever I needed it. Special thanks must go to Alana Cavill and David Hayllar for their undying confidence and faith in me. Finally I would like to thank my partner Elliott Nelson for his love and support throughout my candidature, without which this thesis would not be possible.

Finally I would like to dedicate my work to my father. I'm so sorry you never got to see the final finished product however I still feel you here and know you would be so proud.